首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present climate change projections and apply indices of weather extremes for the Mediterranean island Cyprus using data from regional climate model (RCM) simulations driven by the IPCC A1B scenario within the ENSEMBLES project. Daily time-series of temperature and precipitation were used from six RCMs for a reference period 1976–2000 and for 2026–2050 (‘future‘) for representative locations, applying a performance selection among neighboring model grid-boxes. The annual average temperatures of the model ensemble have a ±1.5°C bias from the observations (negative for maximum and positive for minimum temperature), and the models underestimate annual precipitation totals by 4–17%. The climatological annual cycles for the observations fall within the 1σ range of the 6-model average, highlighting the strength of using multi-model output. We obtain reasonable agreement between models and observations for the temperature-related indices of extremes for the recent past, while the comparison is less good for the precipitation-related extremes. For the future, the RCM ensemble shows significant warming of 1°C in winter to 2°C in the summer for both maximum and minimum temperatures. Rainfall is projected to decrease by 2–8%, although this is not statistically significant. Our results indicate the shift of the mean climate to a warmer state, with a relatively strong increase in the warm extremes. The precipitation frequency is projected to decrease at the inland Nicosia and at the coastal Limassol, while the mountainous Saittas could experience more frequent 5–15 mm/day rainfall. In future, very hot days are expected to increase by more than 2 weeks/year and tropical nights by 1 month/year. The annual number of consecutive dry days shows a statistically significant increase (of 9 days) in Limassol. These projected changes of the Cyprus climate may adversely affect ecosystems and the economy of the island and emphasize the need for adaptation strategies.  相似文献   

2.
Rise in temperature and annual precipitation, changes in seasonal rainfall patterns, more frequent and severe extreme weather events, and increased salinity in river water have been observed in Bangladesh in the recent years. Rising temperature will elevate total power consumption and peak power demand especially during the pre-monsoon hot summer season, reduce power plant efficiency and transformer lifetime, and increase the transmission loss. More frequent and severe extreme weather events may cause more disruption in power generation and distribution, and more damage of power infrastructure. Lower river flow in dry season may cause water scarcity in power plants and hamper the production. Increased salinity in river water due to sea level rise may lead to corrosion and leakages in power plants located in the coastal region of Bangladesh. A diversified, decentralized, and climate resilient power system can reduce negative impacts of climate change on power sector of Bangladesh. Adaptation and mitigation strategies must be incorporated in the planning and development of new power systems and the reformation of existing power systems of Bangladesh.  相似文献   

3.
Woody biomass generated in short-rotation coppice (SRC) plantations with aspen (Populus tremula L.) has good properties for bioenergy crop production: annual yields are high, labour input per year is low, and it is ecologically valuable because of the multi-year rotation periods. Eastern Germany has a special advantage in producing bioenergy crops: the former “agricultural cooperatives” built up quite large farms with, compared to Western Germany, comparatively large fields. Therefore, a modelling study of the potential and the impacts of aspen SRC plantations in the five eastern federal states of Germany under the recent climate and future climate projections was conducted. The ecophysiological forest growth model 4C was used to simulate the growth of aspen SRC plantations and their impacts on carbon in soils, and groundwater recharge, on selected suitable areas currently under crops but with marginal site conditions for cropping. A clear signal to enhanced growth condition over the whole area can be seen in the simulation of the mean annual woody biomass yield under conditions of climate change, which increased from 7.47 t DW ha−1 a−1 under the recent climate to 9.26 t DW ha−1 a−1 at the end of the considered future period 2034–2055 under climate change. The mean soil carbon sequestration rate was 0.81 t C ha−1 a−1 under the recent climate and could rise up to 0.93 t C ha−1 a−1 under the assumption of climate change. On the other hand, the mean annual percolation rate, used as an indicator of impacts on the regional water budget, will diminish under future climatic conditions. The results suggest that aspen SRC plantations are a suitable contribution to regional CO2 mitigation and carbon sequestration under possible change of climate, but that negative impacts on the regional water budget are possible.  相似文献   

