首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Analytical methods to improve the detection of erythromycin in water and sediment were developed to optimize for erythromycin's recovery of extractable and bound residues from the aquatic environment. The objective of this study was to determine optimal recovery of erythromycin from water and sediment to improve its detection in environmental samples through solid-phase extraction (SPE) and sediment-extraction methods. SPE methods examined included previously reported methods for macrolide and sulfonamide antibiotics with erythromycin recoveries ranging from 75.5 % to 94.7 %. Extraction of erythromycin was performed from sand employing various solvents and buffers to determine the best method for extraction from two sandy loam pond sediments. Various extraction times were also examined, and all extraction procedures were performed in duplicate. The greatest recovery of 14C-erythromycin in the Iowa sediment was 84 % using 0.3 M ammonium acetate at pH 4.2: acetonitrile (15:85, v/v) solution. The Oklahoma sediment yielded the greatest recovery of 14C-erythromycin at 86.7 % with 0.3 M ammonium acetate at pH 7: acetonitrile (30:70, v/v) with a 60-minute shake time. The present results demonstrate improved extraction methods for enhancing the accuracy of erythromycin detection from environmental samples.  相似文献   

2.
A multiresidue analytical method was developed for the determination of 9 endocrine disrupting chemicals (EDCs) and 19 pharmaceuticals and personal care products (PPCPs) including acidic and neutral pharmaceuticals in water and soil samples using rapid resolution liquid chromatography-tandem mass spectrometry (RRLC-MS/MS). Solid phase extraction (SPE), and ultrasonic extraction combined with silica gel purification were applied as pretreatment methods for water and soil samples, respectively. The extracts of the EDCs and PPCPs in water and soil samples were then analyzed by RRLC-MS/MS in electrospray ionization (ESI) mode in three independent runs. The chromatographic mobile phases consisted of Milli-Q water and acetonitrile for EDCs and neutral pharmaceuticals, and Milli-Q water containing 0.01 % acetic acid (v/v) and acetonitrile: methanol (1:1, v/v) for acidic pharmaceuticals at a flow rate of 0.3 mL/min. Most of the target compounds exhibited signal suppression due to matrix effects. Measures taken to reduce matrix effects included use of isotope-labeled internal standards, and application of matrix-match calibration curves in the RRLC-MS/MS analyses. The limits of quantitation ranged between 0.15 and 14.08 ng/L for water samples and between 0.06 and 10.64 ng/g for solid samples. The recoveries for the target analytes ranged from 62 to 208 % in water samples and 43 to 177 % in solid samples, with majority of the target compounds having recoveries ranging between 70–120 %. Precision, expressed as the relative standard deviation (RSD), was obtained less than 7.6 and 20.5 % for repeatability and reproducibility, respectively. The established method was successfully applied to the water and soil samples from four irrigated plots in Guangzhou. Six compounds namely bisphenol-A, 4-nonylphenol, triclosan, triclocarban, salicylic acid and clofibric acid were detected in the soils.  相似文献   

3.
A simple and accurate method for the analysis of acibenzolar-S-methyl (benzo[1,2,3]thiadiazole-7-carbothioic acid-S-methyl ester; CGA 245 704; ASM) and its major conversion product, benzo[1,2,3]thiadiazole-7-carboxylic acid (CGA 210 007; BTC), in soils is presented. ASM extraction from soil samples was performed using acetonitrile and BTC was extracted with a mixture of potassium phosphate buffer (0.5 M, pH 3) and acetonitrile (70:30 %, v/v). Both extracts were directly analyzed in a high-performance liquid chromatography-diode array detection (HPLC-DAD) system. Pesticide separation was achieved on a C18 (4.6 mm × 150 mm, 5 μm) analytical column with a isocratic elution of acetonitrile:water 40:60 % (v/v) with 0.6 mL L?1 acetic acid at a flow rate of 1 mL min?1. Linear regression coefficients (r (2)) of the external calibration curves were always above 0.9997. The limits of detection (LOD) and quantification (LOQ) of the method were 0.005 and 0.02 mg kg?1 for ASM, and 0.01 and 0.05 mg kg?1 for BTC, respectively. Recoveries were investigated at six fortification levels and were in the range of 90-120 % for ASM and 74-96 % for BTC with relative standard deviations (RSDs) below 11 % in all cases. The method was also validated by analyzing freshly spiked soil samples with 2.7% organic matter content at 0.5 mg kg?1 level, with slightly lower recovery values only for ASM. Moreover, recoveries for intermediate aged residues of the analytes were similar to fresh residues. This method was also applied to determine ASM half-life (t(?) = 8.7 h) and the rate of the acidic metabolite formation.  相似文献   

