首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 619 毫秒
1.
The most advantageous approach to pathogen destruction in a urine-diversion toilet vault is to maximize the effects of various environmental factors (i.e., pH, temperature, moisture content, type of bulking agent, and storage time). To quantify these effects, a field experiment was set up, consisting of 6 urine-diversion toilet vaults, each with a different combination of feces and bulking agent (soil, ash, wood shavings, sodium hydroxide, or straw) and ventilation (ventpipe/no ventpipe). The pH of the mixes varied from 6.37 to 10.09. Temperature probes, which were connected to a data logger, were inserted to the heaps, and the logger monitored over a period of nearly 10 months. Mean heap temperatures ranged from 16.8 degrees C in winter to 27.6 degrees C in summer. In addition, samples were taken at intervals from the various heaps in the vaults and also from an open heap exposed to the elements. The samples were subjected to microbiological testing to quantify the pathogen dieoff over time. In the vaults, there was a 3log10 (99.9%) reduction of total coliform between 130 and 250 days, fecal coliform between 100 and 250 days, and fecal streptococci from 125 days and longer. In the open heap, these times varied, from 115 days for both total and fecal coliform, to 140 days for fecal streptococci. Viable Ascaris ova were reduced to zero between 44 and 174 days in the vaults and by 44 days in the open heap. The results of this research showed that ventilation of the vault by means of a ventpipe does not result in any meaningful difference in the vault temperature or the rate of pathogen dieoff. While the type of bulking agent used does not significantly affect the temperature of the heap, it does have an effect on the rate of pathogen dieoff. The ordinary soil mix was seen to give the best results, and this was ascribed to the effect of competing microorganisms in the soil itself. It is concluded that, for safety, vaults of urine-diversion toilets should be sized for a storage period of 9 to 12 months from the last use.  相似文献   

2.
We measured Escherichia coli, Enterococcus spp. and fecal coliform numbers in soil and on fresh potato skins after addition of solid dairy manure and dairy compost with and without alum (Al(2)(SO(4))(3)) treatment 1, 7, 14, 28, 179 and 297 days after application. The addition of dairy compost or solid dairy manure at rates to meet crop phosphorus uptake did not consistently increase E. coli and Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil sample after the first sampling day. Seven, 14, 28, 179 and 297 days after solid dairy waste and compost and alum were applied to soil, alum did not consistently affect Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil, fresh potato skin or potato wash-water at 214 days after dairy manure or compost application regardless of alum treatment. Dairy compost or solid dairy manure application to soil at rates to meet crop phosphorus uptake did not consistently increase Enterococcus spp. and fecal coliform numbers in bulk soil. Solid dairy manure application to soil at rates to meet crop phosphorus uptake, increased Enterococcus spp. and fecal coliform numbers in potato rhizosphere soil. However, fresh potato skins had higher Enterococcus spp. and fecal coliform numbers when solid dairy manure was added to soil compared to compost, N and P inorganic fertilizer and N fertilizer treatments. We did not find any E. coli, Enterococcus or total coliform bacteria on the exterior of the tuber, within the peel or within a whole baked potato after microwave cooking for 5 min.  相似文献   

3.
Eight types of Class A biosolids were tested for fecal coliform (FC) reactivation and/or regrowth at 20, 35, and 50 degrees C for 21 days. Growth of FC did not occur at 20 or 50 degrees C, but it was observed in two samples incubated at 35 degrees C after a lag period of 48 hours. In undigested biosolids, final FC concentration exceeded 10(4) MPN/g, whereas in thermophilically digested biosolids, the final FC concentration remained below 10(3) MPN/g, as FC regrowth may have been affected by the presence of the anaerobic bacterial consortium responsible for the digestion process. Fecal-coliform reactivation and regrowth within treatment plant operations seem unlikely but can occur in land application of biosolids.  相似文献   

