首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth response to ozone of annual species from Mediterranean pastures   总被引:2,自引:0,他引:2  
Ozone (O3) phytotoxicity has been reported on a wide range of plant species. However, scarce information has been provided regarding the sensitivity of semi-natural grassland species, especially those from dehesa Mediterranean grasslands, in spite of their great biological diversity and the high O3 levels recorded in the region. A screening study was carried out in open-top chambers (OTCs) to assess the O3-sensitivity of representative therophytes of these ecosystems based on the response of selected growth-related parameters. Three O3 treatments and 3 OTCs per treatment were used. Legume species were very sensitive to O3, because 78% of the tested species showed detrimental effects on their total biomass relative growth rate (RGR) following their exposure to O3. The Trifolium genus was particularly sensitive showing O3-induced adverse effects on most of the assessed parameters. Gramineae plants were less sensitive than Leguminosae species because detrimental effects on total biomass RGR were only observed in 14% of the assessed species. No relationship was found between relative growth rates when growing in clean air and O3 susceptibility. The implications of these effects on the performance of dehesa acidic grasslands and on the definition of ozone critical levels for the protection of semi-natural vegetation are discussed.  相似文献   

2.
Twenty-two week-old Pinus taeda L. (loblolly pine) seedlings of 30 open-pollinated and five full-sib families, representing a wide range in geographic origin, were grown in charcoal-filtered (CF) air or CF-air supplemented with 160 or 320 nl liter(-1) ozone for 8 h day(-1), 4 days week(-1), for 9 weeks. Visible foliar injury (banded chlorosis, tip burn and premature senescence) was apparent in many families after 3 weeks in 320 nl liter(-1) and 6 weeks in 160 nl liter(-1) ozone. Decreases in relative height and root collar diameter growth rates, total dry weight, root dry weight, shoot dry weight, and root/shoot ratios were evident after 9 weeks of treatment with both 160 and 320 nl liter(-1) ozone. For relative height growth rates, family differences in response to ozone were observed. By the study's end, net photosynthesis rates were 15% less for the 320 nl liter(-1) ozone treatment as compared to the CF-air treatment. Total soluble sugar and total starch content of roots were not changed after 9 weeks of ozone exposure.  相似文献   

3.
Seedlings from ten half-sib families of loblolly pine (Pinus taeda) were exposed in open-top chambers to carbon-filtered air (CF), non-filtered air (NF), or air amended with ozone to 1.7 or 2.5 times ambient. After 105 days of exposure, half the seedlings within each family were wounded but not inoculated and half were wounded and inoculated with the pitch canker fungus, Fusarium subglutinans, to which five families were relatively resistant. After an additional 50 days of ozone treatment, seedling growth and canker development were recorded. Cankers were significantly (sigma < or = 0.05) smaller among resistant compared to susceptible families, and were significantly larger among seedlings receiving the highest (2.5) compared to the ambient (NF) ozone treatment. The wound scars of non-inoculated seedlings were also significantly larger among seedlings receiving the 2.5 compared to the NF treatment, but these dimensions did not differ significantly with seedling family or resistance. The weights of needles and large roots were significantly smaller at the 2.5 compared to the 1.7 ozone treatment for inoculated but not for non-inoculated seedlings; this resulted in a significant interaction for ozone and inoculation effects. Among resistant families, root weights were significantly smaller for inoculated seedlings. Diameter growth and dry weights of needles were significantly smaller among inoculated compared to non-inoculated seedlings, but did not differ between NF and 2.5 ozone treatments.  相似文献   

