首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
持久性有机污染物(POPs)在全球范围内进行远距离传输过程中,土壤既是污染物的主要汇,又是空气中污染物的潜在来源.土气交换过程是POPs环境归宿的重要环节,该交换过程受POPs理化性质、近地面气象条件、土壤理化性质及植被覆盖等因素的影响.对近期报道的POPs土气交换过程影响因素研究进行了综述与展望,列出了研究中涉及的重要模型及公式.环境温度的变化既能改变目标物在气固相之间的分配行为,影响空气中污染物的干湿沉降和气态交换过程,也能够通过近地面温度场的梯度变化影响污染物在土气交换过程中的垂直紊流扩散.此外,近地面水平风速的变化也会影响目标物的在近地面空气中的垂直紊流扩散.土壤有机质含量及种类控制了土壤中POPs的吸附/解吸过程,土壤温度和湿度影响污染物的土气分配系数,土壤矿物组成也会影响污染物吸附和解吸过程.地面植被能够吸收和吸附空气中气态和颗粒态POPs,通过雨水淋刷和枯落物凋落转移到土壤中;植被覆盖可以减少土壤的温度变化,减少土壤中POPs的挥发.尽管近年已经取得丰硕的成果,但在土气交换过程多因素耦合影响量化评估、动态评估POPs在典型场地原位复杂环境下的土气交换通量、在区域尺度量化植被对城市中POPs土气交换的影响等方面有待开展深入研究工作.  相似文献   

2.
通过对白茆沙、扁担沙、中央沙、九段沙和崇明岛等长江口南支湿地表层沉积物有机碳含量的测定,研究河口岛屿沙洲湿地陆向发育过程中表层沉积物有机碳变化。结果得出:长江口南支岛屿沙洲湿地陆向发育过程中,表层沉积物有机碳含量逐步增加。处在发育前期的岛屿沙洲湿地,表层沉积物有机碳含量低,如白茆沙仅1057%,随着岛屿沙洲的发育,表层沉积物有机碳含量逐渐升高,如发育较为成熟的崇明东滩湿地达3176%;另外,从高程较低的光滩到发育较为成熟的芦苇带,表层沉积物有机碳含量也逐渐增加,其中芦苇带的含量最高(3004%),海三棱藨草带次之(1812%),光滩较低(1436%);再者,随着岛屿沙洲湿地的陆向发育,其表层沉积物有机碳分布越来越不均匀,也说明了岛屿沙洲陆向发育过程中表层沉积物有机碳含量的变化趋势。这表明河口岛屿沙洲湿地陆向演变过程中,表层沉积物发挥着积极的有机碳汇聚功能  相似文献   

3.
利用2004年和2009年夏季航次长江口海域表层沉积物的监测统计结果,以加权平均环境质量综合指数法为基础,以参评因子动态分类排序法确定权重,以《海洋沉积物质量》(GB18668-2002)作为评价标准,构建新的海洋沉积物质量综合评价模式,对长江口海域表层沉积物中的主要污染因子进行了分类判别,综合评价了长江口海域表层沉积物质量状况。结果表明,长江口海域表层沉积物中硫化物、石油类、汞为常态因子,铅、镉、砷、多氯联苯和滴滴涕为关键因子,铜和有机碳在个别站位已成为预警因子;沉积物环境质量总体良好,综合评价指数介于0.267~0.636之间,均属于第一类海洋沉积物质量;个别站位铜、有机碳含量偏高,存在超标现象。此外,本文通过构建的海洋沉积物质量综合评模式计算过程简单、权重确定不受人为主观因素的影响、反映沉积物综合质量的时空变化特征比较客观,具有普适性。  相似文献   