4.
河流生态水文情势对生态系统起着决定性作用,定量评估日调节电站库区中部生态水文情势影响,可为日调节电站的生态调度,维持河流生态健康等提供科技支撑。采用变动范围法(RVA)对湘江干流大源渡枢纽库区衡阳水文站1959~2015年逐日流量、水位及流速指标进行分析,采用生物多样性指标SI初步评估库区生物多样性的变化。结果表明:日调节电站蓄水后,库区中部生态水文变化特征及生态影响为:流速IHA指标整体改变度达到81%,流量IHA指标整体改变度为43%;4~7月月均流速降低(高度改变)不利于“四大家鱼”产卵活动;库区年极小值流量的增加利于保障自然栖息地和植物群落;年极值流速降低在改变库区河道地貌的同时加大生态环境风险;流量、流速年最小值出现时间发生100%改变,影响生物的生命活动;流量低脉冲历时和流速高脉冲历时高度改变,不利于刺激家鱼产卵繁殖活动;枢纽蓄水后SI值降低,生物多样性降低。  相似文献   

5.
This study presents an integrated hydrologic–economic model as decision support system for groundwater use and incorporates uncertainties of climate change. The model was developed with the Vensim software (Ventana Systems) for system dynamic simulations. The software permitted the integration of economic variables along with hydrologic variables, in a unified format with the aim of evaluating the economic impacts of climate change on arid environments. To test the model, we applied it in one of the upper Tunuyán River sub-basin, located in the Mendoza Province (Argentina), where irrigation comes from groundwater. The model defines the best mix of crops and the total land use required to maximize the total river sub-basin monetary income, considering as a limit the amount of water that does not exceed the natural annual aquifer recharge. To estimate the impacts of climatic changes, four scenarios were compared: the business as usual (with the number of existing wells) in a dry year with a temperature increase of 4 °C; the business as usual in a wet year with an increase in temperature of 1.1 °C; an efficient use of wells in a dry year and a temperature increase of 4 °C and an efficient use of wells in a wet year with a temperature increase of 1.1 °C. Outputs calculated by the model were: land use per crop, total sub-basin net benefit, total sub-basin water extraction, water extraction limit depending on river discharge and total number of wells required to irrigate the entire area. Preliminary results showed that the number of existing wells exceeded the optimized number of wells required to sustainably irrigate the entire river sub-basin. Results indicated that in an average river discharge year, if wells were efficiently used, further rural development would be possible, until the limit of 350 million m3 of water extraction per year was reached (650 million m3 for a wet year and 180 million m3 for a dry year). The unified format and the low cost of the software license make the model a useful tool for Water Resources Management Institutions, particularly in developing countries.  相似文献   

6.
For recent years, runoff generation and hydrological processes in Hailiutu River basin have been greatly changed by climate change and human activity, especially water and soil conservation construction. In this study, the trends in precipitation, evapotranspiration (ET) and river runoff as well as the effects of precipitation change and human activity on runoff variation have been studied. The results showed that during 1960–2000, annual precipitation and river runoff, monthly precipitation and ET in September and October as well as monthly runoff in all months showed a significant decrease. In addition, peak flow and base flow had a large decrease. Under the joint influence of precipitation change and human activity, the mean annual runoff decreased by 35 million m3 from the baseline period (1960–1985) to the change period (1986–2000), which accounted for 60.9% and 39.1% of the total runoff decrease, respectively. Precipitation change played a primary role in the decrease of annual runoff whereas human activity, particularly water and soil conservation construction, also had remarkable impacts on runoff variation.  相似文献   

7.
For recent years,runoff generation and hydrological processes in Hailiutu River basin have been greatly changed by climate change and human activity,especially water and soil conservation construction.In this study,the trends in precipitation,evapotranspiration(ET)and river runoff as well as the effects of precipitation change and human activity on runoff variation have been studied.The results showed that during 1960-2000,annual precipitation and river runoff,monthly precipitation and ET in September and October as well as monthly runoff in all months showed a significant decrease.In addition,peak flow and base flow had a large decrease.Under the joint influence of precipitation change and human activity,the mean annual runoff decreased by 35 million m3 from the baseline period(1960-1985)to the change period(1986-2000),which accounted for 60.9%and 39.1%of the total runoff decrease,respectively.Precipitation change played a primary role in the decrease of annual runoff whereas human activity,particularly water and soil conservation construction,also had remarkable impacts on runoff variation.  相似文献   

8.
High population density, inadequate infrastructure and low adaptive capacity have made the urban population of Bangladesh highly vulnerable to climate change. Trends in climate and climate-related extreme events in five major cities have been analyzed in this paper to decipher the variability and ongoing changes in urban Bangladesh. An analysis of 55 years (1958–2012) of daily rainfall and temperature data using nonparametric statistical methods shows a significant increase in annual and seasonal mean daily maximum and minimum temperatures in all five cities. A significant increase in climate-related extreme events, such as heavy rainfall events (>20 mm), hot days (>32 °C) and hot nights (>25 °C), is also observed. Climate model results suggest that these trends will continue through the twenty-first century. Vulnerability of urban livelihoods and physical structures to climate change is estimated by considering certainty and timing of impacts. It has been predicted that public health and urban infrastructures, viz. water and power supply, would be the imminent affected sectors in the urban areas of Bangladesh. Adaptation measures that can be adopted to mitigate the negative impacts of climate change are also discussed.  相似文献   

