共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of Attenda abattoir, Ogbomoso southwestern Nigeria on four water sources was investigated using geoelectrical imaging and microbiological analysis. 2D electrical resistivity imaging indicated groundwater contamination by leachate from the abattoir. Electrical resistivity values measured by the traverse run directly on the waste dump and other areas impacted by the waste from the abattoir are generally very low (6.68-16.7 ?m) in comparison to other positions (135-288 ?m). The total viable bacteria count of the water samples ranged from 0.49 × 10(6) to 2.85 × 10(8) cfu/ml and all samples are contaminated with coliforms with the most probable number (MPN)/100 ml ranging from 110 to ≥ 1,600 MPN/100 ml. Among bacteria isolated from the study site (n = 95), resistance to eight antibiotics ranged from 35.8% to 94%. In addition, 85% of Streptococcus agalactiae (n = 31) and Staphylococci (n = 9) showed haemolytic activity while 92% of all isolates showed β-lactamase activity. These results suggest that operations of the abattoir may impact negatively on surrounding aquatic ecosystem and endanger the health of surrounding residents who use water from the wells for domestic purposes. Furthermore, such aquatic ecosystems may serve as reservoir of antibiotic resistant bacteria. 相似文献
2.
A study was conducted to evaluate the water quality of Jaipur City. Groundwater samples from hand pumps and tube wells of eleven sampling stations were analyzed during monsoon session with the help of standard methods of APHA. The analytical results shows higher concentration of total dissolved solids, electrical conductivity, total hardness and nitrate, which indicate signs of deterioration but values of pH, calcium, magnesium, sulphate and fluoride are within permissible limit as per WHO standards. From the Hill-Piper trilinear diagram, it is observed that the majority of ground water from sampling stations are calcium-magnesium-chloride-sulphate type water. The values of sodium absorption ratio and electrical conductivity of the ground water were plotted in the US salinity laboratory diagram for irrigation water. Most of the samples fall in C3S1 quality with high salinity hazard and low sodium hazard. Chemical analysis of groundwater shows that mean concentration of cation (in meq/l) is in order magnesium > sodium > calcium > potassium while for the anion (in meq/l) it is chloride > bicarbonate > sulphate > nitrate > carbonate > fluoride. 相似文献
3.
Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India 总被引:6,自引:0,他引:6
S. Krishna Kumar V. Rammohan J. Dajkumar Sahayam M. Jeevanandam 《Environmental monitoring and assessment》2009,159(1-4):341-351
Groundwater quality assessment study was carried out around Manimuktha river basin, Tamil Nadu, India. Twenty six bore well samples were analyzed for geochemical variations and quality of groundwater. Four major hydrochemical facies (Ca–HCO3, Na–Cl, Mixed CaNaHCO3, and mixed CaMgCl) were identified using a Piper trilinear diagram. Comparison of geochemical results with World Health Organization, United States Environmental Protection Agency, and Indian Standard Institution drinking water standards shows that all groundwater samples except few are suitable for drinking and irrigation purposes. The major groundwater pollutions are nitrate and phosphate ions due to sewage effluents and fertilizer applications. The study reveals that the groundwater quality changed due to anthropogenic and natural influence such as agricultural, natural weathering process. 相似文献
4.