4.
洞庭湖区不同利用方式下农田土壤有机碳含量特征   总被引:15,自引:0,他引:15  
土地利用方式是影响土壤有机碳含量和动态的重要因子之一。其利用方式的改变必将引起土壤有机碳含量发生相应的变化。在洞庭湖腹地选取典型样区,通过调查走访和密集取样,分析了不同土地利用方式(旱地、水旱轮作地、一季稻水田和双季稻水田)下623个农田耕层土样有机碳含量。结果表明,研究区内土壤有机碳含量高低顺序为双季稻水田(28.12 g/kg) > 一季稻水田(27.03 g/kg) > 水旱轮作地(24.79 g/kg) > 旱地(17.96 g/kg),其差异均达到极显著水平(P < 0.01)。土地生产力、秸秆还田量和土壤水文状态是导致不同利用方式下耕层土壤有机碳含量差异的主要原因。进一步分析表明:加强作物秸秆还田(土)、提高土地复种指数、增加地表覆盖是维持和提高洞庭湖区耕作土壤有机碳含量的可行措施,尤其是旱作土壤。  相似文献   

5.
江苏天目湖表层沉积物中多环芳烃污染特征与来源   总被引:1,自引:0,他引:1  
区别于长江三角洲地区众多的大型天然浅水湖泊,江苏天目湖是一个较深的水库型湖泊,也是重要的城乡生活及工农业水源地之一。为了解天目湖表层沉积物中多环芳烃(PAHs)污染状况, 2006年在天目湖全湖采集7个点位的表层沉积物样品,利用GC/MS分析了16种优控PAHs。结果表明:天目湖表层沉积物中16种优控PAHs总量介于28750~71393 ng/g(干重),平均值为45852 ng/g;在空间分布上,北部受污染程度高于南部,主要是北部旅游业快速发展导致污染物排放的影响;沉积物中总有机碳含量与PAHs总量呈显著相关;利用特征化合物指数对PAHs的来源进行判别,指示天目湖表层沉积物中PAHs的主要来源是木材、煤的不完全燃烧。与不同地区水体沉积物PAHs含量对比表明,天目湖PAHs污染处于一个低至中等程度。基于沉积物中多环芳烃的环境质量标准,仅有1个样点芴浓度超过风险效应低值,但远小于毒性风险效应中值,因此沉积物中多环芳烃的生态风险较小。然而天目湖表层沉积物中的PAHs的污染程度已超过南水北调东线所经过的南四湖,而且天目湖湖水较深,湖水交换周期比较长,其PAHs污染应引起重视,需制定切实措施保护江苏“最后一泓净水”。  相似文献   

6.
三峡库区悬移质泥沙对磷污染物的吸附解吸特性   总被引:3,自引:0,他引:3  
就三峡库区悬移质泥沙对磷污染物的吸附解吸特性从野外同步监测和室内试验研究两个方面展开研究。选取长江干流、嘉陵江和乌江共7个监测断面于2002年和2003进行野外同步监测,测试结果表明:水中的悬移质泥沙对水中各种覆存形态的磷污染物浓度具有显著影响,单位重量泥沙对磷的吸附量与水体总泥沙含量、泥沙粒径有密切关系。采集寸滩断面泥沙对磷酸盐吸附解吸特性进行室内试验研究,并根据Langmuir吸附动力学方程对吸附解吸过程进行了拟合,发现吸附速率常数k随着泥沙粒径的增加而呈递增变化,而磷酸盐初始浓度对k值的影响并不明显,同时,磷酸盐解吸量随着泥沙浓度的增加和粒径的增加呈递减变化,k值随着泥沙粒径的增加而呈递增变化,泥沙浓度对k值的影响不明显。  相似文献   

7.
区别于长江三角洲地区众多的大型天然浅水湖泊,江苏天目湖是一个较深的水库型湖泊,也是重要的城乡生活及工农业水源地之一。为了解天目湖表层沉积物中多环芳烃(PAHs)污染状况, 2006年在天目湖全湖采集7个点位的表层沉积物样品,利用GC/MS分析了16种优控PAHs。结果表明:天目湖表层沉积物中16种优控PAHs总量介于28750~71393 ng/g(干重),平均值为45852 ng/g;在空间分布上,北部受污染程度高于南部,主要是北部旅游业快速发展导致污染物排放的影响;沉积物中总有机碳含量与PAHs总量呈显著相关;利用特征化合物指数对PAHs的来源进行判别,指示天目湖表层沉积物中PAHs的主要来源是木材、煤的不完全燃烧。与不同地区水体沉积物PAHs含量对比表明,天目湖PAHs污染处于一个低至中等程度。基于沉积物中多环芳烃的环境质量标准,仅有1个样点芴浓度超过风险效应低值,但远小于毒性风险效应中值,因此沉积物中多环芳烃的生态风险较小。然而天目湖表层沉积物中的PAHs的污染程度已超过南水北调东线所经过的南四湖,而且天目湖湖水较深,湖水交换周期比较长,其PAHs污染应引起重视,需制定切实措施保护江苏“最后一泓净水”。  相似文献   