9.
Climate changes in the Mediterranean region, related to a significant increase in temperature and changes in precipitation patterns, can potentially affect local economies. Agriculture and tourism are undoubtedly the most important economic sources for Greece and these may be more strongly affected by changing future climate conditions. Climate change and their various negative impacts on human life are also detected in their environment; hence this study deals with implications, caused by changing climate, in urban and forest areas. Potential changes for the mid-twenty-first century (2021–2050) are analysed using a high-resolution regional climate model. This paper presents relevant climatic indices, indicative for potential implications which may jeopardise vital economic/environmental sectors of the country. The results provide insights into particular regions of the Greek territory that may undergo substantial impacts due to climate change. It is concluded that the duration of dry days is expected to increase in most of the studied agricultural regions. Winter precipitation generally decreases, whereas an increase in autumn precipitation is projected in most areas. Changing climate conditions associated with increased minimum temperatures (approximately 1.3°C) and decreased winter precipitation by 15% on average suggest that the risk for forest fires is intensified in the future. In urban areas, unpleasantly high temperatures during day and night will increase the feeling of discomfort in the citizens, while flash floods events are expected to occur more frequently. Another impact of climate change in urban regions is the increasing energy demand for cooling in summer. Finally, it was found that continental tourist areas of the Greek mainland will more often face heatwave episodes. In coastal regions, increased temperatures especially at night in combination with high levels of relative humidity can lead to conditions that are nothing less than uncomfortable for foreigners and the local population. In general, projected changes associated with temperature have a higher degree of confidence than those associated with precipitation.  相似文献   

10.
The Brahmaputra River in South Asia carries one of the world’s highest sediment loads, and the sediment transport dynamics strongly affect the region’s ecology and agriculture. However, present understanding of sediment conditions and dynamics is hindered by limited access to hydrological and geomorphological data, which impacts predictive models needed in management. We here synthesize reported peer-reviewed data relevant to sediment transport and perform a sensitivity analysis to identify sensitive and uncertain parameters, using the one-dimensional model HEC-RAS, considering both present and future climatic conditions. Results showed that there is considerable uncertainty in openly available estimates (260–720 Mt yr?1) of the annual sediment load for the Brahmaputra River at its downstream Bahadurabad gauging station (Bangladesh). This may aggravate scientific impact studies of planned power plant and reservoir construction in the region, as well as more general effects of ongoing land use change and climate change. We found that data scarcity on sediment grain size distribution, water discharge, and Manning’s roughness coefficient had the strongest controls on the modelled sediment load. However, despite uncertainty in absolute loads, we showed that predicted relative changes, including a future increase in sediment load by about 40 % at Bahadurabad by 2075–2100, were consistent across multiple model simulations. Nevertheless, for the future scenarios we found that parameter uncertainty almost doubled for water discharge and river geometry, highlighting that improved information on these parameters could greatly advance the abilities to predict and manage current and future sediment dynamics in the Brahmaputra river basin.  相似文献   

11.
The paper summarizes impacts of the Temelín Nuclear Power Plant (NPP) on the Vltava and Labe River basins. The study is based on the results of long-term monitoring carried out before the plant operation (1989–2000), and subsequently during the plant operation (2001–2005). In the first period, the main objective was to determine background radionuclide levels remaining in the environment after global fallout and due to the Chernobyl accident. A decrease in the concentrations of 90Sr, 134Cs and 137Cs, which was observed before the plant operation, continued also during the subsequent period. Apart from tritium, the results of the observation did not indicate any impacts of the plant on the concentrations of activation and fission products in the hydrosphere. The annual average tritium concentrations in the Vltava River were in agreement with predicted values. The maximum annual average tritium concentration (13.5 Bq L−1) was observed in 2004 downstream from the wastewater discharge in the Vltava River at Solenice. Estimated radiation doses for adults due to intakes of river water as drinking water contaminated by tritium are below 0.1 μSv y−1.  相似文献   