4.
Water-stressed and well-watered soybean (Glycine max cvs. Williams and Corsoy) plants were exposed to increasing seasonal doses of ozone (O(3)) using open-top field chambers and ambient air plots. Chamber O(3) treatments included charcoal filtered (CF) air, non-filtered (NF) air, NF + 0.03, NF + 0.06 and NF + 0.09 microl litre(-1) O(3). Soil water potentials measured at 25 and 45 cm averaged -0.40 MPa and -0.05 MPa, respectively, for the plots in the water-stressed and well-watered series. Total root length/core, root length densities, and biomasses (dry weights) were determined. With Williams, a very popular cultivar in recent years, total root length for all O(3) treatments averaged 58% more under water-stress conditions than in well-watered plots, but the range was from 136% to 11% more for NF air and NF + 0.09 microl litre(-1) O(3), respectively. Increasing the O(3) exposure dose did not affect root lengths or weights in the well-watered series. With Corsoy, water stress did not significantly increase root development. In both soil moisture regimes, with both cultivars, there was a linear decrease in seed yield and top dry weight as the O(3) exposure dose increased.  相似文献   

5.
Long-term radial growth of bigcone Douglas fir (Pseudotsuga macrocarpa) was studied throughout its range in the San Bernardino Mountains of southern California, where ambient ozone has been high for approximately the past 40 years. A gradient of both ozone concentration and precipitation exists from west (high) to east (low). Growth rates of bigcone Douglas fir are considerably lower since 1950 throughout the San Bernardino Mountains, with the largest growth reductions in the western part of the range where ozone exposure is highest. Needle retention is also somewhat lower at high ozone sites. Lower annual precipitation since 1950 may have some impact on long-term growth reductions, and short-term growth reductions induced by drought are an important component of long-term growth reductions at sites with high ozone exposure. An ozone-climate stress complex may be responsible for recent reductions in the growth of bigcone Douglas fir.  相似文献   

6.
Field-grown black cherry (Prunus serotina Ehrh.) seedlings were treated with the antioxidant ethylenediurea (EDU) to evaluate height, diameter, and above-ground dry-weight biomass growth response to ambient ozone over four years. Nine blocks with 44 trees/block were used in a randomized complete block design with three foliar spray treatments: (1) 1000 ppm EDU mixed with a surfactant and water; (2) surfactant mixed with water; and (3) water only. In each growing season treatments were applied seven times at approximately 10-day intervals. Repeated measures analysis of variance indicated significant (P< or =0.05) treatment and year effects for log-transformed height and diameter growth over the four-year period. After four years, EDU-treated trees were approximately 17% taller and stem diameters were 21% greater than non-EDU-treated trees. Total above-ground dry-weight biomass at the end of four years was 47% greater for EDU-treated trees compared to non-EDU-treated trees.  相似文献   

7.
Abstract

The respiration and lipid contents and the tolerance to mycostatin, chloramphenicol and cycloheximide were compared in the two morphologically similar forms of the tomato pathogens: Fusarium oxysporum lycopersici (FOL) and the virulent form F. oxysporum radicis lycopersici (FORL). The differential tolerances to mycostatin were the most significant feature of the comparisons. The MIC for FORL was 24 μg/mL for the mycelium and 38 μg/mL for the spores. For FOL, the MIC was 8 ug/mL for both. This pattern of higher mycostatin tolerance by FORL obtained at 19°C and 27°C. There were differences between FOL and FORL in their fatty acid composition. FORL contained about three times as much C18:0 and over twice as much C18:1 as FOL. Conversely FOL contains over two times as much C16:1 as FORL. There appeared to be no significant differences between the respiration rates of the two pathogens. The data is discussed relative to their significance as the biochemical basis for examining pathogenicity and virulence between the two organisms.  相似文献   

8.
3H-Trifluralin was synthesized by condensation of 3H-4-chloro-3,5-dinitro-alpha, alpha, alpha-trifluorotoluene with di-n-propylamine. After incubation of trifluralin with Aspergillus carneus, Fusarium oxysporum and Trichoderma viride for 10 days, a small percentage (less than 10%) of unchanged herbicide was recovered in the extractable fraction. This indicates a fairly rapid degradation of the herbicide by the fungal species. Other than trifluralin, the culture medium contained at least five labelled products: 2,6-dinitro-N-n-propyl-alpha, alpha, alpha-trifluoro-p-toluidine; 2,6-dinitro-alpha, alpha, alpha-trifluoro-p-toluidine; 2-amino-6-nitro-alpha, alpha, alpha-trifluoro-p-toluidine, 2,6-dinitro-4-trifluoromethyl phenol and a major polar product which constituted more than 50% of the total extractable transformation products. A pathway, which simulates that of aerobic degradation of the herbicide in soil, is suggested for the microbiological degradation of trifluralin.  相似文献   

