首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The total heterotrophic bacteria, actinomycetes and fungus were enumerated from the rhizosphere and non-rhizosphere soil of 50 selected locally available medicinal plants in and around Bharathiar University. In all the plants, population of microorganism were higher in the rhizosphere soil than in the non rhizosphere soil. Among the microorganisms, bacterial population was higher in number followed by fungus and actinomycetes. Of the medicinal plants, the maximum rhizosphere effect was observed in Annona squamosa and the minimum effect was seen in Eclipta alba and Cassia auriculata. Among the bacteria the dominant species was Bacillus followed by Pseudomonas, Enterobacter, Corynebacterium, Micrococcus and Serratia. The Streptomyces species was found to be dominant followed by Deuteromycetes and Frankia among the actinomycetes. Among the fungal isolates Rhizopus was found to be higher in number followed by Aspergillus, Penicillium, Mucor and Fusarium. About 70.96% of the bacterial isolates were found to be nitrate reducers and 90.60% of the bacteria solubilised phosphate. The rhizosphere bacterial isolates were also capable of hydrolyzing starch, cellulose, casein, urea and gelatin. The isolates of bacteria, actinomycetes and fungus were also able to produce phytohormone Indole-3-acetic acid (IAA). The maximum IAA production was recorded by Fusarium sp (5.8 mg/l). The rhizosphere bacterial isolates showed resistance to 14 commercially used antibiotics. In an attempt to check the influence of these plant growth promoting microorganisms on the antimicrobial property of Coriandrum sativum against Escherichia coli MTCC-443 and Aeromonas hydrophila MTCC-646, the results observed was not encouraging since the inoculants did not influence the antibacterial property. However extensive and in depth study is required to find out the influence of rhizomicroorganisms on the antibacterial property of medicinal plants. The other results clearly indicated that the rhizosphere microorganisms could be exploited for its innumerable properties and active metabolites.  相似文献   

2.
Marine ornamental fishes are exceedingly valuable due to their high demand in domestic and international markets. There is a growing global interest to rear the fishes in captivity. But problem due to bacteria and fungi are the major hitch in captive condition. Since, the use of antibiotics is banned, an attempt was made to ascertain in vitro assay of the neem leaves extract against the bacterial pathogens isolated from infected fishes. Bacterial strains isolated from infected regions of the clown fishes Amphiprion sebae and A. ocellaris were identified as Aeromonas hydrophila, Enterobacter sp., E. coli, Pseudomonas aeruginosa, Proteus sp., Streptococcus sp., Vibrio cholerae, V. alginolyticus, V. parahaemolyticus and Yersinia enterocolitica. Ethanol and methanol extracts were highly inhibitory to the bacterial isolates when compared to other solvents. Ethanol extracts exhibited low minimum inhibitory concentration (75-250 microg ml(-1)) as compared to other extracts. The present finding revealed that the neem leaf extract significantly reduces the bacterial pathogens and their infection in marine ornamental fishes.  相似文献   

3.
Extracts of 19 of 24 species of sponge collected from Queensland. Australia, inhibited the growth of test microorganisms in in-vitro assays. A similar result has been obtained by earlier workers for extracts of species of sponge obtained from temperate waters. Some of the extracts, including extracts of Thorecta vasiforis, Arenochalina mirabilis and Acanthella kleutha, showed activity against bacterial strains that was comparable with that exhibited by penicillin G and streptomycin against these strains. Gram-positive bacteria were expecially sensitive to many extracts. Little activity was exhibited by any extract against four species of fungi tested. Some of the extracts were markedly toxic to one or more of the test organisms (a fish, a crustacean and a hydroid) used, but no clear pattern linking toxicity to these organisms with antimicrobial properties of the extracts emerged. In general, there bas a negative correlation between antimicrobial activity and surface-fouling, raising the possibility of using freedom from surface-fouling as an indicator of antimicrobial activity. Four of five encrusting species from the undersides of coral boulders showed antimicrobial activity. This study confirmed the value of using methanol-toluene extracts in field-based screening programmes, but emphasised the need to use additional extracting media such as methylene chloride in order to augment the number of antimicrobial compounds detected. There are indications that antimicrobial activity may be widespread in the order Dictyoceratida, in the order Verongida and in the order Axinellida, but sporadic in other orders of Porifera.  相似文献   

