首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Different studies have shown that the effect of land use conversion on soil nutrients and soil organic carbon (SOC) is variable, which indicates that more investigations that focus on different specific geographical locations and land use types are required. The objectives of this study were (1) to evaluate the effect of grazing land (GL) conversion into Grevillea robusta plantation and exclosure (EX) on soil nutrients and soil organic carbon (SOC) and (2) to examine the impact of soil organic matter (SOM) on soil nutrients. To achieve these objectives, soil samples were taken from a soil depth of 20 cm (n?=?4) in each of the studied land areas. Each soil sample was analysed in a soil laboratory following a standard procedure. Analysis of variance (ANOVA) and Pearson’s correlation coefficient were used for the data analysis. The result indicated that conversion of GL into EX improved the soil electrical conductivity (EC), exchangeable K, cation exchange capacity (CEC), total N and available P (p?<?0.05), while the exchangeable Mg, SOC, available K and SOM were decreased (p?<?0.05). Conversion of GL into G. robusta improved the soil EC, exchangeable (K, Ca, Mg), CEC, SOC, total N, available K and SOM (p?<?0.05). There was a significant relationship between SOM and available P, total N, SOC and EC. There were no significant relationships between SOM and pH, available K and CEC. Finally, the results indicate that both land uses, established in acidic Nitosols, have variable impacts on soil chemical properties and that G. robusta plantation improved most of the soil nutrients and SOC much better than the EX land use.  相似文献   

2.
Soil organic carbon (SOC) has been assessed in three dimension (3D) in several studies, but little is known about the combined effects of land use and soil depth on SOC stocks in semi-arid areas. This paper investigates the 3D distribution of SOC to a depth of 1 m in a 4600-ha area in southeastern Iran with different land uses under the irrigated farming (IF), dry farming (DF), orchards (Or), range plants on the Gachsaran formation (RaG), and range plants on a quaternary formation (RaQ). Predictions were made using the artificial neural networks (ANNs), regression trees (RTs), and spline functions with auxiliary covariates derived from a digital elevation model (DEM), the Landsat 8 imagery, and land use types. Correlation analysis showed that the main predictors for SOC in the topsoil were covariates derived from the imagery; however, for the lower depths, covariates derived from both the DEM and imagery were important. ANNs showed more efficiency than did RTs in predicting SOC. The results showed that 3D distribution of SOC was significantly affected by land use types. SOC stocks of soils under Or and IF were significantly higher than those under DF, RaG, and RaQ. The SOC below 30 cm accounted for about 59% of the total soil stock. Results showed that depth functions combined with digital soil mapping techniques provide a promising approach to evaluate 3D SOC distribution under different land uses in semi-arid regions and could be used to assess changes in time to determine appropriate management strategies.  相似文献   

3.
塔里木河流域的生态环境质量综合评价研究   总被引:6,自引:0,他引:6  
采用切实可行的指标体系综合评价塔里木河流域生态环境质量,对流域的近期综合治理以及其它环境建设工程都具有很强的参考和指导意义。本文结合已有的研究成果,首次运用RS/GIS技术,参考2003年中国环境监测总站颁布的《生态环境质量评价方法》。以塔里木河流域的42个县(市)为评价单元,对塔里木河流域生态环境质量进行综合评价。结果表明,整个塔里木河流域的生态环境质量属较差和差级,其中干流上游与四源流经地区环境质量略好于其它地区。天山南麓、环塔里木盆地北部及西部绿洲区的生态环境状况优于环塔里木盆地南缘的和田地区,评价结果符合实际情况。  相似文献   