4.
Water samples from streams, brooks and storm sewer outfall pipes that collect storm waters across the Island of Montréal were analyzed for caffeine, carbamazepine and fecal coliforms. All samples contained various concentrations of these tracers, indicating a widespread sanitary contamination in urban environments. Fecal coliforms and caffeine levels ranged over several orders of magnitude with a modest correlation between caffeine and fecal coliforms (R2 value of 0.558). An arbitrary threshold of 400 ng caffeine L−1 allows us to identify samples with an elevated fecal contamination, as defined by more than 200 colony-forming units per 100 mL (cfu 100 mL−1) of fecal coliforms. Low caffeine levels were sporadically related to high fecal coliform counts. Lower levels of caffeine and fecal coliforms were observed in the brooks while the larger streams and storm water discharge points contained over ten times more. The carbamazepine data showed little or no apparent correlation to caffeine. These data suggest that this storm water collection system, located in a highly urbanized urban environment, is widely contaminated by domestic sewers as indicated by the ubiquitous presence of fecal contaminants as well as caffeine and carbamazepine. Caffeine concentrations were relatively well correlated to fecal coliforms, and could potentially be used as a chemical indicator of the level of contamination by sanitary sources. The carbamazepine data was not significantly correlated to fecal coliforms and of little use in this dataset.  相似文献   

5.
The goal of this research was to demonstrate the ability to achieve Class A pathogen standards in nonthermophilic acid digesters. It was proposed that the key mechanism responsible for fecal coliform inactivation was the presence of un-ionized volatile fatty acids. Lab-scale acid digesters were assembled and operated in a batch mode for 5 days at mesophilic (38 degrees C) and low-mesophilic (21 degrees C) temperatures and at different solids concentrations. The key factor recognized for successful pathogen inactivation was pH, which is also the main factor driving the shift in organic acids toward the un-ionized form. Compared to conventional mesophilic acid digestion, low-mesophilic acid digestion was effective in fecal coliform inactivation because the process maintained lower pH throughout the duration of the experiment, offered continuous release of organic acids, and showed higher concentrations of organic acids in un-ionized form, including acetate, propionate, butyrate, and valerate.  相似文献   

6.
Abstract

The objective of this study was to evaluate the efficacy of oral sodium chlorate administration on reducing total coliform populations in ewes. A 30% sodium chlorate product or a sodium chloride placebo was administered to twelve lactating Dorper X Blackbelly or Pelibuey crossbred ewes averaging 65 kg body weight. The ewes were adapted to diet and management. Ewes were randomly assigned (4/treatment) to one of three treatments which were administered twice daily by oral gavage for five consecutive days: a control (TC) consisting of 3 g sodium chloride/animal/d, a T3 treatment consisting of 1.8 g of sodium chlorate/animal/d, and a T9 treatment consisting of 5.4 g sodium chlorate/animal/d; the latter was intended to approximate a lowest known effective dose. Ruminal samples collected by stomach tube and freshly voided fecal samples were collected daily beginning 3 days before treatment initiation and for 6 days thereafter. Contents were cultured quantitatively to enumerate total coliforms. There were no significant differences in total coliform numbers (log10 cfu/g) in the feces between treatments (P = 0.832). There were differences (P < 0.02) in ruminal coliform counts (log10 cfu/mL) between treatments (4.1, 4.3 and 5.0 log10/mL contents in TC, T3 and T9 Treatments, respectively) which tended to increase from the beginning of treatment until the 5th day of treatment (P < 0.05). Overall, we did not obtain the expected results with oral administration of sodium chloride at the applied doses. By comparing the trends in coliform populations in the rumen contents in all treatments, there was an increase over the days. The opposite trend occurred in the feces, due mainly to differences among rumen contents and feces in ewes administered the T9 treatment (P = 0.06). These results suggest that the low chlorate doses used here were suboptimal for the control of coliforms in the gastrointestinal tract of ewes.  相似文献   