4.
Extracts of 39 species of Caribbean gorgonians were tested for antimicrobial activity against 15 strains of marine bacteria. The bacteria consisted of three opportunistic pathogens, Vibrio parahaemolyticus, Leucothrix mucor, and Aerococcus viridans, and 12 strains isolated from either healthy or decayed gorgonians. Overall, only 15% (79 out of 544) of the tests resulted in antibacterial activity with 33% (13 out of 39) of the gorgonians inhibiting only one bacterial strain and 23% (9 out of 39) showing no activity. The extracts of four Pseudopterogorgia species showed relatively high levels of activity, inhibiting 43 to 86% of the bacterial strains. The potency of the active Pseudopterogorgia species was variable, however, and three additional Pseudopterogorgia species were inactive against all bacterial strains. With the exception of one sensitive strain, Vibrio species were resistant to gorgonian metabolites. Our results indicate that organic extracts of most Caribbean gorgonians do not possess potent, broad-spectrum antibacterial activity inhibitory to the growth of opportunistic marine pathogens and bacteria associated with healthy and decayed gorgonian surfaces. These findings suggest that the inhibition of bacterial growth is not the primary ecological function of gorgonian secondary metabolites and that bacteria may not be important selective agents in the evolution of gorgonian secondary chemistry.  相似文献   

5.
Study of marine organisms for their bioactive potential, being an important part of marine ecosystem, has picked up the rhythm in recent years with the growing recognition of their importance in human life. Investigation was carried out to isolate 32 strains of endo and epiphytic bacteria in 2 seagrass species viz., Syringodium isoetifolium and Cymodocea serrulata. Morphologically different bacterial strains were tested against 5 antibiotic resistant human bacterial pathogens, of which 10 associated bacteria shown inhibitory activity against one or more bacterial pathogens. Minimum inhibitory concentration (MIC) and Minimum bacterial concentration (MBC) determination with extracellular bioactive compounds from the associated bacteria reveals that, the strain ENC 5 showed inhibitory activity against all the bacterial pathogens with the maximum sensitivity against Pseudomonas aeruginosa at the MIC value of 500 microg ml(-1).  相似文献   

6.
The present study analyzed the bioactivity of whole body extracts from six solitary and eight colonial ascidian taxa against 20 sympatric bacterial isolates and one sympatric diatom species from the Western Antarctic Peninsula. Ascidians had crude lipophilic and hydrophilic extracts assayed against 20 bacterial strains. The lipophilic extract of one ascidian caused growth inhibition in all bacterial isolates at 3× tissue-level concentrations. The lipophilic and hydrophilic extracts were fractionated into seawater-soluble and insoluble fractions and assayed at three concentrations against a sympatric diatom species. Significant diatom mortality was detected at 3× and 1× concentrations in all but one ascidian taxon. Lipophilic fractions caused higher diatom mortality than hydrophilic extracts. The specificity of secondary metabolites against diatom fouling and the lack of activity against bacteria suggest high selective pressure for chemical defenses against diatom fouling or the potential that bacterial pathogens are controlled by the ascidian immune system.  相似文献   

7.
Summary. The scope of this work was to examine whether leaf constitutive secondary metabolites play a role in determining bacterial colonization of the phyllosphere. To this aim, we surveyed nineteen native or cultivated plant species that share a common bacterial pool in a North Mediterranean area, and estimated the size of total and ice nucleation active (INA) bacterial populations on their leaves. Large differences in the colonization of their phyllosphere were found; the population size of epiphytic bacteria ranged from 7.5 × 102 to 1 × 106 CFU/g fresh weight, in eucalypt and celery, respectively. Species native in Mediterranean-type climate areas, particularly those belonging to the group of aromatic plants, are characterized by scarce presence of INA bacteria. The antibacterial activity of essential oils, surface phenolics and leaf tissue extracts was also estimated against the INA strains P. syringae and E. herbicola, isolated from two of these plant species. E. herbicola proved more sensitive than P. syringae. Of the species examined, oregano [Origanum vulgare L. subsp. hirtum (Link.) Ietswaart], an aromatic plant, had the highest antimicrobial activity, whereas six species showed no activity at all. Further experiments were performed with oregano and bean (Phaseolus vulgaris L.) that represent two extremes in their secondary metabolite content. Both plants were inoculated with P. syringae. By the end of incubation, the bacterial population on bean plants was about 100 times higher than that on oregano leaves. Scanning electron micrographs showed that bacterial growth on oregano leaves was confined to sites away from glandular hairs. Results from the bacterial colonization survey together with those from the toxicity tests showed that all species rich in antibacterial secondary metabolites harbored low leaf bacterial populations. These results provide substantial evidence that leaf secondary metabolites function as constitutive defense chemicals against microbial invasions. However, the fact that species with non- or moderately active leaf secondary metabolites are not always highly colonized suggests mediation of other unknown factors, the contribution of which requires further investigation.  相似文献   

