首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Jobe RT 《Ecology》2008,89(1):174-182
One hypothesis for why estimators of species richness tend to underestimate total richness is that they do not explicitly account for increases in species richness due to spatial or environmental turnover in species composition (beta diversity). I analyze the similarity of a data set of native trees in Great Smoky Mountains National Park, USA, and assess the robustness of these estimators against recently developed ones that incorporate turnover explicitly: the total species accumulation method (T-S) and a method based on the distance decay of similarity. I show that the T-S estimator can give reliable estimates of species richness, given an appropriate grouping of sites. The estimator based on distance decay of similarity performed poorly. There are two main reasons for this: sample size effects and the assumption that distance decay of similarity exhibits a power law relationship. I show that estimators based on distance-decay relationships exhibit systematically lower rates of distance decay for samples with few individuals per site independent of environmental variation. Second, the data presented here and many other survey data sets exhibit exponential rather than power law distance-decay relationships. Richness estimators that explicitly incorporate beta diversity can be improved by beginning from an exponential distance-decay relationship and adjusting for the systematic errors introduced by small sample sizes.  相似文献   

2.
3.
外来种豚草入侵的过程与机制   总被引:3,自引:0,他引:3  
生物入侵是指生物由原生存地经自然的或人为的途径侵入到另一个新环境,对入侵地的生物多样性、农林牧渔业生产以及人类健康造成经济损失或生态灾难的过程.外来物种的入侵不仅会威胁到当地生物生存,还有可能导致海洋和淡水生态系统的退化.豚草(Ambrosia,artemisiifolia)原产美国西南部和墨西哥北部的索诺兰沙漠地区,是一种严重危害农业、生态和人体健康的外来恶性杂草,研究豚草的入侵过程及入侵机制有重要的意义.综述了国内外有关豚草入侵机制的研究进展,分析了豚草人侵阶段,定居阶段和稳定阶段的特点,并从豚草自身的强大的繁殖特性、种子的休眠特性、遗传性质、种子的传播特性、化感作用、竞争机制及入侵环境的可能性等方面综述分析成功定居在新环境中的豚草成为入侵种的机制,同时预测了豚草成功入侵可能还存在的其它机制,即豚草的适应性进化、协同入侵以及豚草的传粉特性.这几种机制的进一步的研究,将使我们能够洞悉豚草在新人侵地的生态环境下的扩散机制,预测其潜在的入侵区域,发现其适应过程中的薄弱环节,并在此基础上为进一步研究豚草的防治做准备.因此,认识豚草成功成为入侵种的原因对深入研究豚草入侵机制,对预测豚草入侵,采取适当的措施降低豚草物种所造成的危害具有重要的指导意义.  相似文献   

4.
5.
6.
Lau JA 《Ecology》2008,89(4):1023-1031
Biological invasions can have strong ecological effects on native communities by altering ecosystem functions, species interactions, and community composition. Even though these ecological effects frequently impact the population dynamics and fitness of native species, the evolutionary consequences of biological invasions have received relatively little attention. Here, I show that invasions impose novel selective pressures on a native plant species. By experimentally manipulating community composition, I found that the exotic plant Medicago polymorpha and the exotic herbivore Hypera brunneipennis alter the strength and, in some instances, the direction of natural selection on the competitive ability and anti-herbivore defenses of the native plant Lotus wrangelianus. Furthermore, the community composition of exotics influenced which traits were favored. For example, high densities of the exotic herbivore Hypera selected for increased resistance to herbivores in the native Lotus; however, when Medicago also was present, selection on this defense was eliminated. In contrast, selection on tolerance, another plant defense trait, was highest when both Hypera and Medicago were present at high densities. Thus, multiple exotic species may interact to influence the evolutionary trajectories of native plant populations, and patterns of selection may change as additional exotic species invade the community.  相似文献   

7.
Preston DL  Henderson JS  Johnson PT 《Ecology》2012,93(6):1254-1261
With many ecosystems now supporting multiple nonnative species from different trophic levels, it can be challenging to disentangle the net effects of invaders within a community context. Here, we combined wetland surveys with a mesocosm experiment to examine the individual and combined effects of nonnative fish predators and nonnative bullfrogs on aquatic communities. Among 139 wetlands, nonnative fish (bass, sunfish, and mosquitofish) negatively influenced the probability of occupancy of Pacific treefrogs (Pseudacris regilla), but neither invader correlated strongly with occupancy by California newts (Taricha torosa), western toads (Anaxyrus boreas), or California red-legged frogs (Rana draytonii). In mesocosms, mosquitofish dramatically reduced the abundance of zooplankton and palatable amphibian larvae (P. regilla and T. torosa), leading to increases in nutrient concentrations and phytoplankton (through loss of zooplankton), and rapid growth of unpalatable toad larvae (through competitive release). Bullfrog larvae reduced the growth of native anurans but had no effect on survival. Despite strong effects on natives, invaders did not negatively influence one another, and their combined effects were additive. Our results highlight how the net effects of multiple nonnative species depend on the trophic level of each invader, the form and magnitude of invader interactions, and the traits of native community members.  相似文献   

