首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data from four crop yield-loss field trials were examined to determine if analysis using an imposed phenological weighting function based on seasonal growth stage would provide a more accurate indication of impact of ozone exposure. Alfalfa (Medicago sativa L. cv. Moapa 69), dry bean (Phaseolus vulgaris L. cv. California Dark Red kidney), fresh market and processing tomato (Lycopersicon esculentum Mill. cv. 6718 VF and VF-145-B7879, respectively) were grown at 9-11 ambient field plots within southern California comprising an ambient gradient of ozone. The growing season for each crop was artificially divided into 'quarters' composed of equal numbers of whole days and roughly corresponding to specific growth stages. Ozone exposure was calculated for each of these 'quarters' and regressed against final crop yield using 163 different exposure statistics. Weighting functions were developed using reciprocal residual mean square (1/RMS) or percentage of the best 100 exposure statistics of the 163 tested (TOP100) for each of the quarters. The third quarter of the alfalfa season was clearly most responsive to ozone as measured by both of the weighting functions. Third quarter ozone was also weighted highest by both weighting functions for dry bean. Fresh market and processing tomato were each influenced the greatest by second quartero zone as demonstrated by both weighting functions. The occurrence of ozone during physiologically important events (flowering and initial fruit set in second quarter for tomato; pod development in third quarter for dry bean) appeared to influence the yield of these crops the greatest. Growth-stage-dependent phenological weighting of pollutant exposure may result in more effective predictions of levels of ozone exposure resulting in yield reductions.  相似文献   

2.
Crop yield losses were estimated for ambient O3 concentrations and for a series of potential O3 air quality standards for California, including the current statewide 1-h oxidant (O3) standard of 0.10 ppm (196 microg m(-3)), 12-h growing season averages, and other models. A model for statewide losses was developed using hourly O3 data for all sites in the State, county crop productivity data, and available O3 concentration-yield loss equations to determine potential yield losses for each crop in each county in California for 1984. Losses were based on comparison to an estimated background filtered air concentration of 0.025 or 0.027 ppm, for 12 or 7 h, respectively. Potential losses due to ambient air in 1984 were estimated at 19% to 25% for dry beans, cotton, grapes, lemons, onions, and oranges. Losses of 5% to 9% were estimated for alfalfa and sweet corn. Losses of 4% or less were estimated for barley, field corn, lettuce, grain sorghum, rice, corn silage, spinach, strawberries, sugar beets, fresh tomatoes, processing tomatoes, and wheat. Implementation of either a modified rollback to meet the current 1 h California O3 standard (0.10 ppm) or a three-month, 12-h growing season average of 0.045 ppm was necessary to produce large reductions in potential crop losses.  相似文献   

3.
There is an ongoing debate as to which components of the ambient ozone (O3) exposure dynamics best explain adverse crop yield responses. A key issue is regarding the importance of peak versus mid-range hourly ambient O3 concentrations. While in this paper the importance of peak atmospheric O3 concentrations is not discounted, if they occur at a time when plants are conducive for uptake, the corresponding importance of more frequently occurring mid-range O3 concentrations is described. The probability of co-occurrence of high O3 concentrations and O3 uptake limiting factors is provided using coherent data sets of O3 concentration, air temperature, air humidity, mean horizontal wind velocity and global radiation measured at representative US and German air quality monitoring sites. Using the PLant-ATmosphere INteraction (PLATIN) model, the significance of the aforementioned meteorological parameters on ozone uptake is examined. In addition, the limitations of describing the O3 exposure for plants under ambient, chamberless conditions by SUM06, AOT40 or W126 exposure indices are discussed.  相似文献   

4.
Alfalfa (Medicago sativa) nutritive quality response to ambient ozone (O(3)), sulfur dioxide (SO(2)) and oxides of nitrogen (NO(x)) were assessed at three locations in west-central Alberta, Canada (1998-2002). Yield data were segregated into high and low relative to overall median yield. Ozone concentrations (hourly median and 95th-percentile) and precipitation (P) contributed 69 and 29%, respectively, to the variability in crude protein (CP) concentration in low-yielding alfalfa, whereas mean temperature (T) and relative humidity (RH) collectively influenced 98% of the variation in CP in high-yielding alfalfa. Three-fourths of the accounted variation in relative feed value (RFV) of low-yielding alfalfa was attributable to P, T and RH, whereas median and 95th-percentile hourly O(3) concentrations and SO(2) and NO(x) exposure integrals contributed 25%. In contrast, air quality, (mainly O(3)) influenced 86% of the accounted variation in RFV of high-yielding alfalfa, and T and P collectively contributed 14%.  相似文献   