7.
This paper examines bacterial levels and their causes in two Houston bayous (Texas). Buffalo and Whiteoak bayous are two of the most contaminated water bodies in Texas for indicator bacteria, based on the frequency and magnitude of contact recreation water quality exceedances. Examination of historical data indicates frequent exceedances, although some improvement has been made since the 1970s. Statistical analyses showed some correlation between in-stream fecal coliform concentrations and rainfall and with land use. Differences in fecal coliform concentrations were found between high- and low-flow conditions in Whiteoak Bayou, while reservoir releases confounded this relationship in Buffalo Bayou. Wastewater treatment plant effluent was found to make up two-thirds to three-fourths of the median flow in both bayous. Effluent sampling was conducted at 72 of the approximately 140 wastewater treatment plants (WWTPs) in the watersheds, providing evidence that WWTP effluent could act to maintain low-flow concentrations of fecal coliform in the bayous.  相似文献   

8.
The objectives of this research were to evaluate the potential for sudden increase and/or regrowth of alternative bacteria as either indicators or pathogens after dewatering of thermophilic and mesophilically digested biosolids. The results showed that, in general, for thermophilic processes, even when a statistically significant (p < 0.05) sudden increase and regrowth occurred for fecal coliforms, Escherichia coli, and Enterococci, it did not occur for Salmonella or Aeromonas. For the mesophilic process evaluated, sudden increase did not occur, but regrowth occurred for fecal coliforms, E. coli, Enterococci, and Salmonella. The results have implications for Class A and B biosolids regulations, as both fecal coliform and Salmonella are part of the regulatory limits. The results also suggest that the public health risks are minimal, as a result of the potential sudden increase and regrowth that may occur.  相似文献   

9.
The microbiological quality of urban wastewaters presents important environmental, sanitary, and political challenges. However, the variability of untreated wastewater quality is seldom known when it comes to microbial parameters. This study aims to evaluate the variability of microbiological quality in wastewater influents from different wastewater treatment plants connected to combined and partially separate sewer networks in the Parisian area and to evaluate the impact of this variability on the treatment efficiency and on the accuracy of wastewater effluent monitoring. The densities of fecal indicator bacteria (FIB), Escherichia coli and intestinal enterococci, and their partitioning on settleable particles were analyzed at the inlet of two wastewater treatment plants during dry weather (130 composite samples and 7 days sampled every 2 hours) and storm events (39 composite samples, and 7 rain courses) from 2008 to 2012. The results showed that fecal indicator densities vary according to the network characteristics and according to the meteorological conditions. During storm events, a significant dilution of E. coli and enterococci was observed, as well as a decrease in the settleable fraction of E. coli during the maximal impact of the storm. However, storm events did not significantly impact the regular FIB monitoring. FIB removals by primary and secondary treatment were significantly correlated with FIB densities in influent wastewater; however, meteorological conditions also influenced the removal of FIB.  相似文献   

10.
Male Sprague-Dawley rats (180 g) and 28-day-old Single Comb White Leghorn Cockerels (300 g) were orally dosed with deoxynivalenol (DON) at 2.5 mg kg-1 body weight. In the first experiment, whole brains were collected at 2, 6, 12, 24 and 48 hours after the toxin treatment and analyzed for brain biogenic monoamines by high-performance liquid chromatography with electrochemical detection. Although several interesting trends were observed, DON did not influence whole brain concentrations of monoamine neurotransmitters or their metabolites in either species, at any time. In a second experiment, brains were collected 24 hours postdosing, dissected into 5 brain regions (pons and medulla oblongata, cerebellum, hypothalamus, hippocampus and cerebral cortex), and analyzed. DON treatment resulted in significantly elevated concentrations of serotonin (HT) and 5-hydroxyindole-3-acetic acid (HIAA) in all brain regions of the rat. However, this was not seen in poultry, where DON treatment resulted in a decrease in norepinephrine (NE) in the hypothalamus and hippocampus, and a decrease in dopamine (DA) in the pons and medulla oblongata region. These results suggest that DON influences brain biogenic amine metabolism, and that there may be intraspecies differences in the central effects of this mycotoxin.  相似文献   