8.
The model of random population dynamics in a sampling site returns geometric distribution of longevities of continuous presence (=persistence) and Poisson distribution of the presence–absence transitions. This discrete-time stochastic process describes the presence–absence pattern observed in the beetles surveyed 6 years on Mount Carmel, Israel. Homogeneous pools of species mostly on the Families rank, exhibit the predicted by the model patterns. Conformity to an ergodic hypothesis is the criterion of ecological homogeneity. This criterion assumes the equivalence of short-term behavior of entire pool and long-term behavior of any species from this pool. The pool of all 801 species of Order Coleoptera does not match the model. Thus a taxon of an arbitrary rank may not be considered a priory as a unit of ecological study. Determined from field data parameters of the model are biased and magnitude of the bias depends on longevity of the survey. Parameter of distribution depends also on species tolerance, which is the level adaptation of given species to given environment in given time interval. Random process of species turnover may be considered as a game of species to gain their presence against deteriorative fluctuations of environmental conditions.  相似文献   

9.
城市生态系统的格局和过程   总被引:4,自引:0,他引:4  
城市生态系统是人类活动影响下的复合生态系统。人为的开发利用活动和局地的生物物理条件形成了城市特有的景观格局。城市发展改变了自然的生物栖息环境,从根本上改变了生态系统的结构、过程、功能,以及所提供的各种服务。这种改变最终又会影响人类自身的健康生存。文章综述了国内外有关城市景观格局和和重要生态过程之间相互作用机制的研究进展。通过研究发现,在大尺度上,净初级生产力是衡量城市发展对区域物流、能流影响的有效指标;在小尺度上,城市物流、能流过程和城市内部的景观结构、格局有很强的相关性。城市发展显著的改变了自然的栖息地及生物生长过程,本地植被种类减少,外来种增加,外来种的数量和人口数量有显著的相关性;而城市动物群落主要由一些小型哺乳动物、无脊椎动物、鸟类、两栖爬行类动物组成,其中,鸟类是研究城市化过程的有效指示物种。城市生态系统特有的景观格局及生态等过程显著的改了局部区域的微气候和水文过程,城市气温增加,风速降低,云、雾量增加,地表径流增加,流速加大,污染负荷增强等。因此,控制人类活动,优化土地利用的结构和空间格局,是改善城市生态系统结构和过程,保证可持续发展的基本出发点。但是,目前有关城市-格局-过程之间的影响机制还不十分清楚,尤其是定量研究较少。因此,结合传统的城市生态学,景观生态学的理论和其他相关学科领域的发展,为深入分析城市格局-过程之间的关系提供了重要的研究前景。  相似文献   

10.
张红玉 《生态环境》2013,(8):1451-1456
生物入侵在全球范围内影响了生物群落的结构与功能,打破了群落内物种共存的生态格局,继而反馈性影响全球环境。该文就外来杂草紫茎泽兰入侵对生物群落之间交互作用的影响进行了分析。1)紫茎泽兰通过竞争排斥降低了土著植物群落的多样性,造成依赖于土著植物的节肢动物群落减少或丧失适宜的栖息环境。2)打破了土著植物与节肢动物之间相互依存的状态,并通过单优群落优势和强烈化感作用制约天敌昆虫的自然控制作用。3)通过改变地表生境和枯落物种类影响土壤动物群落。4)引起土壤微生物群落组成和功能的变化,改变土壤中可利用资源的形式和数量,影响并重塑了生物种间互作模式,并动态反馈于地面植物群落新格局的形成。分析指出:1)入侵过程中群落之间的交互作用通过多层次生态过程对群落结构与功能的生态改变发挥影响。2)入侵对生物群落的改变所产生的生态驱动反馈性作用于群落互作模式的重塑、群落和生态系统新格局的重建。同时,指出了生物入侵对群落影响的复杂性以及后续研究的方向。  相似文献   