8.
巢湖湖滨带土壤和沉积物经历明显的干湿交替过程,其磷的迁移和转化方式亦有明显变化。风干作用能显著降低沉积物磷最大吸附量、提高吸附能并增加磷平衡浓度,从而对磷的吸附能力产生不利影响。淹水过程对土壤最大吸附量的影响取决于有机质的损失情况,好氧条件下有机质损失小,磷最大吸附量无明显变化,吸附能增强,磷释放量略有增加;而厌氧条件下土壤有机质含量与磷最大吸附量均显著降低,吸附能明显减小,磷释放量显著升高。因此湖滨带消落区干湿交替将明显促进底质生物可利用性磷的大量释放。在巢湖流域常见的土壤类型中,红壤对磷的缓冲能力最强。向底质中添加氯化铁和硝酸钙可有效控制磷释放,提高磷缓冲能力,增强底质对磷的保持和固定  相似文献   

9.
武汉月湖和莲花湖表层沉积物中持久性有机物的污染状况   总被引:1,自引:0,他引:1  
采用气-质联用技术分析了武汉汉阳月湖和莲花湖的4个表层沉积物样品中的有机污染物,探讨了两湖沉积物受持久性有机物污染的程度。月湖中共检测出124种有机物,其中属环境优先控制污染物和美国EPA筛选的内分泌干扰物19种;莲花湖中共检测出186种有机物,环境优先控制污染物和美国EPA筛选的内分泌干扰物34种。主要污染物包括:酞酸酯、酯类、酚类、杂环和苯及其衍生物等。污染物浓度顺序为L1>L2>Y2>Y1,莲花湖中有机物浓度明显高于月湖。两湖邻苯二甲酸酯的含量最高,占了污染物总量的96%~98%,邻苯二甲酸乙基己基酯(平均值 17 59903 ng/g 干重)和邻苯二甲酸二丁酯(平均值 2 515.76 ng/g 干重)是两湖沉积物中的主要酞酸酯类污染物。  相似文献   

10.
森林的过滤器效应是指森林对污染物所具有的净化缓冲作用,这是森林生态系统所具有的重要生态服务功能之一。森林生态系统对污染物的截留、吸附与净化一般是通过污染物在森林生态系统中的乔木层与灌草层植物、枯落物和土壤(微生物)等组分间的转化过程来实现,阐明森林生态系统各组分对污染物的净化效应是正确评估森林过滤器效应的关键。系统综述了森林生态系统各组分对污染物净化效应的国内外主要研究成果,指明了目前该方面研究存在的问题和努力的方向,并指出目前国内已有的大多数研究还处于实验观测与现象揭示阶段,缺乏对过程与机理的深入研究,很少进行多因素的动态综合研究和系统分析,这都限制了我们对森林生态系统对污染物净化过程内在运行机制和客观规律的正确认识和评估。把整个森林生态系统当作一个过滤器,从植物、凋落物、土壤、微生物几个亚系统方面介绍了森林过滤器对污染物净化缓冲作用方面的主要研究进展。  相似文献   