P. Ravikumar K. Venkatesharaju R. K. Somashekar 《Environmental monitoring and assessment》2010,163(1-4):643-653
Groundwater is almost globally important for human consumption as well as for the support of habitat and for maintaining the quality of base flow to rivers, while its quality assessment is essential to ensure sustainable safe use of the resources for drinking, agricultural, and industrial purposes. In the current study, 28 groundwater samples were collected around Vrishabhavathi valley region of Bangalore South Taluk to assess water quality and investigate hydrochemical nature by analyzing the major cations (Ca2?+?, Mg2?+?, Na?+?, K?+?) and anions $(\text{HCO}_{3}^{-}$ , Cl???, F???, $\text{SO}_{4}^{2-}$ , $\text{NO}_{3}^{-}$ , $\text{PO}_{4}^{3-}$ , $\text{CO}_{3}^{2-})$ besides some physical and chemical parameters (pH, electrical conductivity, alkalinity, and total hardness). Also, geographic information system-based groundwater quality mapping in the form of visually communicating contour maps was developed to delineate spatial variation in physico-chemical characteristics of groundwater samples. Piper trilinear diagram was constructed to identify groundwater groups (hydrochemical facies) using major anionic and cationic concentration and it was found that majority of the samples belongs to $\text{Ca}^{2+}-\text{Mg}^{2+}-\text{Cl}^{-}-\text{SO}_{4}^{2-}$ and $\text{Ca}^{2+}-\text{Mg}^{2+}-\text{HCO}_{3}^{-}$ hydrochemical facies. Wilcox classification and US Salinity Laboratory hazard diagram suggests that 92.86% of the samples were falling under good to permissible category and C3–S1 groups, respectively, indicating high salinity/low sodium. 相似文献
5.
Assessment and spatial distribution of groundwater quality in industrial areas of Ghaziabad, India 总被引:2,自引:0,他引:2
Savita Kumari Anil Kumar Singh Ashok Kumar Verma N. P. S. Yaduvanshi 《Environmental monitoring and assessment》2014,186(1):501-514
An attempt has been made in this study to evaluate the groundwater quality in two industrial blocks of Ghaziabad district. Groundwater samples were collected from shallow wells, deep wells and hand pumps of two heavily industrialized blocks, namely Bulandshahar road industrial area and Meerut road industrial area in Ghaziabad district for assessing their suitability for various uses. Samples were collected from 30 sites in each block before and after monsoon. They were analyzed for a total of 23 elements, namely, Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Se, U, V, and Zn. In addition to these elements, some other parameters were also studied viz: color, odor, turbidity, biological oxygen demand, chemical oxygen demand (COD), dissolved oxygen, total dissolved solids and total suspended solid. The water quality index was also calculated based on some of the parameters estimated. Out of the 23 elements, the mean values of 12 elements, namely, Al, As, Ca, Cd, Cr, Mg, Mn, Na, Ni, Pb, Se, and U, were higher than the prescribed standard limits. The concentrations (in milligram per liter) of highly toxic metals viz., Al, As, Cd, Cr, Ni, Pb, Se, and U, ranged from 1.33–6.30, 0.04–0.54, 0.005–0.013, 4.51–7.09, 0.14–0.27, 0.13–0.32, 0.16–2.11, and 0.10–1.21, respectively, in all groundwater samples, while the permissible limits of these elements as per WHO/BIS standards for drinking are 0.2, 0.01, 0.003, 0.05, 0.07, 0.01, 0.04, and 0.03 mg L?1, respectively. The EC, pH, and COD in all samples varied from 0.74–4.21, 6.05–7.72, and 4.5–20.0 while their permissible limits are 0.7 dS m?1, 6.5–8.5, and 10 mg L?1, respectively. On the basis of the above-mentioned parameters, the water quality index of all groundwater samples ranged from 101 to 491, and 871 to 2904 with mean value of 265 and 1,174 based on two criteria, i.e., physico-chemical and metal contaminations, respectively while the prescribed safe limit for drinking is below 50. The results revealed that the groundwater in the two blocks is unfit for drinking as per WHO/BIS guidelines. The presence of elements like As, Se, and U in toxic amounts is a matter of serious concern. 相似文献
6.