4.
Understanding spatial variability of dynamic soil attributes provides information for suitably using land and avoiding environmental degradation. In this paper, we examined five neighboring land use types in Indagi Mountain Pass - Cankiri, Turkey to spatially predict variability of the soil organic carbon (SOC), bulk density (BD), textural composition, and soil reaction (pH) as affected by land use changes. Plantation, recreational land, and cropland were the lands converted from the woodland and grassland which were original lands in the study area. Total of 578 disturbed and undisturbed soil samples were taken with irregular intervals from five sites and represented the depths of 0-10 and 10-20 cm. Soil pH and BD had the lower coefficient of variations (CV) while SOC had the highest value for topsoil. Clay content showed greater CV than silt and sand contents. The geostatistics indicated that the soil properties examined were spatially dependent to the different degrees and interpolations using kriging showed the dynamic relationships between soil properties and land use types. The topsoil spatial distribution of SOC highly reflected the changes in the land use types, and kriging anticipated significant decreases of SOC in the recreational land and cropland. Accordingly, BD varied depending on the land use types, and also, the topsoil spatial distribution of BD differed significantly from that of the subsoil. Generally, BD greatly decreased in places where the SOC was relatively higher except in the grassland where overgrazing was the more important factor than SOC to determine BD. The topsoil spatial distributions of clay, silt, and sand contents were rather similar to those of the subsoil. The cropland and grassland were located on the very fine textured soils whereas the woodland and plantation were on the coarse textured soils. Although it was observed a clear pattern for the spatial distributions of the clay and sand changing with land uses, this was not the case for the silt content, which was attributed to the differences of dynamic erosional processes in the area. The spatial distribution of the soil pH agreed with that of the clay content. Soils of the cropland and grassland with higher amounts of clay characteristically binding more cations and having higher buffering capacities had the greater pH values when compared to the soils of other land uses with higher amounts of sand naturally inclined to be washed from the base cations by the rainwater.  相似文献   

5.
Rice-wheat cropping systems of the Indo-Gangetic plains (IGP) occupying 12 million ha of productive land are important for the food security of South Asia. There are, however, concerns that yield and factor productivity trends in these systems are declining/stagnating in recent years. Decrease in soil organic carbon is often suggested as a reason for such trends. A field experiment was conducted to study the soil organic carbon (SOC) and soil microbial biomass carbon (MBC) dynamics in the rice-wheat systems. Use of organic amendments and puddling of soil before rice transplanting increased SOC and MBC contents. Microbial biomass carbon showed a seasonal pattern. It was low initially, reached its peak during the flowering stages in both rice and wheat and declined thereafter. Microbial biomass carbon was linearly related to SOC in both rice and wheat indicating that SOC could be used as a proxy for MBC.  相似文献   

6.
It is clear that mineral dust particles can impact a number of global processes including the Earth's climate through direct and indirect climate forcing, the chemical composition of the atmosphere through heterogeneous reactions, and the biogeochemistry of the oceans through dust deposition. Thus, mineral dust aerosol links land, air, and oceans in unique ways unlike any other type of atmospheric aerosol. Quantitative knowledge of how mineral dust aerosol impacts the Earth's climate, the chemical balance of the atmosphere, and the biogeochemistry of the oceans will provide a better understanding of these links and connections and the overall impact on the Earth system. Advances in the applications of analytical laboratory techniques have been critical for providing valuable information regarding these global processes. In this mini review article, we discuss examples of current and emerging techniques used in laboratory studies of mineral dust chemistry and climate and potential future directions.  相似文献   

7.
Carbon emission is supposed to be the strongest factor for global warming. Removing atmospheric carbon and storing it in the terrestrial biosphere is one of the cost-effective options, to compensate greenhouse gas emission. Millions of acres of abandoned mine land throughout the world, if restored and converted into vegetative land, would solve two major problems of global warming and generation of degraded wasteland. In this study, a manganese spoil dump at Gumgaon, Nagpur in India was reclaimed, using an integrated biotechnological approach (IBA). The physicochemical and microbiological status of the mine land improved after reclamation. Soil organic carbon (SOC) pool increased from 0.104% to 0.69% after 20 years of reclamation in 0–15 cm spoil depth. Soil organic carbon level of reclaimed site was also compared with a native forestland and agricultural land. Forest soil showed highest SOC level of 1.11% followed by reclaimed land and agriculture land of 0.70% and 0.40%, respectively. Soil profile studies of all three sites showed that SOC pool decreased from 0–15, 15–30, and 30–45 cm depths. Although reclaimed land showed less carbon than forestland, it showed better SOC accumulation rate. Reclamation of mine lands by using IBA is an effective method for mitigating CO2 emissions.  相似文献   