4.
Ali I  Aboul-Enein HY 《Chemosphere》2002,48(3):275-278
The speciation of arsenic [As(III) and As(V)] and chromium [Cr(III) and Cr(VI)] was carried out by high performance liquid chromatography. The column used was Econosil C18 (250 x 4.6 mm i.d., particle size 10 microm). The mobile phases consisted of water-acetonitrile (80:20, v/v) for arsenic and 10 mM ammonium acetate buffer (6.0 pH)-acetonitrile (10:90, v/v) for chromium speciation separately and respectively. The detection was carried out by UV-Vis at 410 nm and atomic absorption spectrometer (AAS) respectively and separately. The values of alpha and Rs of As(III) and As(V) species were 1.4 and 1.5 respectively while the values of alpha and Rs for Cr(III) and Cr(VI) were 1.35 and 0.2 respectively. The effect of the acetonitrile percentages was also carried out on the speciation of arsenic only. The relative standard deviation and limit of detection were in the range of 0.01-0.02 and 0.4-1.0 microg/ml respectively.  相似文献   

5.
Two simple and straightforward analytical procedures for the screening of sediment samples are reported. They involve extraction with ethyl acetate or methanol and subsequent analysis by means of gas chromatography-mass spectrometry (GC-MS) using large-volume injection (LVI) or solid-phase extraction (SPE). The latter, which was originally developed for the analysis of aqueous samples, can be used without any modification. In general, 10 ml of organic solvent were added to 2 g of sediment, and the mixture was shaken and allowed to stand overnight. The methanolic extracts were then diluted in water and subjected to preconcentration and analysis using on-line SPE-GC-MS. The ethyl acetate extracts were injected directly into the GC using LVI. Both methods were used for the detection and identification of microcontaminants during a monitoring study of the river Nitra (Slovak Republic). They included polyaromatic hydrocarbons (PAHs), chlorofluorohydrocarbons, alkoxylated and alkylated phenols and benzothiazole derivatives. Semi-quantitative profiles of the contaminants were constructed and provisionally interpreted. The results indicate that SPE-GC-MS, and also LVI-GC-MS, have good potential for a rapid screening of sediment samples and the identification of microcontaminants. The analytical procedures pose no problems, and the on-line set-up is user-friendly.  相似文献   

6.
A simple method for species-selective analysis of organotin compounds (OTCs) (butyl and phenyl) in sediments was developed. The sample preparation procedure was specifically optimised for sulphur-rich sediments to eliminate interferences from elemental sulphur and organosulphur compounds. Tin species were extracted from sediment samples using pressurised liquid extraction technique (PLE), ethylated - with simultaneous extraction to isooctane - in aqueous phase with sodium tetraethylborate (NaBEt(4)) and separated/detected by gas chromatography with flame photometric detection (GC-FPD). PLE operational variables (extraction temperature and pressure, solvent composition and number of static extraction steps) and extract handling routine were fine-tuned to minimise the amount of extracted interferents while keeping OTCs recovery at an acceptable level. Best results were obtained after extraction of sediment samples with methanol/water (75% v/v methanol) solution of acetic acid/sodium acetate with tropolone addition (0.6 g l(-1)). Derivatisation of low temperature, high-pressure (50 degrees C, 13.8 MPa) extracts gives isooctane extracts which are clean enough to be directly analysed by GC-FPD without any further cleanup. Interferences from elemental sulphur were completely eliminated while concentrations of other interferents were reduced to the level not impairing quantitation of OTCs under the study. No negative effects in terms of chromatographic column deterioration were observed after repeated injections of such extracts. Two certified reference materials, BCR646 and PACS-2, were analysed to assess performance of the method. Recoveries of all OTCs under the study, except MBT, were in the range of 91-114%. MBT extraction efficiency was low (34-47%) therefore the method is unsuitable for precise determinations of this compound.  相似文献   