O. V. Omonona O. S. Onwuka C. O. Okogbue 《Environmental monitoring and assessment》2014,186(2):651-664
Groundwater quality of Enugu metropolis comprising Achara Layout, Abakpa, and Emene settlement areas has been studied and characterized using multivariate statistical techniques. Three principal components (PCs) which explain 77.93 and 88.17 % were extracted at Achara Layout and Abakpa, respectively, while two PCs which explain 83.13 % were extracted at Emene. PC 1 of all the three areas reflects weathering of the host rock minerals and constitutes the dominant controlling process for all the areas. PC 2 of the three areas and PC 3 of Achara Layout and Abakpa can be attributed to both weathering/leaching of feldspathic minerals of host rocks (giving rise to alkaline earth metals in the groundwater) and anthropogenic activities. Cluster analysis defined groups of groundwater samples with similar hydrochemical characteristics. Two groups in Achara Layout and Emene fell into the high pollution loading class, while only one group in Abakpa fell into this class. The variation in the groundwater quality within each of the three areas may be explained in terms of groundwater flow directions, land use, and well depths. Discriminant analysis showed that the discriminating parameters of the groundwater quality of Achara Layout, Abakpa, and Emene are total dissolved solids, Na and Mg, and Cl, respectively. This study has revealed that the groundwater quality of the areas is controlled by both geogenic and anthropogenic processes and activities. The generated groundwater quality spatial variation models for each area will serve as a tool in the planning and development of groundwater in that region. 相似文献
7.
8.
9.
Izabela A. Talalaj 《Environmental monitoring and assessment》2014,186(6):3673-3683
The purpose of this paper is to assess the groundwater quality near a landfill site using the modified water quality index. A total of 128 groundwater samples were analyzed for pH, electrical conductivity (EC), total organic carbon (TOC), polycyclic aromatic hydrocarbon (PAH), Cd, Pb, Zn, Cu, Cr, and Hg. The analytical results have showed a decreasing trend in concentration for TOC, Cd, Pb, Hg, and Cu and an increasing one for pH, EC, and PAH. The modified water quality index, which was called landfill water pollution index (LWPI), was calculated to quantify the overall water quality near the landfill site. The analysis reveals that groundwater in piezometers close to the landfill is under a strong landfill impact. The LWPI in piezometers ranged from 0.52 to 98.25 with a mean value of 7.99. The LWPI in groundwater from the nearest house wells varied from 0.59 to 0.92. A LWPI value below 1 proves that analyzed water is not affected by the landfill. Results have shown that LWPI is an efficient method for assessing and communicating the information on the groundwater quality near the landfill. 相似文献
10.
Assessment of groundwater quality in Puri City, India: an impact of anthropogenic activities 总被引:1,自引:0,他引:1
Ritesh Vijay Puja Khobragade P. K. Mohapatra 《Environmental monitoring and assessment》2011,177(1-4):409-418
Puri City is situated on the east coast of India and receives water supply only from the groundwater sources demarcated as water fields. The objective of this paper is to assess and evaluate the groundwater quality due to impact of anthropogenic activities in the city. Groundwater samples were collected from the water fields, hand pumps, open wells, and open water bodies during post-monsoon 2006 and summer 2007. Groundwater quality was evaluated with drinking water standards as prescribed by Bureau of Indian Standards and Environmental Protection Agency to assess the suitability. The study indicated seasonal variation of water-quality parameters within the water fields and city area. Groundwater in the water fields was found to be suitable for drinking after disinfection. While in city area, groundwater quality was impacted by onsite sanitary conditions. The study revealed that groundwater quality was deteriorated due to the discharge of effluent from septic tanks, soak pits, pit latrines, discharges of domestic wastewater in leaky drains, and leachate from solid waste dumpsite. Based on observed groundwater quality, various mitigation measures were suggested to protect the water fields and further groundwater contamination in the city. 相似文献
11.