8.
上海地区土壤碳汇功能评估   总被引:1,自引:0,他引:1  
利用上海市第二次土壤普查资料,2004年-2005年上海耕地地力调查资料,以及2009年实地调查采样、实验分析获得的数据,研究了3个时期上海土壤有机碳的变化特征。结果表明,20多年:来上海土壤有机碳平均含量没有明显变化,土壤有机碳库逐渐减小,从而使得上海城市化过程中土壤成为一种碳源,而不是碳汇。城市郊区以扩大蔬菜、果树、苗木种植为特征的旱地作物种植方式代替水稻田,是城市化影响土地利用类型变化的明显特征,而水稻田土壤有机碳含量高于林地、菜地。种植结构的变化对土壤有机碳含量有重要影响,同时,耕作制度、耕作方式、施肥等农业管理方式也有一定影响。虽然园林绿地得到快速发展,但没有弥补城市化过程导致农田面积减少带来的有机碳损失。  相似文献   

9.
This study aimed to assess the degree of potential temperature and precipitation change as predicted by the HadCM3 (Hadley Centre Coupled Model, version 3) climate model for Louisiana, and to investigate the effects of potential climate change on surface soil organic carbon (SOC) across Louisiana using the Rothamsted Carbon Model (RothC) and GIS techniques at the watershed scale. Climate data sets at a grid cell of 0.5°?×?0.5° for the entire state of Louisiana were collected from the HadCM3 model output for three climate change scenarios: B2, A2, and A1F1, that represent low, higher, and even higher greenhouse gas emissions, respectively. Geo-referenced datasets including USDA-NRCS Soil Geographic Database (STATSGO), USGS Land Cover Dataset (NLCD), and the Louisiana watershed boundary data were gathered for SOC calculation at the watershed scale. A soil carbon turnover model, RothC, was used to simulate monthly changes in SOC from 2001 to 2100 under the projected temperature and precipitation changes. The simulated SOC changes in 253 watersheds from three time periods, 2001–2010, 2041–2050, and 2091–2100, were tested for the influence of the land covers and emissions scenarios using SAS PROC GLIMMIX and PDMIX800 macro to separate Tukey-Kramer (p?p?p?p?相似文献   

10.
Human actions on landscapes are a principal threat to the ecological integrity of river ecosystems worldwide. Tropical landscapes have been poorly investigated in terms of the impact of catchment land cover alteration on water quality and biotic indices in comparison to temperate landscapes. Effects of land cover in the catchment at two spatial scales (catchment and site) on stream physical habitat quality, water quality, macroinvertebrate indices and community composition were evaluated for Uma Oya catchment in the upper Mahaweli watershed, Sri Lanka. The relationship between spatial arrangement of land cover in the catchment and water quality, macroinvertebrate indices and community composition was examined using univariate and multivariate approaches. Results indicate that chemical water quality variables such as conductivity and total dissolved solids are mostly governed by the land cover at broader spatial scales such as catchment scale. Shannon diversity index was also affected by catchment scale forest cover. In stream habitat features, nutrients such as N-NO3 ?, macroinvertebrate family richness, %shredders and macroinvertebrate community assemblages were predominantly influenced by the extent of land cover at 200 m site scale suggesting that local riparian forest cover is important in structuring macroinvertebrate communities. Thus, this study emphasizes the importance of services provided by forest cover at catchment and site scale in enhancing resilience of stream ecosystems to natural forces and human actions. Findings suggest that land cover disturbance effects on stream ecosystem health could be predicted when appropriate spatial arrangement of land cover is considered and has widespread application in the management of tropical river catchments.  相似文献   

11.
Carbon (C) emissions from anthropogenic land use have accelerated climate change. To reduce C emissions, dynamic models can be used to assess the impact of human drivers on terrestrial C sequestration. Model accuracy requires correct initialisation, since incorrect initialisation can influence the results obtained. Therefore, we sought to improve the initialisation of a process-based SOC model, RothC, which can estimate the effect of climate and land-use change on SOC. The most common initialisation involves running the model until equilibrium (‘spin-up run’), when the SOC pools stabilise (method 1). However, this method does not always produce realistic results. At our experimental sites, the observed SOC was not at equilibrium after 10 years, suggesting that the commonly used spin-up initialisation method assuming equilibrium might be improved. In addition to method 1, we tested two alternative initialisations for RothC that involved adjusting the total or individual SOC pool equilibrium values by regulating the C input during the entire spin-up initialisation period (method 2) and initialising each SOC pool with recently measured SOC values obtained by SOC fractionation (method 3). Analysis of the simulation accuracy for each model initialisation, quantified using the root mean square error (RMSE), indicated that a variant of method 2 that involved adjusting the equilibrium total SOC to observed values (method 2-T) generally showed less variation in the individual SOC pools and total SOC. Furthermore, as total SOC is the sum of all SOC pools, and because total SOC data are more readily available than the individual SOC pool data, we conclude that method 2-T is best for initialising RothC.  相似文献   