9.
Abstract

The growth and spore germination inhibition of Fusarium oxysporum f.sp. radicis‐cucumerinum by the common food additives: acetic acid, formic acid potassium sorbate, propionic acid, sorbic acid, and the fungistatic agent sec‐butylamine was examined in vitro. The inhibitory efficacy of these chemicals decreased in the following order: sorbic acid, potassium sorbate, propionic acid, acetic acid, sec‐butylamine and formic acid. At pH 6.4, the ED50 value for mycelium growth was: 976 ppm for sorbic acid, 1292 ppm for potassium sorbate, 2435 ppm for propionic acid, 3805 ppm for acetic acid, 3962 ppm for sec butylamine and 4668 ppm for formic acid. The ED50 value for spore germination was: 225 ppm for potassium sorbate, 1201 ppm for sorbic acid, 1402 ppm for propionic acid, 1600 ppm for sec‐butylamine, 1957 ppm for acetic acid and 2485 ppm for formic acid.  相似文献   

10.
This study describes a quantitative relationship between mean O3 flux density and the length of exposure needed for the occurrence of visual injury to Phaseolus vulgaris L. Similar relationships were found for 14 day old and 6 week old plants using a whole leaf gas exchange cuvette system. Cultivars Seafarer (O3 sensitive) and Gold Crop (O3 resistant) exhibited similar responses at flux densities > 3 mg m−2 h−1 but only Seafarer was injured below this flux density. O3 concentration and length of exposure period alone did not contain sufficient information to describe the onset of visual foliar injury. The use of O3 concentrations in excess of normal ambient conditions compensated for low leaf conductances so that flux densities in the cuvette were similar to those found in the field.  相似文献   

11.
12.
The growth and spore germination inhibition of Fusarium oxysporum f.sp. radicis-cucumerinum by the common food additives: acetic acid, formic acid potassium sorbate, propionic acid, sorbic acid, and the fungistatic agent sec-butylamine was examined in vitro. The inhibitory efficacy of these chemicals decreased in the following order: sorbic acid, potassium sorbate, propionic acid, acetic acid, sec-butylamine and formic acid. At pH 6.4, the ED50 value for mycelium growth was: 976 ppm for sorbic acid, 1292 ppm for potassium sorbate, 2435 ppm for propionic acid, 3805 ppm for acetic acid, 3962 ppm for sec butylamine and 4668 ppm for formic acid. The ED50 value for spore germination was: 225 ppm for potassium sorbate, 1201 ppm for sorbic acid, 1402 ppm for propionic acid, 1600 ppm for sec-butylamine, 1957 ppm for acetic acid and 2485 ppm for formic acid.  相似文献   

13.
The effect of ozone flux density on leaf conductance to ozone in Phaseolus vulgaris was examined. The change in conductance was measured within the first two hours of fumigation for mature, fruiting 6-week-old plants of an ozone sensitive cultivar (Seafarer); for young, 14-day-old plants of the same cultivar; and for an ozone resistant cultivar (Gold Crop). Young Seafarer plants showed no change in conductance to ozone over a wide range of ozone flux densities. Gold Crop showed a decrease in conductance of −3.1 % /(mgO3 m−2 h−1) whereas mature Seafarer plants exhibited a stronger decrease of −7.7% /(mgO3 m−2 h−1). Diffusion porometer measurements taken on fruiting Seafarer plants in the field illustrated that a decrease in leaf diffusive conductance to water is related to visual ozone injury.  相似文献   