11.
The partitioning behavior of pentachlorophenol (PCP) in five sediments was studied using equilibrium sorption experiments and multiple cycles of sorption and desorption experiments. The results of the equilibrium sorption experiments showed that the isotherms of PCP on five sediments were linear and the partitioning coefficients (Kd) were proportional to the organic carbon content of the sediments. The average organic carbon content normalized partitioning coefficient (logK oc) of five sediments was 2.83 +/- 1.48. In multiple cycles of sorption and desorption experiments, the five sediments were found to exhibit statistically significant sorption-desorption hysteresis, and the hysteresis indices (HI) varied over a wide range (0.72 - 11.82). Correlations between the HI value and the percentage of lipid in the total organic matter in the sediment indicated that lipid was the main fraction to affect the hysteresis phenomenon, i.e., the higher the lipid percentage the greater the HI value. The hysteresis phenomenon was mostly caused by irreversible sorption of PCP on lipids, including entrapment by lipids, which induced the slow desorption rate from the sediment. Because of hysteresis in the sorption and desorption, the PCP ecological toxicity would be lower than expected.  相似文献   

12.
Dissolved organic matter (DOM) in freshwaters is present at concentrations ranging from 0.5 to 50 mg L?1, and consists of various organic compounds, including humic substances (HS). HS exert a variety of direct and indirect biological effects, including interaction with the aryl hydrocarbon receptor (AhR). AhR is a cytosolic receptor that binds various hydrophobic organic compounds (HOCs) and mediates some of their toxic effects. In vitro effects of binary mixtures of various DOM (mainly HS) with various HOCs on AhR-mediated responses were studied by use of H4IIE-luc cells. Six out of 12 DOM activated the AhR even at environmentally relevant concentrations (17 mg L?1). In simultaneous exposures of H4IIE-luc cells to DOM (17 mg L?1) and each of the model compounds, 2,3,7,8-TCDD, PCB126, PCB169, benzo[a]pyrene, benzo[a]anthracene, dibenz[a,h]anthracene, fluoranthene, a mixture of persistent organic pollutants (POPs), a mixture of polycyclic aromatic hydrocarbons (PAHs), and a mixture of all HOCs, either significant additive or facilitative effects were observed when compared to activities of single HOCs. No significant decrease of effects due to possible sorption of HOCs to DOM was observed, even in subsequent experiments when HOCs+DOM mixtures were preincubated for six days before exposure to H4IIE-luc. Thus, DOM does not seem to protect organisms against AhR-mediated toxic effects of HOCs (as usually predicted due to sorption of HOCs on DOM), but it can actually enhance their potency for AhR-mediated effects in some situations.  相似文献   

13.
A major fraction of trace metals transported by rivers is associated with sediments, especially during flooding, when erosion and resuspension increase sediment loads. Upon contact with seawater in estuaries, changes in ionic strength and pH may remobilise trace metals from sediment surfaces into more bioavailable forms. The objective of the present work was to investigate time-dependent interactions between trace metals and freshwater sediments and their potential remobilisation upon contact with seawater. Two river sediments (one organic and one inorganic) were labelled with 109Cd2+, 65Zn2+ and 54Mn2+ radioactive tracers for periods up to 6 months. Sorption of tracers occurred rapidly (> or = 80% sorption, < 1 h), followed by a slower approach to pseudoequilibrium. Kd(6 months) were estimated as 460, 480 and 2200 ml/g (inorganic sediment) compared to 5300, 4000 and 1200 ml/g (organic sediment) for 109Cd, 65Zn and 54Mn, respectively. Remobilisation of tracers from labelled sediments was studied using sequential extractions. Artificial seawater extracts simulated an estuarine environment. Subsequent extractions provided information about more strongly sorbed tracer fractions within sediments. Remobilisation of 109Cd by seawater was significant (> 65%) and least affected by sediment type or freshwater labelling time. Redistribution of Cd to strongly bound phases was minimal (4% and 1% of 109Cd in strongly oxidisable fractions). Seawater remobilisation of 65Zn was significantly greater from the organic sediment (54%) compared to the inorganic sediment (8%), where a large fraction of 65Zn (14%) became irreversibly bound. Similarly, more 54Mn was remobilised by seawater from the organic sediment than the inorganic sediment (66% and 3% remobilised, respectively), i.e., 54Mn became more strongly bound in the inorganic sediment. A simple three-box model, based on first-order differential equations, was used to describe the interaction between tracers in spiked freshwater and two operationally defined sediment fractions ("seawater exchangeable" and "seawater unexchangeable") up to 6 months of freshwater labelling. Model simulations were fitted to experiment data and apparent rate constants were calculated using numerical optimisation methods. Sorption ratios from modelling data (i.e., k1/k2) were greater for organic compared to inorganic sediments, while fixation ratios were higher in inorganic sediments. In conclusion, trace metals can be remobilised from sediments on contact with seawater in estuaries. High organic content in sediments increased initial sorption of tracers but inhibited redistribution to more strongly bound fractions over time, resulting in greater remobilisation of tracers when in contact with seawater.  相似文献   