7.
Method development for determination of fluroxypyr in water   总被引:2,自引:0,他引:2  
Improved methods for extraction and clean up of fluroxypyr residue in water have been established. Two methods of fluroxypyr extraction were used, namely, Direct Measurement of fluroxypyr and Concentration of fluroxypyr onto A Solid Phase Extraction (SPE) Adsorbent, followed by elution with solvent before determination of fluroxypyr. The recovery for Direct Measurement of fluroxypyr in water containing 8-100 microg L(-1), ranged from 86 to 110% with relative standard deviation of 0.7 to 2.15%. For the second method, three types of SPE were used, viz. C18, C18 end-capped and polyvinyl dibenzene (ISOLUTE ENV+). The procedure involved concentrating the analyte from fluroxypyr-spiked water at pH 3, followed by elution of the analyte with 4 mL of acentonitrile. The recovery of fluroxypyr from the spiked sample at 1 to 50 microg L(-1) after eluting through either C18 or C18 end-capped ranged from 40-64% (with relative standard deviation of 0.7 to 2.15) and 41-65% (with standard deviation of 1.52 to 11.9). The use of ISOLUTE ENV+, gave better results than the C18, C18 end-capped or the Direct Measurement Methods. The recovery and standard deviation of fluroxypyr from spiked water using ISOLUTE ENV+ ranged from 91-102% and 2.5 to 5.3, respectively.  相似文献   

8.
Kobayashi T  Morimoto K  Tatsumi K 《Chemosphere》2008,70(11):2002-2008
Plants contain a wide variety of chemicals, some of which may have similar chromatographic behavior to polycyclic aromatic hydrocarbons (PAHs). During solid phase extraction (SPE) with Si-gel for instance, the co-elution of carotene-like colored compounds with PAHs has been observed. In this paper, liquid–liquid extraction was applied for the separation and subsequent analysis of PAHs from plant extracts. PAHs containing 2–6 rings, which include naphthalene, phenanthrene, pyrene, benzo[a]pyrene and benzo[ghi]perylene, were used as representative target chemicals. Carotene-like compounds extracted from Komatsuna (Brassica campestris) shoot by acetone followed by Si-gel treatment were incorporated as undesired components in the model matrix. Results showed the feasibility of employing either acetonitrile or 2% (w/v) KOH–methanol as solvents for high PAHs recovery and low extraction of colored fraction. For acetonitrile, 86.9–93.5% of each PAH could be recovered after three extraction cycles (relative standard deviation, RSD < 1.6%) with only about 10% co-extraction of colored fraction. For 2% KOH–methanol, PAHs recoveries ranging from 79.3% to 83.1% after five cycles (RSD < 1.5%) were achieved while the percent extraction of colored fraction was also low at 10%. The relatively higher selectivity of the solvents for PAHs over the colored fraction as well as the solubility of the matrix solution in the solvent may have contributed to these results. On this basis, liquid–liquid extraction is very useful for the pre-treatment of plant extracts for PAHs analysis.  相似文献   