12.
A total of 292 soil samples were taken from surface soil (0–20 cm) of a typical small watershed–Tongshuang in the black soil region of Heilongjiang province, northeast China in June 2005 for examining the concentration of soil organic carbon (SOC). Spatial variability of SOC in relation to topography and land use was evaluated using classical statistics, geostatistics and geographic information system (GIS) analyses. The objective of this study was to provide a scientific basis for land management targeting at improving soil quality in this region. Classical statistical analysis results indicated that the variability of SOC was moderate (C V = 0.30). Slope position and land use types were discriminating factors for its spatial variability. Geostatistics analyses showed that SOC had a strong spatial autocorrelation, which was mainly induced by structural factors. Mean concentration of SOC in surface soil was 2.27% in this watershed, which was a very low level in the northern black soil region of northeast China. In this small watershed, present soil and water conservation measures played an important role in controlling soil loss. But SOC's restoration was unsatisfactory. Nearly three-quarters of the area had worrisome productivity. How to improve SOC concentration targeting at soil fertility is a pressing need in the future.  相似文献   

13.
Krishnagiri reservoir is a hyper-eutrophicated reservoir located in Krishnagiri district which is one of the drought-prone districts in Tamil Nadu, India. The reservoir water is being used for various purposes such as irrigation, drinking, fish rearing, livestock rearing, and recreation. Since there is no an evidence of investigation on bottom sediments in Krishnagiri reservoir, the present study was carried out during southwest monsoon season in 2008. This study examined the physical and chemical characteristics of the bottom sediments such as composition, redox potential, moisture content, organic carbon, organic matter, total phosphorus, and total iron at 15 locations in the reservoir. Phosphorus fractionation study was carried out to find out different fractions such as loosely adsorbed phosphorous, iron and aluminium-bound phosphorus, calcium-bound phosphorous, and organic phosphorous. Results indicated that there was spatial variation in the composition of sediments and low values of redox potential. The significant positive correlation exists between the organic carbon and organic phosphorus concentration. The lacustrine zone of the reservoir showed high accumulation of total phosphorus and total iron when compared to riverine and transition zones. This study concludes an allogenic origin of majority of inorganic phosphorus in the reservoir during the study period and this might have been derived from the catchment during the erosion process. The high concentration of surface sediment phosphorus clearly indicates a greater threat of eutrophication in Krishnagiri reservoir.  相似文献   

14.
Water pollution is one of the most critical problems affecting mankind. Weather pattern and land use of catchment area have significant role in quality of water bodies. Due to climate change, there is frequent variation in weather pattern all over the world. There is also rapid change in land use due to increase in population and urbanization. The study was carried out to analyze the effect of change in weather pattern during the monsoon periods of 2008 and 2012 on water quality of a tropical coastal lake system. The nature and extent of variation in different water quality parameters namely electrical conductivity (EC), magnesium (Mg), sodium (Na), chloride (Cl), sulphate (SO4), turbidity, Secchi disk depth, biochemical oxygen demand (BOD), phosphate (PO4), calcium (Ca), and water temperature as well as the effect of various land use activities in the lake basin on water quality have also been studied. There is significant reduction in precipitation, EC, Mg, Na, Cl, SO4, turbidity, and Secchi disk depths whereas a significant rise in the BOD, PO4, Ca, and water temperature were observed in 2012. This significant reduction in electrical conductivity during 2012 revealed that because of less precipitation, the lake was separated from the sea by the sandbar during most of the monsoon period and thereby interrupted the natural flushing process. This caused the accumulation of organic matter including phosphate and thereby resulting reduction in clarity and chlorophyll-a (algae) in the lake. The unsustainable development activities of Thiruvanathapuram city are mainly responsible for the degradation of water bodies. The lack of maintenance and augmentation activities namely replacement of old pipes and periodical cleaning of pipe lines of the old sewer system in the city results in the bypass of sewage into water bodies. Because of the existence of the old sewerage system, no effort has been taken by the individual establishment/house of the city to provide their own treatment system for sewage and sullage and the untreated wastes are discharged into these old sewer pipes and ultimately the wastes reach the water bodies. In this context, decentralized treatment of sewage, sullage, and garbage by individual houses/establishments/hotels/hospitals is a better option for the developing countries. With the rapid developmental activities, and due to the variation of precipitation due to climate change, it is highly essential to provide proper waste treatment/augmentation facilities in urban lake system because a slight variation in the weather pattern can result in serious implications in the already polluted water bodies.  相似文献   