8.
This study was conducted to evaluate the antimicrobial activities of common seaweeds from the coast of South Korea against the etiologic agents of acne vulgaris. Fifty-seven species of seaweed were screened for potential antimicrobial activity. Methanol extracts of 13 species (22.8%) showed inhibitory effects against Propionibacterium acnes. The aqueous extracts of only two species (3.5%) showed antimicrobial activity. When tested with the agar disk diffusion method, Ecklonia cava, E. kurome, Ishige sinicola, and Symphyocladia latiuscula had the strongest inhibitory effects. However, these four seaweed extracts showed no antibacterial activity against Staphylococcus epidermidis at 5 mg disk-1. The minimum inhibitory concentration (MIC) values of E. cava and E. kurome were both 0.31 mg ml-1 and the MIC values of l. sinicola and S. latiuscula were 0.26 and 0.21 mg ml-1, respectively. Among whole plants of E. cava and E. kurome, extracts of the pinnate blade had the highest inhibitory activity on bacterial growth. In cytotoxicity assays, methanol extracts of E. cava, E. kurome, and I. sinicola showed no effect on cell viability at concentrations of 200 microg ml-1. However, the methanol extracts of S. latiuscula reduced cell viability rates to 50% at the same concentration. Additionally, methanol extracts of E. cava, E. kurome, and I. sinicola potently inhibited the in vitro production of nitric oxide. These results suggest that the methanol extracts from these three species may be useful in the development of therapeutic agents for acne vulgaris. Further investigations to determine the bioactive compound are in progress.  相似文献   

9.
The retting environment which provides a competitive niche for specialized microbes is speculated to harbour a variety of microbes with high biodegradation potential. In this context, an effort has been made to isolate and identify bacterial species having high tolerance to phenol In vitro. Maximum polyphenol (1.897 mg l(-1)) as observed during the initial period of retting, which decreased as retting proceeded. Based on biochemical characterization, the isolated bacterial strains were identified as Micrococcus sp., Moraxella sp. strain MP1, Moraxella sp. strain MP2 and Moraxella sp. strain MP3, Pseudomonas sp. strain PP1 and Pseudomonas sp. strain PP2, Amphibacillus sp., Brucella sp. strain BP1 and Brucella sp. strain BP2, Aquaspirillum sp., Escherichia coli strain EP1 and Escherichia coli strain EP2, Campylobacter sp., Aeromonas sp., Neisseria sp., Vibrio sp., Erwinia sp. and Mesophilobacter sp. These strains were found to tolerate maximum concentration of phenol viz. 200 to 1000 mg l(-1). Plasmid analysis of phenol resistant bacterial isolates showed that almost all the cultures had at least one plasmid of size > 1Kb. Studies on the protein profile of isolated bacterial cultures showed the presence of proteins with molecular sizes ranging from 10 to 85 KDa with exception of Mesophilobacter and Neisseria having still high molecular weight protein (95 KDa). Bacterial strains isolated from coir-ret-liquor showed tolerance to high phenol concentration.  相似文献   