5.
Statistical analysis was performed using selected sets of combined data from the US National Crop Loss Assessment Network and the European Open-Top Chambers Programme to examine the relationships between the occurrences of hourly ambient ozone (O3) concentrations and adverse crop yield responses. The results suggest that the frequency of occurrences of relatively low hourly O3 concentrations ( approximately <35 ppb) are not as important as moderate to higher concentrations in eliciting negative crop biomass responses. They also suggest that daily peak (highest) hourly O3 values ( approximately >90 ppb) may not be as critical, most likely because they frequently do not occur during time periods when conditions that promote atmospheric conductivity (O3 deposition) and plant uptake (O3 absorption) are in coherence.  相似文献   

6.
Ozone fumigations that mimic ambient ozone distributions facilitate the development of links between
  • 1.(1) vegetative effects results that are generated in the laboratory and the field and
  • 2.(2) predictive effects models that depend upon ambient air quality data.
Experimental exposure profiles were constructed from a readily available ambient air quality data base (i.e. EPA SAROAD). Air quality data from selected monitoring sites were characterized over the 5-month growing season by identifying
  • 1.(a) the number of occurrences of hourly ozone concentrations equal to or above 0.07 ppm,
  • 2.(b) the number of days of each episode,
  • 3.(c) the number of days between episodes and
  • 4.(d) the rate of rise and decline of the daily ozone concentrations.
An episodic profile was constructed incorporating the information into a representative 30-day ozone exposure pattern in which the concentration was changed on an hourly basis. In order to compare treatments having equivalent exposures (sum of hourly ozone concentrations equal to or above a minimum value) but dissimilar temporal distributions of hourly concentrations, a second profile was created. This profile was characterized by a repeated daily incremental rise and decline in ozone concentration that had the same hourly maximum concentration each day. The use of experimental exposure profiles mimicking ambient air quality characteristics and applied under controlled experimental conditions permits the examination of important exposure parameters on plant response.  相似文献   

7.
Soybean percent crop reduction was estimated as a function of ambient O3 concentrations for each of 80 agricultural sites in the National Aerometric Data Bank (NADB) for each available year of data for years 1981-1985. Fourteen O3 concentration statistics were calculated for each of the resulting 320 site-years of data. The two statistics that correlated best with estimated crop reduction were an effective mean O3 concentration (1 percent of variance unexplained) and an arithmetic mean O3 concentration (4 percent unexplained). The worst correlation of the 14 was for the statistic used in the present O3 National Ambient Air Quality Standard (NAAQS), the second highest daily maximum 1-h O3 concentration (42 percent unexplained). The number of site-years for estimated percent soybean yield reductions was plotted versus increasing O3 concentrations for each of the 14 O3 statistics. A maximum crop reduction line was drawn on each plot. These lines were used to estimate (and list) potential ambient O3 standards for each of the 14 statistics that would limit soybean crop reduction at agricultural. NADB sites to 5, 10, 15, or 20 percent.  相似文献   

8.
Ambient ozone and crop loss: establishing a cause-effect relationship   总被引:6,自引:0,他引:6  
This paper provides the results of a retrospective mathematical analysis of the US NCLAN (National Crop Loss Assessment Network) open-top chamber data. Some 77% of the 73 crop harvests examined, showed no statistically significant yield differences between NF (non-filtered open-top chamber) and AA (chamberless, ambient air) treatments (no easily discernable chamber effects on yield). However, among these cases only seven acceptable examples showed statistically significant yield reductions in NF compared to the CF (charcoal filtered open-top chamber) treatment. An examination of the combined or cumulative hourly ambient O3 frequency distribution for cases with yield loss in NF compared to a similar match of cases without yield loss showed that the mean, median and the various percentiles were all higher (>/= 3 X) in the former in contrast to the latter scenario. The combined frequency distribution of hourly O3 concentrations for the cases with yield loss in NF were clearly separated from the corresponding distribution with no yield loss, at O3 concentrations > 49 ppb. Univariate linear regressions between various O3 exposure parameters and per cent yield losses in NF showed that the cumulative frequency of occurrence of O3 concentrations between 50 and 87 ppb was the best predictor (adjusted R2 = 0.712 and p = 0.011). This analysis also showed that the frequency distribution of hourly concentrations up to 87 ppb O3 represented a critical point, since the addition of the frequency distributions of > 87 ppb O3 did not improve the R2 values. In fact as the frequency of hourly O3 concentrations included in the regression approached 50-100 ppb, the R2 value decreased substantially and the p value increased inversely. Further, univariate linear regressions between the frequencies of occurrence of various O3 concentrations between 50 and 90 ppb and: (a) cases with no yield difference in NF and (b) cases with yield increase in NF compared to the CF treatment (positive effect) provided no meaningful statistical relationship (adjusted R2 = 0.000) in either category. These results support the basis that additional evaluation of the frequency of occurrence of hourly O3] concentrations between 50 and 87 ppb for cases with the yield reductions could provide a meaningful ambient O3 standard, objective or guideline for vegetation.  相似文献   