12.
Three soil carbon models (RothC, CANDY and the Model of Humus Balance) were used to estimate the impacts of climate change on agricultural mineral soil carbon stocks in European Russia and the Ukraine using detailed spatial data on land-use, future land-use, cropping patterns, agricultural management, climate and soil type. Scenarios of climate were derived from the Hadley Centre climate Version 3 (HadCM3) model; future yields were determined using the Soil–Climate–Yield model, and land use was determined from regional agricultural and economic data and a model of agricultural economics. The models suggest that optimal management, which entails the replacement of row crops with other crops, and the use of extra years of grass in the rotation could reduce Soil organic carbon (SOC) loss in the croplands of European Russia and the Ukraine by 30–44% compared to the business-as-usual management. The environmentally sustainable management scenario (SUS), though applied for a limited area within the total region, suggests that much of this optimisation could be realised without damaging profitability for farmers.  相似文献   

13.
气温对长江上游巴塘站年径流的影响分析   总被引:1,自引:0,他引:1  
为了深入分析气温对长江上游年径流的影响和解释青藏高原冰川融水再冻结现象的物理机制,采用对位置、尺度、形状的广义可加模型(简称GAMLSS)建立控制因素降水、气温、ATD与年径流量之间的关系。在GAMLSS框架下,气温影响因子可以用两种形式表示,一种是直接采用气温,另一种是采取ATD指数(累积气温亏损值)。通过比较不同解释变量组合下的GAMLSS模型,进而研究气温对长江上游巴塘站1960~2012年的年径流影响。结果表明:基于ATD的回归模型,在年径流序列服从对数正态分布假设的条件下拟合效果最优。与气温值相比,ATD指数能更有效地解释长江上游径流变化的特征和冰川产流的物理机制。研究成果对长江上游年径流预报、高原气候下的产流特征分析具有理论意义。  相似文献   

14.
The eastern Mediterranean and Middle East, a region with diverse socioeconomic and cultural identities, is exposed to strong climatic gradients between its temperate north and arid south. Model projections of the twenty-first century indicate increasing hot weather extremes and decreasing rainfall. We present model results, which suggest that across the Balkan Peninsula and Turkey climate change is particularly rapid, and especially summer temperatures are expected to increase strongly. Temperature rise can be amplified by the depletion of soil moisture, which limits evaporative cooling, prompted by the waning of large-scale weather systems that generate rain. Very hot summers that occurred only rarely in the recent past are projected to become common by the middle and the end of the century. Throughout the region, the annual number of heat wave days may increase drastically. Furthermore, conditions in the region are conducive for photochemical air pollution. Our model projections suggest strongly increasing ozone formation, a confounding health risk factor particularly in urban areas. This adds to the high concentrations of aerosol particles from natural (desert dust) and anthropogenic sources. The heat extremes may have strong impacts, especially in the Middle East where environmental stresses are plentiful.  相似文献   

15.
A spatially differentiated, management-revised projection of natural water availability up to 2053 was requested for a basin-wide scenario study about the impact of global change in the Elbe River basin. Detailed discharge and weather information of the recent years 1951–2003 were available for model calibration and validation. However, the straightforward “classic” approach of calibrating a hydrological model on observed data and running it with a climate scenario could not be taken, because most observed river runoffs in Central Europe are modified by human management. This paper reports how the problem was addressed and how a major projection bias could be avoided. The eco-hydrological model SWIM was set up to simulate the discharge dynamics on a daily time step. The simulation area of 134,890?km2 was divided into 2,278 sub-basins that were subdivided into more than 47,500 homogeneous landscape units (hydrotopes). For each hydrotope, plant growth and water fluxes were simulated while river routing calculation was based on the sub-basin structure. The groundwater module of SWIM had to be extended for accurate modelling of low flow periods. After basin-scale model calibration and revisions for known effects of lignite mining and water management, evapotranspiration and groundwater dynamics were adjusted individually for more than 100 sub-areas largely covering the entire area. A quasi-natural hydrograph was finally derived for each sub-area taking into account management data for the years 2002 (extremely wet) and 2003 (extremely dry). The validated model was used to access the effect of two climate change scenarios consisting of 100 realisations each and resembling temperature increases of 2 and 3?K, respectively. Additionally, four different land use scenarios were considered. In all scenario projections, discharge decreases strongly: The observed average discharge rate in the reference period 1961–1990 is 171?mm/a, and the scenario projections for the middle of the twenty-first century give 91–110?mm/a, mainly depending on the climate scenario. The area-averaged evapotranspiration increases only marginally within the scenario period, e.g., from about 570 to about 580?mm/a for the temperature increase of 2?K, while potential evapotranspiration increases considerably from about 780 to more than 900?mm/a. Both discharge and evapotranspiration changes vary strongly within the basin, correlating with elevation. The runoff coefficient that globally decreases from 0.244 to 0.160 in the 2?K scenario is locally governed primarily by land use; 68% of the variance of the decreases can be attributed to this factor.  相似文献   