10.
Studies investigating disease resistance in marine plants have indicated that secondary metabolites may have important defensive functions against harmful marine microorganisms. The goal of this study was to systematically screen extracts from marine plants for antimicrobial effects against marine pathogens and saprophytes. Lipophilic and hydrophilic extracts from species of 49 marine algae and 3 seagrasses collected in the tropical Atlantic were screened for antimicrobial activity against five ecologically relevant marine microorganisms from three separate kingdoms. These assay microbes consisted of the pathogenic fungus Lindra thalassiae, the saprophytic fungus Dendryphiella salina, the saprophytic stramenopiles, Halophytophthora spinosa and Schizochytrium aggregatum, and the pathogenic bacterium Pseudoaltermonas bacteriolytica. Overall, 90% of all species surveyed yielded extracts that were active against one or more, and 77% yielded extracts that were active against two or more assay microorganisms. Broad-spectrum activity against three or four assay microorganisms was observed in the extracts from 48 and 27% of all species, respectively. The green algae Halimeda copiosa and Penicillus capitatus (Chlorophyta) were the only species to yield extracts active against all assay microorganisms. Among all assay microorganisms, both fungi were the most resistant to the extracts tested, with less than 21% of all extracts inhibiting the growth of either L. thalassiae or D. salina. In contrast, over half of all lipophylic extracts were active against the stramenopiles H. spinosa and S. aggregatum, and the bacterium P. bacteriolytica. Growth sensitivity to hydrophilic extracts varied considerably between individual assay microorganisms. While 48% of all hydrophilic extracts were active against H. spinosa, 27% were active against P. bacteriolytica, and only 14% were active against S. aggregatum. Overall, more lipophilic extracts inhibited microbial growth than hydrophilic extracts. The variability observed in the antimicrobial effects of individual extracts against each assay microorganism reflects the importance of choosing appropriate test microbes in assays from which ecologically relevant information is sought. Results from this survey demonstrate that antimicrobial activities are prevalent among extracts from marine algae and seagrasses, suggesting that antimicrobial chemical defenses are widespread among marine plants.  相似文献   

11.
The potency of free-living and animal-associated marine bacteria to produce antimicrobial substances has been studied in 491 strains isolated from northern and southern parts of the Pacific Ocean. A total of 26% (126 out of 491) of the strains examined produced antimicrobial compounds against 11 test bacterial strains (TBS) including the fish pathogens Aeromonas hydrophila and Vibrio anquillarum. Antimicrobial substances (AS) produced by marine bacteria were especially active against Staphylococcus epidermidis, Proteus vulgaris, Enterococcus faecalis, and Candida albicans. Twelve strains, isolated from different sources, were chosen as promising candidates, producing a number of AS. Production of AS varied within 24 to 72 h, increasing in a culture medium based on natural sea water with Br-ions, and after attachment to polymeric surfaces. In order to study the influence of adsorption, selected strains with a high potential for antimicrobial production were cultivated on polymeric surfaces with different hydrophobicities and chemical functionalities. These parameters of the surface hydrophobicity (measured by means of water contact angles) and chemical functionality of the surfaces were manipulated using the photo- and thermochemistry of a polymeric system (diazo-naphto-quinone/novolak) commonly used as a photoresistant material in semiconducto-manufacturing. The highest antimicrobial activities occurred on hydrophilic surfaces (standard exposed photoresistant films), whereas the number of attached cells was greater on hydrophobic surfaces, characterized as unexposed resistant films. These results suggest that the chemical nature of induced hydrophilicity may also be a major factor in controlling antimicrobial activity of adsorbed bacteria. Received: 5 March 1997 / Accepted: 24 August 1997  相似文献   