9.
Five cultivars of buddleia, Buddleia davidii Franch., were exposed to sub-ambient, ambient, and twice-ambient levels of ozone in open-top chambers for 8 weeks (June-August) during 1995: Plants were evaluated for foliar injury, growth index, and inflorescence characteristics during and following exposure. Destructive harvests were conducted at the end of the exposure period to determine dry weights of both above- and below-ground plant components. All cultivars had symptoms of visible injury in the twice-ambient treatment at both three and eight weeks after exposures began. No visible symptoms were observed at ambient ozone concentrations. At three weeks of exposure, 'Pink Delight' had the highest percentage of the leaves injured (PLI), 46.2%, followed by 'Opera' with a PLI of 23.3%. The other three cultivars had similar PLIs of less than 15%. After eight weeks of exposure, visible injury was equally severe on all cultivars with a mean PLI of 50.2% and mean Horsfall-Barratt rating of 5.4, indicating 12 to 25% of the leaf area was injured. No ozone x cultivar interaction was found for any growth variable measured. Across cultivars, growth index was reduced by 6%, total dry weight by 35%, and the number of developing floral buds and inflorescences by 29% for plants in twice-ambient ozone concentrations compared to ambient ozone concentrations. Percent biomass allocated to inflorescences was significantly greater for plants exposed to sub-ambient levels compared to those exposed to ozone at either ambient or twice-ambient concentrations. Results indicate that ozone levels similar to those in large urban areas in the southeastern United States have the potential to reduce growth and flowering of this important landscape plant.  相似文献   

10.
The economic impact of various ozone concentrations on California agriculture is examined using an economic model of crop production that accounts for interdependence among crops. Such interdependence recognizes that net economic effects are determined not only by yield sensitivity to ozone but also by market conditions that affect relative crop prices and profitability. Changes in crop yields due to alternations in ambient ozone concentrations are used to drive the economic model. The predicted yield changes are derived from NCLAN data under a range of assumptions concerning functional form and yield effects. The results indicate that the economic effects of ozone are substantial for 13 included crops. The economic estimates display varying sensitivity to the functional form of the response relationship. The need for additional experimental data to more precisely define the relationship depends on the range of policy actions being considered.  相似文献   

11.
The relationship between pollutant-induced leaf drop or reductions in foliar pigment concentrations and yield was determined for field-grown alfalfa (Medicago sativa L. 'Moapa') exposed to simulated fogs of pH 7.24, 2.69 and 1.68 singly, and in combination with ambient ozone (O3) over an 11-week period. Highly acidic fog (pH 1.68) or ambient O3 significantly reduced totalseason dry yield and foliar pigment concentrations, and increased leaf drop. Significant interactive effects between acidic fog and O3 were observed for the leaf parameters, but not for yield. Thus, multiple exposures to acidic fog at current ambient levels of acidity (i.e. pH 2.69) could effect leaf quality in the absence of significant effects on yield. Alternatively, O3-induced effects on leaves may have utility as bioindicators of potential yield losses.  相似文献   

12.
Growth season-based time series spectral coherence analysis was performed between weekly changes in hourly ambient O(3) concentrations and weekly changes in alfalfa height growth. Weekly median hourly O(3) concentration and the corresponding weekly cumulative integral (sum of all hourly concentrations within the week) were used as indicators of weekly O(3) spectral density and coherence with the change in weekly alfalfa height growth. In general, the weekly cumulative integral performed much better than the weekly median O(3) concentration. A conceptual analysis of the results is presented, along with a recommendation that crop growth stage-based cumulative integrals merit further evaluation towards a better understanding of cause-effect relationships.  相似文献   