16.
基于2001~2015年的时间序列MODIS NDVI数据,通过逐像元线性趋势回归和回归系数计算,分析汉江中游地区植被年均NDVI变化的时空规律;通过植被时空变化的地貌分异分析,评估人类活动的影响及其空间差异。研究结果表明:汉江中游地区近15 a来,植被年均NDVI值呈现明显的波动增长趋势;植被时空变化表现出一定的地貌分异规律,平原、河漫滩、台地植被年均NDVI呈现明显的增长趋势,而丘陵、低山和中山植被年均NDVI增长趋势不明显。不同地貌类型区年均NDVI值变化受人类活动影响程度的强弱依次为:平原、台地、河漫滩、丘陵、低山、中山。人类活动是汉江中游平原区年均NDVI稳定增长的主要原因。  相似文献   

17.
Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US$ 2.3 to US $7.4 billion during 2003?C2050. Our analysis identifies improved road design and agricultural sector investments as key ??no-regret?? adaptation measures, alongside intensified efforts to develop a more flexible and resilient society. Our findings also support the need for cooperative river basin management and the regional coordination of adaptation strategies.  相似文献   

18.
Climate change will have an impact on various sectors, such as housing, infrastructure, recreation and agriculture. Climate change may change spatial demands. For example, rising temperatures will increase the need for recreation areas, and areas could be assigned for water storage. There is a growing sense that, especially at the local scale, spatial planning has a key role in addressing the causes and impacts of climate change. This paper promotes an approach to help translate information on climate change impacts into a guiding model for adaptive spatial planning. We describe how guiding models can be used in designing integrated adaptation strategies. The concept of guiding models has been developed in the 1990s by Tjallingii to translate the principles of integrated water management in urban planning. We have integrated information about the present and future climate change and set up a climate adaptation guiding model approach. Making use of climate adaptation guiding models, spatial planners should be able to better cope with complexities of climate change impacts and be able to translate these to implications for spatial planning. The climate adaptation guiding model approach was first applied in the Zuidplaspolder case study, one of the first major attempts in the Netherlands to develop and implement an integrated adaptation strategy. This paper demonstrates how the construction of climate adaptation guiding models requires a participatory approach and how the use of climate adaptation guiding models can contribute to the information needs of spatial planners at the local scale, leading to an increasing sense of urgency and integrated adaptation planning process.  相似文献   

19.
Numerous power plants in Europe had to be throttled in summer months of the years 2003 and 2006 due to water shortages and high water temperatures caused by a hot and dry summer. Therefore, the effects of higher temperatures on power plants have received much attention in the last years. One article published in Regional Environmental Change presents a study about ‘Modeling thermoelectric power generation in view of climate change’. In this article, the statement is given that other studies do not include aspects as environmental legislation or cots of water shortages. This comment will show that in at least one article cited these aspects are considered.  相似文献   

20.
赣江是鄱阳湖流域最大水系,赣江水沙变化对鄱阳湖入湖径流、泥沙等水文特征有重要影响。目前对赣江水沙研究主要集中在下游外洲站河段,不足以反映全流域水沙变化规律。选取赣江上游4站、吉安和外洲水文站分别代表上、中、下游河段,基于近60 a的实测流量、悬移质泥沙资料,采用水文学和数理统计相结合的方法,分析赣江水沙年际变化特征以及可能影响因素,以期为流域水沙资源管理提供参考。结果表明:(1)赣江径流年际变化大,1970s、1990s水量较丰,其它年代径流偏少,年径流序列无显著变化趋势和突变点;(2)输沙量年际变化剧烈,呈显著降低趋势,上游4站、吉安站、外洲站输沙序列突变点分别为2002年、1995年、1995年,突变后年输沙量较突变前减少52%、71%、67%;(3)赣江上游水土保持建设是上游4站输沙量减小的主要原因;1993年后万安水库拦沙是吉安、外洲站输沙量显著减少的主要原因,水土保持、河道采砂也是引起吉安、外洲站输沙量减少的直接因素。(4)水土保持减沙的作用是缓慢和滞后的,而万安水库对下游河道的减沙作用是迅速而显著的。可见,赣江入鄱阳湖的年径流无明显减少趋势,入湖输沙量显著减少,有利于减少鄱阳湖的泥沙淤积、促进湖泊生态的良性发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号