14.
Cadmium desorption in sand   总被引:2,自引:0,他引:2  
Desorption of cadmium (Cd) from sand was studied by both batch and flow-through methods. Batch experiments were conducted at three pH values (5.5, 6.0 and 6.5). In each case, the amount of Cd desorbed was low compared with the quantity of Cd adsorbed previously. Desorption of Cd in the batch experiments can be described adequately by a Freundlich isotherm. The Freundlich isotherm coefficient, Kf, increased with pH. Hysteresis between the sorption/desorption isotherms was observed in all batch experiments. Flow-through experiments in soil columns were conducted for the same three pH values, with the results used to determine transport and sorption/desorption parameters. Again, the desorption isotherms bore little resemblance to the corresponding adsorption isotherms. The experimental breakthrough curves were well fitted by a nonequilibrium desorption model, however the time scale of the desorption process was much larger than measured in batch experiments. This model was therefore rejected as lacking realism. A simple linear retardation (including hysteresis) model that utilises different isotherms was found to simulate column breakthrough curves well. The Freundlich isotherm coefficients, Kf, in all batch and flow-through desorption experiments were different to values evaluated from the corresponding adsorption experiments. However, in contrast to adsorption, desorption in flow-through experiments was not noticeably affected by changes in pH. The effect of pore-water velocity on desorption was also studied at pH 6.0. No trend was established between flow velocity and the desorption coefficient.  相似文献   

15.
An overview of BORIS: Bioavailability of Radionuclides in Soils   总被引:1,自引:0,他引:1  
The ability to predict the consequences of an accidental release of radionuclides relies mainly on the level of understanding of the mechanisms involved in radionuclide interactions with different components of agricultural and natural ecosystems and their formalisation into predictive models. Numerous studies and databases on contaminated agricultural and natural areas have been obtained, but their use to enhance our prediction ability has been largely limited by their unresolved variability. Such variability seems to stem from incomplete knowledge about radionuclide interactions with the soil matrix, soil moisture, and biological elements in the soil and additional pollutants, which may be found in such soils. In the 5th European Framework Programme entitled Bioavailability of Radionuclides in Soils (BORIS), we investigated the role of the abiotic (soil components and soil structure) and biological elements (organic compounds, plants, mycorrhiza, and microbes) in radionuclide sorption/desorption in soils and radionuclide uptake/release by plants. Because of the importance of their radioisotopes, the bioavailability of three elements, caesium, strontium, and technetium has been followed. The role of one additional non-radioactive pollutant (copper) has been scrutinised in some cases. Role of microorganisms (e.g., K(d) for caesium and strontium in organic soils is much greater in the presence of microorganisms than in their absence), plant physiology (e.g., changes in plant physiology affect radionuclide uptake by plants), and the presence of mycorrhizal fungi (e.g., interferes with the uptake of radionuclides by plants) have been demonstrated. Knowledge acquired from these experiments has been incorporated into two mechanistic models CHEMFAST and BIORUR, specifically modelling radionuclide sorption/desorption from soil matrices and radionuclide uptake by/release from plants. These mechanistic models have been incorporated into an assessment model to enhance its prediction ability by introducing the concept of bioavailability factor for radionuclides.  相似文献   