13.
This paper presents a cohesive view of the dynamics of ambient O(3) exposure and adverse crop response relationships, coupling the properties of photochemical O(3) production, flux of O(3) from the atmosphere into crop canopies and the crop response per se. The results from two independent approaches ((a) statistical and (b) micrometeorological) were analyzed for understanding cause-effect relationships of the foliar injury responses of tobacco cv Bel-W3 to the exposure dynamics of ambient O(3) concentrations. Similarly, other results from two independent approaches were analyzed in: (1) establishing a micrometeorological relationship between hourly ambient O(3) concentrations and their vertical flux from the air into a natural grassland canopy; and (2) establishing a statistical relationship between hourly ambient O(3) concentrations in long-term, chronic exposures and crop yield reductions. Independent of the approach used, atmospheric conditions appeared to be most conducive and the crop response appeared to be best explained statistically by the cumulative frequency of hourly ambient O(3) concentrations between 50 ppb and 90 ppb (100 and 180 microg m(-3)). In general, this concentration range represents intermediate or moderately enhanced hourly O(3) values in a polluted environment. Further, the diurnal occurrence of this concentration range (often approximately between 0900 and 1600 h in a polluted, agricultural environment) coincided with the optimal CO(2) flux from the atmosphere into the crop canopy, thus high uptake. The frequency of occurrence of hourly O(3) concentrations > 90 ppb (180 microg m(-3)) appeared to be of little importance and such concentrations in general appeared to occur during atmospheric conditions which did not facilitate optimal vertical flux into the crop canopy, thus low uptake. Alternatively, when > 90 ppb (180 microg m(-3)) O(3) concentrations occurred during the 0900-1600 h window, their frequency of occurrence was low in comparison to the 50-90 ppb (100-180 microg m(-3)) range. Based on the overall results, we conclude that if the cumulative frequency of hourly ambient O(3) concentrations between 50-62 ppb (100-124 microg m(-3)) occurred during 53% of the growing season and the corresponding cumulative frequency of hourly O(3) concentrations between 50-74 ppb (100-148 microg m(-3)) occurred during 71% of the growing season, then yield reductions in sensitive crops could be expected, if other factors supporting growth, such as adequate soil moisture are not limiting.  相似文献   

14.
ABSTRACT

An intercomparison study has been performed with six empirical ozone interpolation procedures to predict hourly concentrations in ambient air between monitoring stations. The objective of the study is to use monitoring network data to empirically identify an improved procedure to estimate ozone concentrations at subject exposure points. Four of the procedures in the study are currently used in human exposure models (nearest monitors daily mean and maximum, regression estimate used in the U.S. Environmental Protection Agency's (EPA) pNEM, and inverse distance weighting), and two are being evaluated for this purpose (kriging in space and kriging in space and time). The study focused on spatial estimation during June 1-June 5, 1996, with relatively high observed ozone levels over Houston, Texas. The study evaluated these procedures at three types of locations with monitors of varying proximity. Results from the empirical evaluation indicate that kriging in space and time provides excellent estimates of ozone concentrations within a monitoring network, while the more often used techniques failed to capture observed pollutant concentrations. Improved estimation of pollutant concentrations within the region, and thus at subject locations, should result in improved exposure modeling.  相似文献   

15.
In this study, we estimate yield losses and economic damage of two major crops (winter wheat and rabi rice) due to surface ozone (O3) exposure using hourly O3 concentrations for the period 2002–2007 in India. This study estimates crop yield losses according to two indices of O3 exposure: 7-h seasonal daytime (0900–1600 hours) mean measured O3 concentration (M7) and AOT40 (accumulation exposure of O3 concentration over a threshold of 40 parts per billion by volume during daylight hours (0700–1800 hours), established by field studies. Our results indicate that relative yield loss from 5 to 11 % (6–30 %) for winter wheat and 3–6 % (9–16 %) for rabi rice using M7 (AOT40) index of the mean total winter wheat 81 million metric tons (Mt) and rabi rice 12 Mt production per year for the period 2002–2007. The estimated mean crop production loss (CPL) for winter wheat are from 9 to 29 Mt, account for economic cost loss was from 1,222 to 4,091 million US$ annually. Similarly, the mean CPL for rabi rice are from 0.64 to 2.1 Mt, worth 86–276 million US$. Our calculated winter wheat and rabi rice losses agree well with previous results, providing the further evidence that large crop yield losses occurring in India due to current O3 concentration and further elevated O3 concentration in future may pose threat to food security.  相似文献   