11.
Two most probable number (MPN) methods-lauryl tryptose broth with Escherichia coli broth confirmation and direct A-1 broth incubation (A-1)--were compared for the enumeration of fecal coliform in lime-treated biosolid. Fecal coliform numbers were significantly higher using the A-1 method. Analysis of positive A-1 tubes, however, indicated that a high percentage of these were false positives. Therefore, the use of A-1 broth for 40 CFR Part 503 Pathogen Reduction (CFR, 1993) compliance testing is not recommended.  相似文献   

12.
The in situ survival and activity of Streptococcus faecalis and Escherichia coli were studied using membrane diffusion chambers in tropical marine waters receiving oil refinery effluents. Protein synthesis, DNA synthesis, respiration or fermentation, INT reduced per cell, and ATP per cell were used to measure physiological activity. Cell densities decreased significantly over time at both sites for both S. faecalis and E. coli; however, no significant differences in survival pattern were observed between S. faecalis and E. coli. Differences in protein synthesis between the two were only observed at a study site which was not heavily oiled. E. coli was more active in protein synthesis and respiration than S. faecalis at both oiled and unoiled sites, and the percentage of the E. coli population that was respiring was significantly higher than S. faecalis fermenting cells at both sites. However, S. faecalis cells were more active in DNA synthesis and higher in ATP content than E. coli cells at both sites. Although fecal streptococci have been suggested as a better indicator of fecal contamination than fecal coliforms in marine waters, in this study both E. coli and S. faecalis survived and remained physiologically active for extended periods of time. These results suggest that the fecal streptococci group is not a better indicator of fecal contamination in tropical marine waters than the fecal coliform group, especially when that environment is high in long-chained hydrocarbons.  相似文献   

13.
The paper summarizes the results of a bench-scale study to evaluate the feasibility of using peracetic acid (PAA) as a substitute for sodium hypochlorite both for discharge into surface water and for agricultural reuse. Trials were carried out with increasing doses (1, 2, 3, 5, 10, and 15 mg/L) and contact times (6, 12, 18, 36, 42, and 54 minutes) to study disinfectant decay and bacterial removal and regrowth, using fecal coliform and Escherichia coli (E. coli) as process efficiency indicators. Peracetic acid decay kinetics was evaluated in tap water and wastewater; in both cases, PAA decays according to first-order kinetics with respect to time, and a correlation was found between PAA oxidative initial consumption and wastewater characteristics. The PAA disinfection efficiency was correlated with operating parameters (active concentration and contact time), testing different kinetic models. Two data groups displaying a different behavior on the basis of initial active concentration ranges (1 to 2 mg/L and 5 to 15 mg/L, respectively) can be outlined. Both groups had a "tailing-off" inactivation curve with respect to time, but the second one showed a greater inactivation rate. Moreover, the effect of contact time was greater at the lower doses. Hom's model, used separately for the two data groups, was found to best fit experimental data, and the disinfectant active concentration appears to be the main factor affecting log-survival ratios. Moreover, the S-model better explains the initial resistance of E. coli, especially at low active concentrations (< 2 mg/L) and short contact times (< 12 minutes). Microbial counts, performed by both traditional methods and flow cytometry, immediately and 5 hours after sample collection (both with or without residual PAA inactivation), showed that no appreciable regrowth took place after 5 hours, neither for coliform group bacteria, nor for total heterotrophic bacteria.  相似文献   

14.
The objective of this research was to establish a correlation between inactivation of fecal coliforms caused by organic acids in their unionized form in batch acid digesters and semicontinuously fed acid digesters at both mesophilic (38 degrees C) and low-mesophilic (24 degrees C) temperatures. Batch acid digesters achieved a U.S. Environmental Protection Agency Class A level of fecal coliforms within 6 to 7 days of digestion at both temperatures. Semicontinuously fed, staged, acid-digestion systems achieved Class A standards on average only at mesophilic temperature at a solids retention time of 11 days. Systems operated at low-mesophilic temperatures did not achieve Class A standards.  相似文献   