11.
The coastal sand-dune flora of the Gulf and Caribbean region of Mexico was analyzed to understand differences in floristic composition and richness found along the coast. Each of the 655 species reported was classified according to its ecology and distribution range by checking herbaria specimens, literature and specialists. Three groups were formed: (a) species with predominantly coastal distribution; (b) ruderal or secondary species frequently found inland, common of disturbed areas such as roadsides, abandoned fields or forming part of secondary growths; (c) inland species frequently found in other vegetation types such as tropical dry or seasonal forest and grassland. A total of 71 coastal species, 237 ruderal/secondary and 336 species from other community types were found. The distribution of these groups was analyzed along 44 sites of the Gulf and Caribbean, in the different dune habitats and for the dominant growth forms. Coastal species are more widely distributed; they predominate in habitats with sand movement and the herbaceous component prevails. Ruderal/secondary species and especially those belonging to other vegetation types frequently appear in only one or two sites occupying more protected or stabilized habitats. The two latter groups considerably increase species richness of sand dune flora, but also pose interesting problems for dune conservation.  相似文献   

12.
Although invasive alien species (IAS) are a major threat to biodiversity, human health, and economy, our understanding of the factors controlling their distribution and abundance is limited. Here, we determine how environmental factors, land use, life-history traits of the invaders, residence time, origin, and human usage interact to shape the spatial pattern of invasive alien plant species in South Africa. Relationships between the environmental factors and the extrinsic and intrinsic attributes of species were investigated using RLQ analysis, a multivariate method for relating a species-attribute table to an environmental table by way of a species presence/absence table. We then clustered species according to their position on the RLQ axes, and tested these groups for phylogenetic independence. The first three axes of the RLQ explained 99% of the variation and were strongly related to the species attributes. The clustering showed that, after accounting for environmental factors, the spatial pattern of IAS in South Africa was driven by human uses, life forms, and reproductive traits. The seven clusters of species strongly reflected geographical distribution, but also intrinsic species attributes and patterns of human use. Two of the clusters, centered on the genera Acacia and Opuntia, were phylogenetically non-independent. The remaining clusters comprised species of diverse taxonomic affinities, but sharing traits facilitating invasion in particular habitats. This information is useful for assessing the extent to which the potential spread of recent introductions can be predicted by considering the interaction of their biological attributes, region of origin, and human use.  相似文献   

13.
Perfecto I  Vandermeer J 《Ecology》2008,89(4):915-920
The coffee agroforestry system provides an ideal platform for the study of spatial ecology. The uniform pattern of the coffee plants and shade trees allows for the study of pattern generation through intrinsic biological forces rather than extrinsic habitat patchiness. Detailed studies, focusing on a key mutualism between an ant (Azteca instabilis) and a scale insect (Coccus viridis), conducted in a 45-ha plot in a coffee agroforestry system have provided insights into (1) the quantitative evaluation of spatial pattern of the scale insect Coccus viridis on coffee bushes, (2) the mechanisms for the generation of patterns through the combination of local satellite ant nest formation and regional control from natural enemies, and (3) the consequences of the spatial pattern for the stability of predator-prey (host-parasitoid) systems, for a key coccinelid beetle preying on the scale insects and a phorid fly parasitoid parasitizing the ant.  相似文献   

14.
 Most studies characterizing successful biological invaders emphasize those traits that help a species establish a new population. Invasions are, however, multi-phase processes with at least two phases, dispersal and introduction, that occur before establishment. Characteristics that enhance survival at any of these three phases will contribute to invasion success. Here, we synthesize information on the dispersal, introduction, and establishment of fishes mediated by ship ballast-water transport. We synthesize 54 reports of at least 31 fish species collected from ballast tanks (Phase 1), including 28 new reports from our recent studies (1986 to 1996). Our literature survey revealed 40 reports of 32 fish species whose introductions have been attributed to ballast transport (Phase 2), of which at least 24 survived to establish persistent populations (Phase 3). We detected little overlap at the species level between these two data sets (Phase 1 vs Phases 2 and 3), but patterns emerged at the family level. The Gobiidae (6 species), Clupeidae (4 species), and Gasterosteidae (1 species) were the most commonly found fish families in ballast tanks (Phase 1). The Gobiidae (13 species), Blenniidae (6 species) and Pleuronectidae (2 species) dominated the list of ballast-mediated introductions (Phase 2); gobies and blennies were the families most frequently established (Phase 3). The invasive success of gobies and blennies may be explained in part by their crevicolous nature: both groups seek refuge and lay eggs in small holes, and may take advantage of the ballast-intake holes on ship hulls. This behavior, not typically associated with invasive ability, may contribute to successful introduction and establishment by facilitating the dispersal phase of invasion. The failure of the pleuronectids to invade may reflect poor salinity match between donor and recipient regions. To develop a predictive framework of invasion success, organisms must be sampled at all three phases of the invasion process. Our comparison of two ballast sampling methods suggests that fishes have been undersampled in ballast-water studies, including our own, and that the role of ballast transport in promoting fish invasions has been underestimated. Received: 13 January 1999 / Accepted: 24 February 2000  相似文献   