9.
Static subcritical water extraction (SubWE) along with solid phase extraction (SPE) was used for the analysis of PAHs and pesticides in municipal solid waste compost. Yields obtained for PAHs in certified reference sediment (CRM 104) were acceptable. The extraction method was simple, rapid, used small sample sizes, and no sample drying was required. Analysis of samples was performed by GC/MS and HPLC. Recovery of spiked pesticides was greatest at 110 degrees C for 20 min extraction time. The optimum extraction for PAH analysis was achieved at 150 degrees C for 20 min. Addition of C-18 resin as an "alternate sorbent" upon cooling increased recovery of PAHs but not of pesticides, however, it increased the stability of atrazine and propazine at higher temperatures. Analysis of three municipal compost samples from the Dayton, OH (USA) area showed no pesticides above the detection limit, however, PAH totals for 11 PAHs were 15.97, 14.42, and 20.79 microg g(-1). The totals of six of the seven carcinogenic PAHs, for which remediation goals in the United States is 4.6 microg g(-1), were determined to be 9.89, 6.77, and 13.06 microg g(-1) dry weight. The highest PAH totals were obtained from compost containing sewage sludge.  相似文献   

10.
Analytical methods for the isolation and determination of cypermethrin in milk, based on the solid-phase microextraction (SPME) and QuEChERS methods (Quick, Easy, Cheap, Effective, Rugged, and Safe) are presented. The SPME technique was not appropriate to analyse cypermethrin in milk, even establishing the best extraction conditions, polydimethylsiloxane fiber, 60 min time extraction, 60 °C temperature extraction, addition of salt (NaCl) and stirring rate. The extraction efficiency was low probably because of the matrix constituents. The QuEChERS method involves the extraction of the analyte with acetonitrile and simultaneous liquid-liquid partitioning formed by adding anhydrous MgSO(4) plus NaCl, followed by the removal of residual water and cleanup using a procedure called dispersive solid-phase extraction, in which anhydrous MgSO(4) plus PSA and C18 are mixed with 1 mL of acetonitrile extract. The detection and quantification limits were 0.01 and 0.04 mg kg(-1), respectively, and the percentage recovery obtained ranged from 92 to 105% with relative standard deviations below 7%.  相似文献   

11.
Analytical methods for the isolation and determination of cypermethrin in milk, based on the solid-phase microextraction (SPME) and QuEChERS methods (Quick, Easy, Cheap, Effective, Rugged, and Safe) are presented. The SPME technique was not appropriate to analyse cypermethrin in milk, even establishing the best extraction conditions, polydimethylsiloxane fiber, 60 min time extraction, 60 °C temperature extraction, addition of salt (NaCl) and stirring rate. The extraction efficiency was low probably because of the matrix constituents. The QuEChERS method involves the extraction of the analyte with acetonitrile and simultaneous liquid-liquid partitioning formed by adding anhydrous MgSO4 plus NaCl, followed by the removal of residual water and cleanup using a procedure called dispersive solid-phase extraction, in which anhydrous MgSO4 plus PSA and C18 are mixed with 1 mL of acetonitrile extract. The detection and quantification limits were 0.01 and 0.04 mg kg?1, respectively, and the percentage recovery obtained ranged from 92 to 105% with relative standard deviations below 7%.  相似文献   

12.
A solid-phase microextraction (SPME) procedure has been developed to extract eight organophosphorus pesticides (OPs) in water and the method was compared with a conventional solid phase extraction (SPE) technique. The extracted OPs were analyzed by gas chromatography using thermionic specific detection. Both extraction methods presented linear calibration at least over the concentration range investigated (100 to 1000 ng x mL(-1) for SPE and 1 to 100 ng x mL(-1) for SPME). SPME method presented higher sensitivity than SPE. The quantitation limits were between 0.1 to 1.0 ng x mL(-1) for SPME depending upon the analyte, and 100 ng x mL(-1) for SPE. The precision, as measured by the standard deviations (RSD), were in the range 3.6% to 5.8% for SPME and 2.4% to 9.2% for SPE. Along with the feature of being a solvent - free sampling technique, SPME offers additional benefits due to its high sensitivity, simplicity, and small size sample required (typically: SPE - 500 mL, SPME - 5 mL).  相似文献   