15.
Impacts of swine manure pits on groundwater quality   总被引:5,自引:0,他引:5  
Manure deep-pits are commonly used to store manure at confined animal feeding operations. However, previous to this study little information had been collected on the impacts of deep-pits on groundwater quality to provide science-based guidance in formulating regulations and waste management strategies that address risks to human health and the environment. Groundwater quality has been monitored since January 1999 at two hog finishing facilities in Illinois that use deep-pit systems for manure storage. Groundwater samples were collected on a monthly basis and analyzed for inorganic and bacteriological constituent concentrations. The two sites are located in areas with geologic environments representing different vulnerabilities for local groundwater contamination. One site is underlain by more than 6 m of clayey silt, and 7-36 m of shale. Concentrations of chloride, ammonium, phosphate, and potassium indicated that local groundwater quality had not been significantly impacted by pit leakage from this facility. Nitrate concentrations were elevated near the pit, often exceeding the 10 mg N/l drinking water standard. Isotopic nitrate signatures suggested that the nitrate was likely derived from soil organic matter and fertilizer applied to adjacent crop fields. At the other site, sandstone is located 4.6-6.1 m below land surface. Chloride concentrations and delta15N and delta15O values of dissolved nitrate indicated that this facility may have limited and localized impacts on groundwater. Other constituents, including ammonia, potassium, phosphate, and sodium were generally at or less than background concentrations. Trace- and heavy-metal concentrations in groundwater samples collected from both facilities were at concentrations less than drinking water standards. The concentration of inorganic constituents in the groundwater would not likely impact human health. Fecal streptococcus bacteria were detected at least once in groundwater from all monitoring wells at both sites. Fecal streptococcus was more common and at greater concentrations than fecal coliform. The microbiological data suggest that filtration of bacteria by soils may not be as effective as commonly assumed. The presence of fecal bacteria in the shallow groundwater may pose a significant threat to human health if the ground water is used for drinking. Both facilities are less than 4 years old and the short-term impacts of these manure storage facilities on groundwater quality have been limited. Continued monitoring of these facilities will determine if they have a long-term impact on groundwater resources.  相似文献   

16.
The acute toxicity of endosulfan and diazinon to the freshwater rotifer Brachionus calyciflorus was determined after 24 hours exposure to these toxicants. The mean 24 hr-LC50 values were 5.15 and 29.22 mg/L for endosulfan and diazinon respectively. Based on these results, four sublethal concentrations were chosen to determined the median lethal time (LT50) at each concentration of toxicant tested. We also used a control with the solvent (acetone). The concentration tested were 1/5, 1/4, 1/2 and 2/3th LC50 (24hr) for both pesticides. We found a decrease in the median lethal time (LT50) with increasing pesticide concentrations. The LT50 values ranged from 6.49 to 3.48 days after endosulfan treatment, and from 6.96 to 2.49 days after diazinon exposure. No effects on survival were observed in control animals exposed to the solvent.  相似文献   

17.
To achieve the hygienic safety of food waste used as animal feed, a hydrothermal treatment process of 60–110 °C for 10–60 min was applied on the separated food waste from a university canteen. Based on the microbial analysis of raw waste, the inactivation of hygienic indicators of Staphylococcus aureus (SA), total coliform (TC), total aerobic plate counts (TPC), and molds and yeast (MY) were analyzed during the hydrothermal process. Results showed that indicators' concentrations were substantially reduced after hydrothermal treatment, with a greater reduction observed when the waste was treated with a higher temperature and pressure and a longer ramping time. The 110 °C hydrothermal treatment for 60 min was sufficient to disinfect food waste as animal feed from the viewpoint of hygienic safety. Results obtained so far indicate that hydrothermal treatment can significantly decrease microbial indicators' concentrations but does not lead to complete sterilization, because MY survived even after 60 min treatment at 110 °C. The information from the present study will contribute to the microbial risk control of food waste–amended animal feed, to cope with legislation on food or feed safety.