Groundwater is almost globally important for human consumption as well as for the support of habitat and for maintaining the quality of base flow to rivers, while its quality assessment is essential to ensure sustainable safe use of the resources for drinking, agricultural, and industrial purposes. In the current study, 50 groundwater samples were collected from parts of Palar river basin to assess water quality and investigate hydrochemical nature by analyzing the major cations (Ca, Mg, Na, K) and anions (HCO(3), Cl, F,SO(4), NO(3), PO(4),CO(3), HCO(3), and F) besides some physical and chemical parameters (pH, electrical conductivity, alkalinity, and total hardness). Also, geographic information system-based groundwater quality mapping in the form of visually communicating contour maps was developed using ArcGIS-9.2 to delineate spatial variation in physicochemical characteristics of groundwater samples. Wilcox classification and US Salinity Laboratory hazard diagram suggests that 52% of the groundwater fall in the field of C2-S1, indicating water of medium salinity and low sodium, which can be used for irrigation in almost all types of soil with little danger of exchangeable sodium. Remaining 48% is falling under C1-SI, indicating water of low salinity and low sodium. 相似文献
12.
A hydrochemical elucidation of the groundwater composition under domestic and irrigated land in Jaipur City 总被引:2,自引:0,他引:2
The study area Jaipur, the capital of Rajasthan, is one of the famous metropolises in India. In order to know the suitability of groundwater for domestic and irrigation purposes in Jaipur City, groundwater samples were composed of 15 stations during post-monsoon time of the year 2007–2008 (Nov 2007 to Feb 2008) and were analyzed for physicochemical characters. The physicochemical parameters of groundwater participate a significant role in classifying and assessing water quality. A preliminary characterization, carried out using the piper diagram, shows the different hydrochemistry of the sampled groundwater. This diagram shows that most of the groundwater samples fall in the field of calcium-magnesium-chloride-sulfate type (such water has permanent hardness) of water. Data are plotted on the US Salinity Laboratory diagram, which illustrates that most of the groundwater samples fall in the field of C2S1 and C3S1, which can be used for irrigation on almost all type of soil with little danger of exchangeable sodium. Based on the analytical results, chemical indices like %Na, SAR, and RSC were calculated which show that most of the samples are good for irrigation. 相似文献
13.
One of the most important hydrogeologic problems in and adjacent areas of evaporitic formations is severe quality degradation
of groundwaters. These kinds of groundwaters contain high content of dissolved solids and generally have some limitations
for use. Tatlicay basin (north-central Turkey) is an example to effects of the evaporites on groundwater quality in the adjacent
alluvium aquifer. Gypsum and anhydrites in the two evaporite formations (Bayindir and Bozkir) effect of the groundwater quality
in the alluvium adversely, by dissolution of the evaporites by surface drainage and infiltration into the alluvium aquifer
(widespread effect) and by infiltration of low quality gypsum springs (local effect) into the aquifer. Evaporitic formations
significantly increased EC, TDS, Ca and SO4 parameters in the alluvium aquifer in the central and downstream regions. EC has increased roughly from 500–800 to 1,700–2,000 μS/cm,
Ca has roughly increased from 3–4 to 10 meq/l, SO4 has increased 0.5–1 to 11–12 meq/l. Consequently, three clusters were distinguished in the basin; (1) nonevaporitic waters
in low TDS, Na, Ca, Mg, Cl and SO4, (2) diluted waters in high TDS and relatively high Cl, moderate-relatively high Na, Ca, Mg, SO4, (3) gypsum springs in highest TDS, Ca, SO4, but moderate Mg and low Na, Cl. 相似文献
14.