16.
The sorption of selenium (Se) on humic acid (HA) was investigated in order to better understand the fate of stable and radioactive Se in soils and sediments. An ultrafiltration technique was used to determine size distributions of HA-sorbed-Se when increasing Se concentration and solid/liquid ratio. The results showed that the Se sorption onto HA followed the Freundlich isotherm. No solid/liquid ratio-dependence was observed especially when <3 kDa molecular size fraction was used from solid/liquid separation. The Freundlich isotherm parameters K(F) and n obtained using the <3 kDa molecular size fraction for solid/liquid separation were 3.7 x 10(2) and 0.82, respectively. In addition, since dissolved HA increased with decreased ionic strength in the HA suspension, ionic strength could promote aggregation of HA. The conformational change of HA could affect the sorption behavior of Se on HA.  相似文献   

17.
The methodology for estimating radiocaesium distribution between solid and liquid phases in lakes is applied for three prealpine lakes: Lake Constance (Germany), Lake Lugano (Switzerland) and Lake Vorsee (Germany). It is based on use of the exchangeable distribution coefficient and application of the exchangeable radiocaesium interception potential (RIPex). The methodology was tested against experimental data. Good agreement was found between estimated and measured 137Cs concentrations in Lake Constance and Lake Lugano, whereas for Lake Vorsee a discrepancy was found. Bottom sediments in Lake Vorsee are composed mainly of organic material and probably cannot be described in terms of the specific sorption characteristics attributed to illitic clay minerals.  相似文献   

18.
Gao Y  He J  Ling W  Hu H  Liu F 《Environment international》2003,29(5):613-618
A study was conducted to investigate the effect of organic acids on Cd and Cu desorption from natural contaminated soils (NCS) with permanent contamination by metal smelters and from artificial contaminated soils (ACS) derived from an artificial amendment of Cd to three representative zonal soils in Central China. Results showed that the desorption of Cd in either NCS or ACS, with the increment of tartrate or citrate concentration in desorption solution, can be characterized as a valley-like curve. The presence of tartrate or citrate at a low concentration (< or =0.5 mmol/l) inhibited Cd desorption from these two types of soils, whereas the presence of organic acids at high concentrations (> or =2 mmol/l for citrate and about > or =15 mmol/l for tartrate) apparently promoted Cd desorption. The desorption curve of Cu by tartrate solution with different tartrate concentrations can also be characterized as a valley-like curve, while the desorption of Cu in the presence of citrate was directly enhanced with the increment of citrate concentration. With the enhancement of initial pH value from 2 to 8 in the presence of citrate, Cu desorption ratio decreased at the first stage, then increased, and then decreased again. A valley and a peak sequentially appeared in the Cd or Cu desorption curve with initial pH value increment. Compared with citrate, the desorption ratio of Cd or Cu from NCS or ACS was directly decreased in the presence of tartrate, with the enhancement of the pH value from 2 to 8. Cd or Cu desorption was clearly enhanced when the electrolyte concentration of KNO3 or KCl increased in the presence of 2 mmol/l tartrate. Moreover, a higher desorption ratio of Cd or Cu was shown with KCl electrolyte than with KNO3 electrolyte with the same concentration. Based on these observations, we suggest that bioavailabilities of heavy metal can be promoted with selected suitable types and concentrations of organic acid amendment and reasonable field condition.  相似文献   

19.
The factors affecting the release and bioavailability of contaminants present in sediments during natural and anthropogenic disturbance events are discussed and our current state of understanding of these processes reviewed. Published data are focused on the distribution of contaminants within undisturbed sediment, their affinities to the various solid-phase fractions of sediment and the interaction of contaminants between sediment and pore water. Sediment disturbance can lead to changes in the chemical properties of sediment that stimulate the mobilisation of contaminants. Research shows that changes in both redox potential (Eh) and pH can accelerate desorption, partitioning, bacterial degradation and the oxidation of organic contaminants. However, these processes are both sediment- and compound-specific. By affecting the affinity of contaminants to sediments, disturbance events in turn can have a significant effect on their bioavailability. Few studies have examined this phenomenon, and it is clear from the data available that there are gaps in our understanding in a number of key areas when assessing the release of contaminants from sediments: the fate of contaminants in undisturbed sediments and those that are not subjected to major disturbances, the kinetic processes that regulate metal release during changes in redox potential, the release of organometallic compounds from sediments during resuspension, the bioavailability of organic and organometallic compounds and the processes affecting contaminant release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号