Implications: Reduction of microbial indicators at ramping time and holding time during the hydrothermal process showed that hydrothermal treatment is an effective method to achieve hygienic feed from food waste to a certain extent, but the conditions researched in this study were not enough for the complete sterilization of food waste, because of the different heat resistance of bacteria and spores.  相似文献   

18.
Thermophilic-anaerobic digestion in a single-stage, mixed, continuous-flow reactor is not approved in the United States as a process capable of producing Class A biosolids for land application. This study was designed to evaluate the inactivation of pathogens and indicator organisms in such a reactor followed by batch treatment in a smaller reactor. The combined process was evaluated at 53 degrees C with sludges from three different sources and at 51 and 55 degrees C with sludge from one of the sources. Feed sludge to the continuous-flow reactor was spiked with the pathogen surrogates Ascaris suum and vaccine-strain poliovirus. Feed and effluent were analyzed for these organisms and for indigenous Salmonella spp., fecal coliforms, Clostridium perfringens spores, and somatic and male-specific coliphages. No viable Ascaris eggs were observed in the effluent from the continuous reactor at 53 or 55 degrees C, with greater than 2-log removals across the digester in all cases. Approximately 2-log removal was observed at 51 degrees C, but all samples of effluent biosolids contained at least one viable Ascaris egg at 51 degrees C. No viable poliovirus was found in the digester effluent at any of the operating conditions, and viable Salmonella spp. were measured in the digester effluent in only one sample throughout the study. The ability of the continuous reactor to remove fecal coliforms to below the Class A monitoring limit depended on the concentration in the feed sludge. There was no significant removal of Clostridium perfringens across the continuous reactor under any condition, and there also was limited removal of somatic coliphages. The removal of male-specific coliphages across the continuous reactor appeared to be related to temperature. Overall, at least one of the Class A pathogen criteria or the fecal coliform limit was exceeded in at least one sample in the continuous-reactor effluent at each temperature. Over the range of temperatures evaluated, the maximum time required to meet the Class A criteria by batch treatment of the continuous-reactor effluent was 1 hour for Ascaris suum and Salmonella spp. and 2 hours for fecal coliforms.  相似文献   

19.
Particle size distribution (PSD) analysis was used to evaluate the quality of mixed liquors collected from different activated sludge process modifications (i.e., conventional activated sludge, modified Ludzack-Ettinger, high-purity oxygen, step-anoxic, and oxidation ditch). An experiment protocol was developed to define the allowable sample holding time and provide representative and repeatable results. Samples of 26 treatment plants, with a total of 37 samples, were tested. A new indicator, called mean particle size (MPS), was introduced to describe the integrated mean particle size. The results of MPSs of three cut-off sizes (0.5 to 50, 100, and 200 microm) showed that the average size of mixed-liquor biosolids increased with increasing solids retention time (SRT), and the number of particles in the sedimentation supernatant decreased with increasing SRT. Particle deflocculation occurred after excessive sample holding time, and analysis within 12 hours generally eliminated sample holding problems. The results provide a methodology using PSD for characterizing mixed-liquor biosolids.  相似文献   

20.
Many surface and ground waters in the continental US are contaminated with a variety of chemical pollutants, which are usually present in concentrations in the ppm and ppb range. The effects of these pollutants on coliform bacteria, which are prominent members of the aquatic flora, are poorly understood. Using a microtiter plate assay, isolates of Escherichia coli (from chicken intestine and fresh water), and an isolate of Klebsiella pneumoniae (from bovine milk) were exposed to varying concentrations of common pollutants over a 24 h period. The herbicides/pesticides simazine, atrazine, and diazinon; the VOCs trichloroethene and MTBE; the estrogens estradiol and estrone; and caffeine, all failed to inhibit bacterial growth at ppm levels. Only ethylene glycol, and the herbicide 2,4-D, significantly inhibited bacterial growth compared to controls. These results suggest that the replication of coliform bacteria in fresh waters is not adversely impacted by many common pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号