Saumen Maiti V. C. Erram Gautam Gupta Ram Krishna Tiwari U. D. Kulkarni R. R. Sangpal 《Environmental monitoring and assessment》2013,185(4):3445-3465
Deplorable quality of groundwater arising from saltwater intrusion, natural leaching and anthropogenic activities is one of the major concerns for the society. Assessment of groundwater quality is, therefore, a primary objective of scientific research. Here, we propose an artificial neural network-based method set in a Bayesian neural network (BNN) framework and employ it to assess groundwater quality. The approach is based on analyzing 36 water samples and inverting up to 85 Schlumberger vertical electrical sounding data. We constructed a priori model by suitably parameterizing geochemical and geophysical data collected from the western part of India. The posterior model (post-inversion) was estimated using the BNN learning procedure and global hybrid Monte Carlo/Markov Chain Monte Carlo optimization scheme. By suitable parameterization of geochemical and geophysical parameters, we simulated 1,500 training samples, out of which 50 % samples were used for training and remaining 50 % were used for validation and testing. We show that the trained model is able to classify validation and test samples with 85 % and 80 % accuracy respectively. Based on cross-correlation analysis and Gibb’s diagram of geochemical attributes, the groundwater qualities of the study area were classified into following three categories: “Very good”, “Good”, and “Unsuitable”. The BNN model-based results suggest that groundwater quality falls mostly in the range of “Good” to “Very good” except for some places near the Arabian Sea. The new modeling results powered by uncertainty and statistical analyses would provide useful constrain, which could be utilized in monitoring and assessment of the groundwater quality. 相似文献
15.
Pujari PR Padmakar C SuriNaidu L Vaijnath VU Kachawe B Gurunadha Rao VV Labhasetwar PK 《Environmental monitoring and assessment》2012,184(5):2921-2937
The Pithampur Industrial sectors I, II, and III, located approximately, 45 km from Indore in Central India have emerged as
one of the largest industrial clusters in the region. Various types of industries ranging from automobiles to chemicals and
pharmaceuticals have been set up in the region since 1990. Most of the industries have effluent treatment plants (ETP) for
treating wastewater before its disposal on land and/or in water body. The present study is an attempt to assess the groundwater
quality in the watersheds surrounding these industrial sectors to develop the baseline groundwater quality in order to enable
the policy makers to facilitate decisions on the development of industries in this region. The industries are located in two
sub-watersheds, namely, Gambhir river sub-watershed and Chambal river sub-watershed. Geologically, the study area is located
in the Deccan traps of Cretaceous to Paleocene age. The different basaltic flow units underlie clayey soils varying in thickness
from 2–3 m. The aquifer is mostly of unconfined nature. Samples have been collected from a network of observation wells set
up in the watersheds. The water quality analysis of the groundwater samples has been carried out six times during three hydrological
cycles of 2004, 2005, and 2006. The results indicate that a few observation wells in the vicinity of the industrial clusters
have very high TDS concentration and exceed the Bureau of Indian Standards (BIS) guideline for TDS concentration. The contamination
of groundwater has been more severe in the Gambhir watershed as compared to the Chambal watershed. The presence of the impermeable
clay layers has resulted in a slow migration of contaminants from the sources. The findings reveal that there is no significant
groundwater contamination in the Pithampur industrial sectors except in the vicinity of the industrial clusters, which indicates
that there is good environmental space available for the expansion of industrial units in the Pithampur industrial hub. 相似文献
16.
17.
Development of groundwater quality index 总被引:1,自引:0,他引:1
Mohesn Saeedi Ozeair Abessi Farid Sharifi Hamed Meraji 《Environmental monitoring and assessment》2010,163(1-4):327-335
Assessing the water quality status for special use is the main objective of any water quality monitoring studies. The water quality index (WQI) is a mathematical instrument used to transform large quantities of water quality data into a single number which represents the water quality level. In fact, developing WQI in an area is a fundamental process in the planning of land use and water resources management. In this study, a simple methodology based on multivariate analysis is developed to create a groundwater quality index (GWQI), with the aim of identifying places with best quality for drinking within the Qazvin province, west central of Iran. The methodology is based on the definition of GWQI using average value of eight cation and anion parameters for 163 wells during a 3-year period. The proportion of observed concentrations to the maximum allowable concentration is calculated as normalized value of each parameter in observing wells. Final indices for each well are calculated considering weight of each parameter. In order to assess the groundwater quality of study area, the derived indices are compared with those of well-known mineral waters. Using developed indices, groundwater iso-index map for study area and the map of areas of which the indices are near to mineral waters was drawn. In the case study, the GWQI map reveals that groundwater quality in two areas is extremely near to mineral water quality. Created index map provides a comprehensive picture of easily interpretable for regional decision makers for better planning and management. 相似文献
18.