14.
This investigation was undertaken to determine the effect of culture filtrates of different isolates of Fusarium oxysporum f. sp. lycopersici on mortality of Meloidogyne incognita juveniles and egg hatching. It was observed that different concentrations including standard extract (S.E), 1:10 and 1:100 dilutions of all fungal filtrates inhibited egg hatch when compared with control. Minimum mortality and maximum hatching was observed in BRT (showing least mortality) isolate of F. oxysporum, while maximum mortality and minimum egg hatching was recorded in BGT (showing maximum mortality) isolate. Larval mortality was decreased with a decrease in concentration and the least mortality was observed in 1:100 when compared with SE and 1:10. The potentiality of both the isolates (BRT and BGT) against root-knot nematode M. incognita was confirmed by the pathogenicity test on tomato. These observations confirmed that F. oxysporumisolates possesses variability in pathogenicity ranging from pathogenic to bio-control agent. The plants inoculated with BRT isolate failed to show wilt symptoms while plants inoculated with BGT isolate showed wilt indices.  相似文献   

15.
This investigation was undertaken to determine the effect of culture filtrates of different isolates of Fusarium oxysporum f. sp. lycopersici on mortality of Meloidogyne incognita juveniles and egg hatching. It was observed that different concentrations including standard extract (S.E), 1:10 and 1:100 dilutions of all fungal filtrates inhibited egg hatch when compared with control. Minimum mortality and maximum hatching was observed in BRT (showing least mortality) isolate of F. oxysporum, while maximum mortality and minimum egg hatching was recorded in BGT (showing maximum mortality) isolate. Larval mortality was decreased with a decrease in concentration and the least mortality was observed in 1:100 when compared with SE and 1:10. The potentiality of both the isolates (BRT and BGT) against root-knot nematode M. incognita was confirmed by the pathogenicity test on tomato. These observations confirmed that F. oxysporumisolates possesses variability in pathogenicity ranging from pathogenic to bio-control agent. The plants inoculated with BRT isolate failed to show wilt symptoms while plants inoculated with BGT isolate showed wilt indices.  相似文献   

16.
Five cultivars of buddleia, Buddleia davidii Franch., were exposed to sub-ambient, ambient, and twice-ambient levels of ozone in open-top chambers for 8 weeks (June-August) during 1995: Plants were evaluated for foliar injury, growth index, and inflorescence characteristics during and following exposure. Destructive harvests were conducted at the end of the exposure period to determine dry weights of both above- and below-ground plant components. All cultivars had symptoms of visible injury in the twice-ambient treatment at both three and eight weeks after exposures began. No visible symptoms were observed at ambient ozone concentrations. At three weeks of exposure, 'Pink Delight' had the highest percentage of the leaves injured (PLI), 46.2%, followed by 'Opera' with a PLI of 23.3%. The other three cultivars had similar PLIs of less than 15%. After eight weeks of exposure, visible injury was equally severe on all cultivars with a mean PLI of 50.2% and mean Horsfall-Barratt rating of 5.4, indicating 12 to 25% of the leaf area was injured. No ozone x cultivar interaction was found for any growth variable measured. Across cultivars, growth index was reduced by 6%, total dry weight by 35%, and the number of developing floral buds and inflorescences by 29% for plants in twice-ambient ozone concentrations compared to ambient ozone concentrations. Percent biomass allocated to inflorescences was significantly greater for plants exposed to sub-ambient levels compared to those exposed to ozone at either ambient or twice-ambient concentrations. Results indicate that ozone levels similar to those in large urban areas in the southeastern United States have the potential to reduce growth and flowering of this important landscape plant.  相似文献   

17.
Petunia at about 6 weeks old and kidney bean at two growing stages (6–7 days old and 16–18 days old) were exposed separately to O3, (0–0.40 ppm) and PAN (0–0.25 ppm) for 4 h and to the mixture for the same time. In addition, petunia was exposed to O, (0.10–0.40 ppm) and then PAN (0.010−0.040 ppm) for 4 h, respectively. Foliar injury of petunia and kidney bean in exposures to the mixtures of O3 and PAN was significantly smaller than that induced by each oxidant, with the exception of PAN injury on young leaves of 16–18 day-old kidney bean. The percentage of foliar injury caused by either of the mixed pollutants decreased with an increase of the concentration of the other oxidant, and was found to approximate a logarithmic function of the combined pollutant concentrations expressed as O3, minum PAN or vice versa. Alternate exposures caused no additive or synergistic injuries.  相似文献   