15.
Understanding the interaction between anthropogenic land use and the rainfall pattern can be crucial to predict changes in total suspended solids (TSS) in streams and rivers. We assessed the effects of land use and annual rainfall on the TSS load of 19 southern Chilean catchments. The results indicated that the concentration of TSS increased in catchments with a rainy regime and greater annual precipitation. TSS load also increased as the surface of open areas increased at the catchment scale and decreased with increasing cover of glaciers and perennial snow. However, we did not find support for models with interaction terms between climate and land use. Results suggest that a regional decrease in annual rainfall accompanied by an increase in the altitude of the zero isotherms, as predicted by climate models, should have multiple effects on TSS. In particular, increased TSS load can be expected from a contraction of glaciers and perennial snow areas as well as the intensification of new crops and urban expansion.  相似文献   

16.
Soil organic matter not only affects sustainability of agricultural ecosystems, but also extremely important in maintaining overall quality of environment as soil contains a significant part of global carbon stock. Hence, we attempted to assess the influence of different tillage and nutrient management practices on various stabilized and active soil organic carbon pools, and their contribution to the extractable nitrogen phosphorus and sulfur. Our study confined to the assessment of impact of agricultural management practices on the soil organic carbon pools and extractable nutrients under three important cropping systems, viz. soybean–wheat, maize–wheat, and rice–wheat. Results indicated that there was marginal improvement in Walkley and Black content in soil under integrated and organic nutrient management treatments in soybean–wheat, maize–wheat, and rice–wheat after completion of four cropping cycles. Improvement in stabilized pools of soil organic carbon (SOC) was not proportional to the applied amount of organic manures. While, labile pools of SOC were increased with the increase in amount of added manures. Apparently, green manure (Sesbania) was more effective in enhancing the lability of SOC as compared to farmyard manure and crop residues. The KMnO4-oxidizable SOC proved to be more sensitive and consistent as an index of labile pool of SOC compared to microbial biomass carbon. Under different cropping sequences, labile fractions of soil organic carbon exerted consistent positive effect on the extractable nitrogen, phosphorus, and sulfur in soil.  相似文献   

17.
This paper presents a study dealing with soil organic carbon (SOC) estimation of soil through the combination of soil spectroscopy and multivariate stepwise linear regression. Soil samples were collected in the three sub-regions, dominated by brown calcic soil, in the northern Tianshan Mountains, China. Spectral measurements for all soil samples were performed in a controlled laboratory environment by a portable ASD FieldSpec FR spectrometer (350–2,500 nm). Twelve types of transformations were applied to the soil reflectance to remove the noise and to linearize the correlation between reflectance and SOC content. Based on the spectral reflectance and its derivatives, hyperspectral models can be built using correlation analysis and multivariable statistical methods. The results show that the main response range of soil organic carbon is between 400 and 750 nm. Correlation analysis indicated that SOC has stronger correlation with the second derivative than with the original reflectance and other transformations data. The two models developed with laboratory spectra gave good predictions of SOC, with root mean square error (RMSE) <5.0. The use of the full visible near-infrared spectral range gave better SOC predictions than using visible separately. The multivariate stepwise linear regression of second derivate model (model A) is optimal for estimating SOC content, with a determination coefficient of 0.894 and RMSE of 0.322. The results of this research study indicated that, for the grassland regions, combining soil spectroscopy and mathematical statistical methods does favor accurate prediction of SOC.  相似文献   