19.
Rao NS Rao PS Reddy GV Nagamani M Vidyasagar G Satyanarayana NL 《Environmental monitoring and assessment》2012,184(8):5189-5214
Study on chemical characteristics of groundwater and impacts of groundwater quality on human health, plant growth, and industrial sector is essential to control and improve the water quality in every part of the country. The area of the Varaha River Basin is chosen for the present study, where the Precambrian Eastern Ghats underlain the Recent sediments. Groundwater quality is of mostly brackish and very hard, caused by the sources of geogenic, anthropogenic, and marine origin. The resulting groundwater is characterized by Na(+)?>?Mg(2+)?>?Ca(2+)?:?[Formula: see text]?>?Cl(-)?>?[Formula: see text], Na(+)?>?Mg(2+)?>?Ca(2+)?:?[Formula: see text]?>?Cl(-)?>?[Formula: see text]?>?[Formula: see text], Na(+)?>?Mg(2+)?>?Ca(2+)?:?[Formula: see text]?>?Cl(-), and Na(+)?>?Mg(2+)?>?Ca(2+)?:?Cl(-)?>?[Formula: see text]?>?[Formula: see text] facies, following the topographical and water flow-path conditions. The genetic geochemical evolution of groundwater ([Formula: see text] and Cl(-)-[Formula: see text] types under major group of [Formula: see text]) and the hydrogeochemical signatures (Na(+)/Cl(-), >1 and [Formula: see text]/Cl(-), <1) indicate that the groundwater is of originally fresh quality, but is subsequently modified to brackish by the influences of anthropogenic and marine sources, which also supported by the statistical analysis. The concentrations of total dissolved solids (TDS), TH, Mg(2+), Na(+), K(+), [Formula: see text], Cl(-), [Formula: see text], and F(-) are above the recommended limits prescribed for drinking water in many locations. The quality of groundwater is of mostly moderate in comparison with the salinity hazard versus sodium hazard, the total salt concentration versus percent sodium, the residual sodium carbonate, and the magnesium hazard, but is of mostly suitable with respect to the permeability index for irrigation. The higher concentrations of TDS, TH, [Formula: see text], Cl(-), and [Formula: see text] in the groundwater cause the undesirable effects of incrustation and corrosion in many locations. Appropriate management measures are, therefore, suggested to improve the groundwater quality. 相似文献
20.
Active and abandoned primary and secondary goldmines have been observed to be major sources of metals into the environment. This study assessed the level of metal concentrations in rock and tailing samples collected from the abandoned primary goldmine site at Iperindo. A total of five rock and ten tailing samples were collected for this study. The tailing samples were subjected to physicochemical analysis using standard methods. The samples were analyzed for metals using inductively coupled plasma/optical emission spectrometry technique. The results obtained indicated that tailings were acidic (pH 5.02), with electrical conductivity 133.4 μS/cm, cation exchange capacity 8.95 meq/100 g, available phosphorus was 4.74 mg/L, organic carbon 5.58 %, and organic matter 9.63 %. The trends for metal concentrations within the samples were in the order: Zn?>?Cu?>?Co?>?Pb?>?Cr?>?As?>?Cd for rock samples, Cu?>?Zn?>?Cr?>?Pb?>?As?>?Co?>?Cd in tailing samples. Cd, Pb, and Zn in the rock were above the Abundance of Elements in Average Crustal Rocks standards. Principal component analysis showed higher variations among samples in Iperindo. Cd, Pb, Cr, Co, Cu, As, and Zn were strongly loaded to principal component 1, with these metals significantly contributing to variations in 65.76 % of rock and 53.24 % of tailing. This study suggests that the metal concentration in tailings is a reflection of the metal composition of the rocks. 相似文献