13.
Flubendiamide is a new insecticide that has been found to give excellent control of lepidopterous pests of tomato. This study has been undertaken to develop an improved method for analysis of flubendiamide and its metabolite des-iodo flubendiamide and determine residue retention in tomato and soil. The analytical method developed involved extraction of flubendiamide and its metabolite des-iodo flubendiamide with acetonitrile, liquid-liquid partitioning into hexane-ethyl acetate mixture (6:4, v v?1) and cleanup with activated neutral alumina. Finally the residues were dissolved in gradient high pressure liquid chromatography (HPLC) grade acetonitrile for analysis by HPLC. The mobile phase, acetonitrile-water at 60:40 (v v?1) proportion and the wavelength of 235 nm gave maximum peak resolution. Using the above method and HPLC parameters described, nearly 100 % recovery of both insecticides were obtained. There was no matrix interference and the limit of quantification (LOQ) of the method was 0.01 mg kg?1. Initial residue deposits of flubendiamide on field-treated tomato from treatments @ 48 and 96 g active ingredient hectare?1 were 0.83 and 1.68 mg kg?1, respectively. The residues of flubendiamide dissipated at the half-life of 3.9 and 4.4 days from treatments @ 48 and 96 g a.i. ha?1, respectively and persisted for 15 days from both the treatments. Des-iodo flubendiamide was not detected in tomato fruits at any time during the study period. Residues of flubendiamide and des-iodo flubendiamide in soil from treatment @ 48 and 96 g a.i. ha?1 were below detectable level (BDL, < 0.01 mg kg?1) after 20 days. Flubendiamide completely dissipated from tomato within 20 days when the 480 SC formulation was applied at doses recommended for protection against lepidopterous pests.  相似文献   

14.
MC analysis of biological tissue is considered to be very difficult due to the lack of validated methods. This is the primary limiting factor for monitoring potential risks in both the flesh of aquatic organisms and the aquatic ecosystem. In this study, an effective method to determine free MCs (MC-LR and MC-RR) in the muscle and liver tissues of freshwater cultured fish was developed using solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC/MS-MS). The extraction solvent, time of extraction, eluent and purification of the extract were optimized. Various SPE cartridges were also investigated. In this optimized analytical procedure, an 85% methanol/water solution (v/v) was selected as the extraction solvent, after which the extracts were purified by removing fats and proteins; a HLB cartridge was chosen for MCs enrichment; and 90% methanol containing 0.02% formic acid/water solution (v/v) was used as the eluent. Under the optimized pretreatment conditions and instrument parameters, good recoveries of MC-LR and MC-RR were obtained at three concentrations (0.5, 1.0 and 2.0 µg g?1 dry weight (DW)), with values ranging from 92.5 to 98.3% and 92.1 to 98.6%, respectively. The method detection limit (MDL) for muscle samples was 0.5 µg kg?1 and 0.4 µg kg?1 (DW) for MC-LR and MC-RR, respectively. The MDL for the liver samples was 0.8 µg kg?1 (DW) for both MC-LR and MC-RR. The developed procedure was successfully applied to analyze MCs in the muscle and liver of fish samples collected from a Chinese freshwater aquaculture pond during bloom seasons. The MC-LR concentrations ranged from below the MDL to 4.17 µg kg?1 and the MC-RR concentrations ranged from below the MDL to 2.64 µg kg?1.  相似文献   

15.
A multiresidue solid-phase extraction (SPE) method for the isolation and subsequent gas chromatographic determination of organochlorine and organophosphorus pesticide residues in low-moisture, nonfatty products is described. Residues are extracted from samples with an acetonitrile/water mixture. Cleanup of the extract is performed using graphitized carbon black and anion exchange SPE columns, and analysis is performed by gas chromatography with Hall electrolytic conductivity and flame photometric detection. Recovery data was obtained by fortifying corn, oats and wheat with pesticides. The average recoveries were 79-123% for eight organochlorine and 51-122% for 28 organophosphorus pesticide residues. The limit of quantitation for chlorpyriphos was 0.05 ppm using the Hall electrolytic conductivity detector and < 0.005 ppm using the flame photometric detector.  相似文献   