18.
Land use impact on soil quality in eastern Himalayan region of India   总被引:1,自引:0,他引:1  
Quantitative assessment of soil quality is required to determine the sustainability of land uses in terms of environmental quality and plant productivity. Our objective was to identify the most appropriate soil quality indicators and to evaluate the impact of six most prevalent land use types (natural forestland, cultivated lowland, cultivated upland terrace, shifting cultivation, plantation land, and grassland) on soil quality in eastern Himalayan region of India. We collected 120 soil samples (20 cm depth) and analyzed them for 29 physical, chemical, and biological soil attributes. For selection of soil quality indicators, principal component analysis (PCA) was performed on the measured attributes, which provided four principal components (PC) with eigenvalues >1 and explaining at least 5 % of the variance in dataset. The four PCs together explained 92.6 % of the total variance. Based on rotated factor loadings of soil attributes, selected indicators were: soil organic carbon (SOC) from PC-1, exchangeable Al from PC-2, silt content from PC-3, and available P and Mn from PC-4. Indicators were transformed into scores (linear scoring method) and soil quality index (SQI) was determined, on a scale of 0–1, using the weighting factors obtained from PCA. SQI rating was the highest for the least-disturbed sites, i.e., natural forestland (0.93) and grassland (0.87), and the lowest for the most intensively cultivated site, i.e., cultivated upland terrace (0.44). Ratings for the other land uses were shifting cultivation (0.60)?>?cultivated low land (0.57)?>?plantation land (0.54). Overall contribution (in percent) of the indicators in determination of SQI was in the order: SOC (58 %)?>?exch. Al (17.1 %)?>?available P (8.9 %)?>?available Mn (8.2 %)?>?silt content (7.8 %). Results of this study suggest SOC and exch. Al as the two most powerful indicators of soil quality in study area. Thus, organic C and soil acidity management holds the key to improve soil quality under many exploitatively cultivated land use systems in eastern Himalayan region of India.  相似文献   

19.
利用2001—2020年滇池水质监测数据,研究其水环境时空变化特征。结果表明:滇池水质呈现波动变化趋势,TN波动区间较大,呈现雨季<旱季的变化趋势。TP年内变化3—6月呈现增长趋势,空间上滇池北部TP值整体较高。Chl-a年内变化7—10月出现明显提升。IMn波动区间较大,空间上滇池南部呈现IMn值较高且稳定。NH3-N年内2—11月整体呈现连续下降趋势。2001—2020年滇池TLI整体呈现波动降低;空间上呈现由北向南递减,草海区域富营养化较为严重。滇池Chl-a与TN、TP、水温、pH值及降雨量呈现正相关性,与水位和透明度呈现负相关性。  相似文献   

20.
The first paleoecological reconstruction of the biogeochemical conditions of the Gulf of Batabanó, Caribbean Sea was performed from (210)Pb-dated sediment cores. Depth profiles of 20 major elements and trace metals, organic compounds, grain size, and mollusk assemblage composition were determined from 9 stations encompassing unconsolidated sediments in the gulf. Spatial heterogeneity was evident for the geochemistry of sediments and for the mollusk assemblage composition. Our reconstruction indicates that pollution is not a critical threat to the ecosystem, although a slight historical increase of lead enrichment factor was detected probably due to long-range atmospheric fallout. Mollusk assemblages were composed by 168 species belonging to 59 families and no temporal trends in the species diversity or assemblage composition were detected, suggesting no depletion of diversity or habitat loss. Other signals of habitat loss such as changes in organic budget or increase of fine sediment fraction were absent or weak. Nitrogen retained in sediments changed by <1% in the century, indicating no historical events of eutrophication or oligotrophication in the gulf. Historical decrease of fine sediment fraction in the eastern sector would be linked to modifications in sedimentation rate, land use, and/or particle transport from the shelf border; this also suggests that both sectors have different sedimentary dynamics. Although, on theoretical grounds, historical fishery may have caused deleterious ecosystem effects by overexploitation of spiny lobster stocks, no evidence of habitat degradation or loss, caused by fisheries, could be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号