16.
Potato (Solanum tuberosum cv. Bintje) was grown in open-top chambers under three carbon dioxide (ambient and seasonal mean concentrations of 550 and 680 mumol mol-1 CO2) and two ozone concentrations (ambient and an 8 h day-1 seasonal mean of 50 nmol mol-1 O3) between emergence and final harvest. Periodic non-destructive measurements were made and destructive harvests were carried out at three key developmental stages (24, 49 and 101 days after emergence) to establish effects on growth and tuber yield. Season-long exposure to elevated O3 reduced above-ground dry weight at final harvest by 8.4% (P < 0.05), but did not affect tuber yields. There was no significant interaction between CO2 and O3 for any of the growth and yield variables examined. Non-destructive analyses revealed no significant effect of elevated CO2 on plant height, leaf number or green leaf area ratio. However, destructive harvests at tuber initiation and 500 degrees Cd after emergence showed that above-ground dry weight (8 and 7% respectively) and tuber yield (88 and 44%) were significantly increased (P < 0.05) in the 550 mumol mol-1 CO2 treatment. Responses to 550 and 680 mumol mol-1 CO2 were not significantly different for most parameters examined, suggesting the existence of an upper limit to the beneficial influence of CO2 enrichment. Significant effects on above-ground dry weight and tuber yield were no longer apparent at final harvest, although tuber numbers were increased (P < 0.05) under elevated CO2, particularly in the smaller size categories. The results show that the O3 treatment imposed was insufficient to reduce tuber yields and that, although elevated CO2 enhanced crop growth during the early stages of the season, this beneficial effect was not sustained to maturity.  相似文献   

17.
Physical and economic impacts of 1978 ambient levels of ozone and sulfur dioxide on 33 crops In the San Joaquin Valley are estimated. The field data regression approach Is used and evaluated for estimating yield losses. The effects of alternative air pollution measures and regression functional forms are evaluated. An economic model is employed that accounts for both farm and market responses to yield improvements from reduced air pollution. Economic damages were estimated to exceed $100 million in 1978 with the biggest losers being the producers of cotton and producers and consumers of grapes, a crop that has heretofore been Ignored in agricultural assessments of pollution damage.  相似文献   

18.
Since the 1960s, much effort has been devoted to collecting and formatting air quality data. This paper discusses 1) the availability of air quality data for assessing potential biological impacts associated with ozone and sulfur dioxide ambient exposures, 2) examples of how air quality data can be characterized for assessing vegetation effects, and 3) the limitations associated with some exposure parameters used for developing relevant vegetation doseresponse yield reduction models. Data are presented showing that some ozone monitoring sites not continuously affected by local urban sources experience consecutive hourly ozone exposures ≥0.10 ppm in the late evening and early morning hours. These sites experience their maximum ozone concentrations either in the spring or summer months. Sites influenced by local rural sources experience their maximum ozone concentrations during the summer months. It is suggested that further research be performed to identify whether the sensitivity of a target organism at the time of exposure, as well as the pollutant concentration and chemical form that enters into the target organism, is as important in defining effects as air pollutant exposure alone.  相似文献   

19.
The objective of this study is to compare the use of several indices of exposure in describing the relationship between O3 and reduction in agricultural crop yield. No attempt has been made to determine which exposure-response models best fit the data sets examined. Hourly mean O3 concentration data, based on two-three measurements per hour, were used to develop indices of exposure from soybean and winter wheat experiments conducted in open-top chambers at the Boyce Thompson Institute, Ithaca, New York NCLAN field site. The comparative efficacy of cumulative indices (i.e. number of occurrences equal to or above specific hourly mean concentrations, sum of all hourly mean concentrations equal to or above a selected level, and the weighted sum of all hourly mean concentrations) and means calculated over an experimental period to describe the relationship between exposure to O3 and reductions in the yield of agricultural crops was evaluated. None of the exposure indices consistently provided a best fit with the Weibull and linear models tested. The selection of the model appears to be important in determining the indices that best describe the relationship between exposure and response. The focus of selecting a model should be on fitting the data points as well as on adequately describing biological responses. The investigator should be careful to couple the model with data points derived from indices relevant to the length of exposure. While we have used a small number of data sets, our analysis indicates that exposure indices that weight peak concentrations differently than lower concentrations of an exposure regime can be used in the development of exposure-response functions. Because such indices may have merit from a regulatory perspective, we recommend that additional data sets be used in further analyses to explore the biological rationale for various indices of exposure and their use in exposure-response functions.  相似文献   

20.
Ozone uptake was studied in a pine forest in Tenerife, Canary Islands, an ecotone with strong seasonal changes in climate. Ambient ozone concentration showed a pronounced seasonal course with high concentrations during the dry and warm period and low concentrations during the wet and cold season. Ozone uptake by contrast showed no clear seasonal trend. This is because canopy conductance significantly decreased with soil water availability and vapour pressure deficit. Mean daily ozone uptake averaged 1.9 nmol m(-2) s(-1) during the wet and cold season, and 1.5 nmol m(-2) s(-1) during the warm and dry period. The corresponding daily mean ambient ozone concentrations were 42 and 51 nl l(-1), respectively. Thus we conclude that in Mediterranean type forest ecosystems the flux based approach is more capable for risk assessment than an external, concentration based approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号