12.
An on-going, Caribbean-wide epizootic affecting sea fan corals (Gorgonia spp.) is caused by the fungus Aspergillus sydowii (Thom et Church). We examined the role of crude extracts in resistance of two species of sea fans, Gorgonia ventalina (L.) and G. flabellum (L.), against A. sydowii and a bacterial pathogen of fish, Listonella anguillarum (MacDonell et Colwell). Sea fans were collected in January 1997 from San Salvador, Bahamas, and in June 1997 and January 1998 from Alligator Reef, Florida Keys, USA. Crude extracts from both species were tested to determine concentrations inhibiting germination of A. sydowii spores. Crude extracts from both species inhibited spore germination at concentrations as low as 1.5 mg ml−1; most samples were active at 5 to 10 mg ml−1. These concentrations are within the range estimated in living tissue and were higher in healthy colonies suggesting their role in mediating disease susceptibility. We also detected within-colony gradients in antifungal activity, which varied with the disease state of the colony. In healthy sea fans, resistance was highest at colony edges and lowest in medial and central regions of the colony. Among sea fans with lesions in the colony center, resistance in tissue from proximal and medial regions was as high as tissue from the colony edge (i.e. distal region). The increase in antifungal activity suggests an inducible response by the coral host to the fungal pathogen. This response is most evident among sea fans with lesions in the colony center and not among colonies with lesions at the edge. Antibacterial activity of crude extracts against L. anguillarum was highest at the colony edge but did not vary with disease state or tissue location. Received: 10 March 1999 / Accepted: 10 November 1999  相似文献   

13.
Under the general heading of symbiosis, defined originally to mean a living together of two dissimilar species, exist the sub-categories of mutualism (where both partners benefit), commensalism (where one partner benefits and the other is neutral) and parasitism (where one partner benefits and the other is harmed). The sea anemone-fish (mainly of the genus Amphiprion) symbiosis has generally been considered to benefit only the fish, and thus has been called commensal in nature. Recent field and laboratory observations, however, suggest that this symbiosis more closely approaches mutualism in which both partners benefit to some degree. The fishes benefit by receiving protection from predators among the nematocyst-laden tentacles of the sea anemone host, perhaps by receiving some form of tactile stimulation, by being less susceptible to various diseases and by feeding on anemone tissue, prey, waste material and perhaps crustacean symbionts. The sea anemones benefit by receiving protection from various predators, removal of necrotic tissue, perhaps some form of tactile stimulation, removal of inorganic and organic material from on and around the anemone, possible removal of anemone parasites, and by being provided food by some species of Amphiprion.  相似文献   

14.
15.
Antimicrobial activity of Red Sea corals   总被引:1,自引:0,他引:1  
Scleractinian corals and alcyonacean soft corals are the two most dominant groups of benthic marine organisms inhabiting the coral reefs of the Gulf of Eilat, northern Red Sea. Antimicrobial assays performed with extracts of six dominant Red Sea stony corals and six dominant soft corals against marine bacteria isolated from the seawater surrounding the corals revealed considerable variability in antimicrobial activity. The results demonstrated that, while the majority (83%) of Red Sea alcyonacean soft corals exhibited appreciable antimicrobial activity against marine bacteria isolated from the seawater surrounding the corals, the stony corals had little or no antimicrobial activity. From the active soft coral species examined, Xenia macrospiculata exhibited the highest and most potent antimicrobial activity. Bioassay-directed fractionation indicated that the antimicrobial activity was due to the presence of a range of compounds of different polarities. One of these antibiotic compounds was isolated and identified as desoxyhavannahine, with a minimum inhibitory concentration (MIC) of 48 μg ml−1 against a marine bacterium. The results of the current study suggest that soft and hard corals have developed different means to combat potential microbial infections. Alcyonacean soft corals use chemical defense through the production of antibiotic compounds to combat microbial attack, whereas stony corals seem to rely on other means.  相似文献   

16.
Levenbach S 《Ecology》2008,89(10):2819-2828
Little attention has been given to associational refuges in ecology, despite their potential for maintaining species diversity and supporting higher trophic levels. Here I show how the colonial anemone, Corynactis californica, creates a refuge for benthic macroalgae and invertebrate fish prey on intensively grazed shallow rocky reefs in the Santa Barbara Channel off southern California, U.S.A. On reefs heavily grazed by sea urchins, benthic macroalgae and invertebrate fish prey were relatively more abundant among Corynactis colonies than adjacent areas lacking the anemone. Results from field experiments showed that Corynactis facilitated the recruitment of macroalgae and tubicolous amphipods in "urchin-barren" areas subjected to intensive grazing. In areas forested by giant kelp (Macrocystis pyrifera), where grazing intensity from urchins was low, Corynactis suppressed algal recruitment but facilitated tubicolous amphipods. A manipulation of fish and sea urchins suggested that grazing by urchins, as opposed to predation from fish (primarily surfperch Embiotocidae), suppressed tubicolous amphipods, and this activity was hindered by the presence of Corynactis. In systems where human activity has intensified herbivory, associational refuges may maintain species diversity and support higher trophic levels.  相似文献   