18.
Kim YH  Ahn JY  Moon SH  Lee J 《Chemosphere》2005,60(10):1349-1355
Efficiencies of two lypolytic enzymes (fungal cutinase and yeast esterase) in malathion degradation were investigated. Surprisingly, degradation rate of malathion by fungal cutinase was very high, i.e. almost 60% of initial malathion (500 mg l(-1)) was decomposed within 0.5 h, and nearly 50% of the degraded malathion disappeared within initial 15 min. With the yeast esterase, despite the same concentration, more than 65% of malathion remained even after 2-day treatment. During enzymatic degradation of malathion, two malathion-derived compounds were detected, and time-course changes in composition were also monitored. In the degradation by both fungal cutinase and yeast esterase, two additional organic chemicals were produced from malathion: malathion monoacid (MMA) and malathion diacid (MDA) by ester hydrolysis. Final chemical composition after 2 d was significantly dependent on the enzyme used. Fungal cutinase produced MDA as a major degradation compound. However in the malathion degradation by yeast esterase, an isomer of MMA was produced in abundance in addition to MDA. Toxic effects of malathion and its final degradation products were investigated using various recombinant bioluminescent bacteria. As a result, the degradation products (including MMA) by esterase severely caused membrane damage and inhibition of protein synthesis in bacterial cells, while in the fungal cutinase processes, malathion was significantly degraded to non-toxic MDA after the extended period (2 days).  相似文献   

19.
With rising concentrations of both atmospheric carbon dioxide (CO2) and tropospheric ozone (O3), it is important to better understand the interacting effects of these two trace gases on plant physiology affecting land-atmosphere gas exchange. We investigated the effect of growth under elevated CO2 and O3, singly and in combination, on the primary short-term stomatal response to CO2 concentration in paper birch at the Aspen FACE experiment. Leaves from trees grown in elevated CO2 and/or O3 exhibited weaker short-term responses of stomatal conductance to both an increase and a decrease in CO2 concentration from current ambient level. The impairement of the stomatal CO2 response by O3 most likely developed progressively over the growing season as assessed by sap flux measurements. Our results suggest that expectations of plant water-savings and reduced stomatal air pollution uptake under rising atmospheric CO2 may not hold for northern hardwood forests under concurrently rising tropospheric O3.  相似文献   

20.
Relative sensitivity of five common Egyptian plant species namely, Senecio vulgaris, Malva parviflora, Sonchus oleraceus, Medicago sativa and Melilotus indicus to elevated levels of ozone has been studied. The plants were exposed to charcoal filtered air (CFA) and different levels of O3 (50 and 100 ppb) for 5 h per day. The studied parameters were recorded for five consecutive days after fumigation. The foliar injury varied significantly among species in a dose-dependent manner. Severe injury symptoms were recorded on the leaves of M. sativa. With the exception of M. parviflora, all species exhibited significant increases in the percentage reduction of the above-ground dry weight as a result of reductions in both leaf and stem dry weights. M. sativa showed a marked reduction in its relative growth rate at elevated levels of O3. The extent of chlorophyll a destruction was higher in both M. sativa and S. oleraceus than in the other species tested. No differences in the sensitivity of chlorophylls a+b and carotenoids to ozone levels were recorded in this work. Percentage reduction of ascorbic acid was higher in M. sativa and S. oleraceus, compared with the other species studied. With respect to relative percentages of proline, there was a significant difference in the responses of plants to ozone. According to the ozone resistance (R%), measured as relative growth rate, the test species were arranged in the descending order: M. parviflora>M. Indicus>S. Vulgaris>S. Oleraceus>M. sativa. In M. sativa, both determinant and correlation coefficients are well reflected in the relationship between its physiological response, its performance and ozone levels, supporting its recommendation as a candidate for biomonitoring in Egypt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号