15.
16.
Invasive species are one of the fastest growing conservation problems. These species homogenize the world's flora and fauna, threaten rare and endemic species, and impose large economic costs. Here, we examine the distribution of 834 of the more than 1000 exotic plant taxa that have become established in California, USA. Total species richness increases with net primary productivity; however, the exotic flora is richest in low-lying coastal sites that harbor large numbers of imperiled species, while native diversity is highest in areas with high mean elevation. Weedy and invasive exotics are more tightly linked to the distribution of imperiled species than the overall pool of exotic species. Structural equation modeling suggests that while human activities, such as urbanization and agriculture, facilitate the initial invasion by exotic plants, exotics spread ahead of the front of human development into areas with high numbers of threatened native plants. The range sizes of exotic taxa are an order of magnitude smaller than for comparable native taxa. The current small range size of exotic species implies that California has a significant "invasion debt" that will be paid as exotic plants expand their range and spread throughout the state.  相似文献   

17.
Previous work on the estimation of the invasiveness of insect pest species used a single Kohonen self-organising map (SOM) to quantify the invasion potential of each member of a set of species in relation to a particular geographic region. In this paper that method is critically compared to an alternative approach of calculating the invasive potential of insect pest species as an outcome of clustering of regional species assemblages. Data clustering was performed using SOM and k-means optimisation clustering and multiple trials were performed with each algorithm. The outcomes of these two approaches were evaluated and compared to the previously published results obtained from a single SOM. The results show firstly, due to the inherent variation between trials of the algorithms used, that multiple trials are necessary to determine reliable risk ratings, and secondly, that k-means clustering can be considered a more appropriate algorithm for this particular application, as it produces clusters of higher quality, as determined by objective cluster measures, and is far more computationally efficient than SOM.  相似文献   

18.
DeGasperis BG  Motzkin G 《Ecology》2007,88(12):3115-3125
Attempts to determine characteristics that render habitats invasible to nonnative species have met with limited success. This may be because most studies focus on modern habitat conditions and do not consider invasibility in the context of a historically dynamic landscape in which both the abundance of a species and the invasibility of a site may change. We surveyed 159 currently forested sites for the occurrence and abundance of Berberis thunbergii (Japanese barberry), an invasive, nonnative shrub in forests of the northeastern United States, relative to modern environmental conditions, contemporary logging activity, and two periods of historical land use. Berberis thunbergii occurred more frequently and was more abundant in post-agricultural forests than in continuously wooded sites. This relationship was stronger for agricultural sites that were abandoned and reforested after B. thunbergii was introduced to the region than for sites that reforested prior to B. thunbergii introduction. In contrast, recent forest harvesting did not influence the occurrence or abundance of B. thunbergii. Modern soil fertility explained a significant portion of the variation in B. thunbergii occurrence, whereas site history considerably improved predictions of population density and helped evaluate potential invasion mechanisms. While land-use history covaries with soil fertility and distance to putative seed sources, the strong relationship between modern abundance patterns and historical agriculture suggests that B. thunbergii colonized recently abandoned agricultural lands in the early 20th century and then persisted and spread locally during subsequent reforestation. Our results indicate that interpretations of both native community composition and modern plant invasions must consider the importance of historical landscape changes and the timing of species introduction along with current environmental conditions.  相似文献   

19.
Leks, display grounds where males congregate and females visit to copulate, are typically traditional in location, despite often high turnover of individual males. How leks can persist in face of male turnover is not well understood, in part due to a lack of detailed field data allowing for a clear understanding of lek dynamics. We followed the fate of individual males at 11 to 15 leks of the blue-crowned manakin Lepidothrix coronata across four breeding seasons to gain insights on how leks are formed and changed in space and time. Between years, leks were traditional in location despite changes in territory ownership due to male disappearance and recruitment. New males were equally likely to recruit by taking over existing territories or by establishing new territories. Recruitment was influenced by age, as recruits were more likely to be adults than subadults. Lek size did not affect the probabilities of a male recruiting or persisting at a territory, and vocalization rate, a correlate of mating success in this population, did not affect male persistence. We used our field data to model changes in lek size and composition over longer periods of time (100 years) to understand how lek traditionality can be reconciled with high male turnover. Our simulations showed that leks in our population rapidly stabilize in size despite changes in territory ownership and that rates of male recruitment and disappearance compensate each other, such that leks have the potential to persist for several decades after the original males have disappeared from them.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号