17.
This study is the second of two surveys designed to systematically screen extracts from marine plants for antimicrobial effects against ecologically relevant marine microorganisms, and to compare results on a geographical basis. In the preceding survey, extracts from tropical Atlantic marine algae and seagrasses were screened in growth inhibition assays against the pathogenic fungus Lindra thalassiae, the saprophytic fungus Dendryphiella salina, the saprophytic stramenopiles, Halophytophthora spinosa and Schizochytrium aggregatum, and the pathogenic bacterium Pseudoaltermonas bacteriolytica. In this study, the same assay microorganisms were used to examine the antimicrobial effects of lipophilic and hydrophilic extracts from 54 species of marine algae and two species of seagrasses collected from Indo-Pacific reef habitats. Overall, 95% of all species surveyed in this study yielded extracts that were active against one or more, and 77% yielded extracts that were active against two or more assay microorganisms. Broad-spectrum activity against three or four assay microbes was observed in the extracts from 50 to 21% of all species, respectively. Extracts from the green alga Bryopsis pennata and the red alga Portieria hornemannii inhibited the growth of all assay microorganisms. Given that antimicrobial activity was prevalent among extracts of Indo-Pacific marine plants, it is interesting to note that the inhibitory effects of each extract varied considerably between the assay microorganisms. Overall, H. spinosa and D. salina were the most susceptible while L. thalassiae, S. aggregatum, and P. bacteriolytica were the most resistant to the extracts tested. These results provide good evidence that antimicrobial chemical defenses are widespread among Indo-Pacific marine plants. Further, the activity profiles of plant extracts suggest that antimicrobial secondary metabolites can have pathogen-selective or broad-spectrum effects. To confirm these results, chemical studies will be needed to isolate and characterize the compounds responsible for the observed antimicrobial activities.  相似文献   

18.
19.
The spider crab Inachus phalangium is common in the sublitoral fringe of the Mediterranean Sea and north-eastern Atlantic Ocean, where it can be found in association with the snakelocks sea anemone Anemonia viridis. Studies concerning its activity patterns and the role of the host sea anemone are lacking. Our study aimed at investigating activity rhythms and resources utilization of I. phalangium reared in captivity. The main behavioral traits exhibited by I. phalangium are performed mostly at night. Two experiments were designed, one examined the time budget of various behavioral acts and the degree of association with the sea anemone, the other analyzed the behavioral response to algae and anemones. We showed that algae have a crucial role in the biology of I. phalangium and that crabs are ready to leave the protection of their host to obtain them. Algae represent both the major component of the diet and one of the most utilized sources of masking material of I. phalangium, which provide, together with specialized cryptic behaviors, protection against predators. Although our data suggest that the association with A. viridis is not obligatory, but the role of the snakelocks sea anemone in the life of I. phalangium is still central, both as an anti-predatory defense and as a nutritional source. The association of I. phalangium with algae and the anemone is a facultative biotrophic commensalistic symbiosis.  相似文献   

20.
Bioactive properties of extracts from Australian dorid nudibranchs   总被引:2,自引:0,他引:2  
Specimens of 21 species of dorid nudibranchs were collected off Queensland and New South Wales, Australia, in 1984, and extracts were assayed against a variety of test organisms (bacteria, fungi, crustacean nauplii, a fish and a mammal). Antimicrobial activity was present in extracts of 80% of the 21 species assayed and in each of the five families investigated (Chromodorididae, Aegeridae, Phyllidiidae, Dorididae, and Dendrodorididae). This result adds the families Aegeridae, Phyllidiidae and Dendrodorididae to those with species known to possess such activity. Extracts of 18 of the 21 species possessed ichthyotoxins. This result adds the families Aegeridae, Dorididae and Dendrodorididae to those with species known to possess such activity. Further, extracts of 10 species (of 13 species tested) were toxic to mice and two of these 10 were toxic to Artemia sp. nauplii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号