16.
This paper reports the results of studies performed to investigate the potential of applying thin layer chromatography (TLC) detection in combination with selected extraction and cleanup methods, for providing an alternative cost-effective analytical procedure for screening and confirmation of pesticide residues in plant commodities. The extraction was carried out with ethyl acetate and an on-line extraction method applying an acetone-dichloromethane mixture. The extracts were cleaned up with SX-3 gel, an adsorbent mixture of active carbon, magnesia, and diatomaceous earth, and on silica micro cartridges. The Rf values of 118 pesticides were tested in eleven elution systems with UV, and eight biotest methods and chemical detection reagents. Cabbage, green peas, orange, and tomatoes were selected as representative sample matrices for fruits and vegetables, while maize, rice, and wheat represented cereal grains. As an internal quality control measure, marker compounds were applied on each plate to verify the proper elution and detection conditions. The Rf values varied in the different elution systems. The best separation (widest Rf range) was achieved with silica gel (SG)--ethyl acetate (0.05-0.7), SG--benzene, (0.02-0.7) and reverse phase RP-18 F-254S layer with acetone: methanol: water/30:30:30 (v/v) (0.1-0.8). The relative standard deviation of Rf values (CV(Rf)) within laboratory reproducibility was generally less than 20%, except below 0.2 Rf, where the CVRf rapidly increased with decreasing Rf values. The fungi spore inhibition, chloroplast inhibition, and enzyme inhibition were found most suitable for detection of pesticides primarily for confirming their identity or screening for known substances. Their use for determination of pesticide residues in samples of unknown origin is not recommended.  相似文献   

17.
A solid-phase microextraction (SPME) procedure has been developed to ex tract eight organophosphorus pesticides (OPs) in water and the method was compared with a conventional solid phase extraction (SPE) technique. The extracted OPs were analyzed by gas chromatography using thermionic specific detection. Both extraction methods presented linear calibration at least over the concentration range investigated (100 to 1000 ng.mL?1 for SPE and 1 to 100 ng.mL?1 for SPME). SPME method presented higher sensitivity than SPE. The quantitation limits were between 0.1 to 1.0 ng.mL?1 for SPME depending upon the analyte, and 100 ng.mL?1 for SPE. The precision, as measured by the standard deviations (RSD), were in the range 3.6 % to 5.8 % for SPME and 2.4 % to 9.2 % for SPE.

Along with the feature of being a solvent – free sampling technique, SPME offers additional benefits due to its high sensitivity, simplicity, and small size sample required (typically: SPE – 500 mL, SPME – 5 mL).  相似文献   

18.
Abstract

A multiresidue solid‐phase extraction (SPE) method for the isolation and subsequent gas Chromatographie determination of organochlorine and organophosphorus pesticide residues in low‐moisture, nonfatty products is described. Residues are extracted from samples with an acetonitrile/water mixture. Cleanup of the extract is performed using graphitized carbon black and anion exchange SPE columns, and analysis is performed by gas chromatography with Hall electrolytic conductivity and flame photometric detection. Recovery data was obtained by fortifying corn, oats and wheat with pesticides. The average recoveries were 79–123% for eight organochlorine and 51–122% for 28 organophosphorus pesticide residues. The limit of quantitation for chlorpyriphos was 0.05 ppm using the Hall electrolytic conductivity detector and <0.005 ppm using the flame photometric detector.  相似文献   

19.
The goal of this study was to develop a robust method of analyzing surface water samples for S-triazine herbicides, chloroacetanilide herbicides, and their transformation products (TPs) using solid-phase extraction (SPE) followed by liquid chromatograph-mass spectrometry (LC-MS) with electrospray ionization (ESI) by in-source collision-induced dissociation (ISCID) capability of an orthogonal electrospray ionization probe on a single quadrupole LC-MS system. The method developed here met the goals of the study and yielded estimated method detection limits (EMDLs) averaging 0.3 ± 0.1 ng L(-1) for S-triazines and their TPs and 0.7 ± 0.4 ng L(-1) for chloroacetanilides and TPs. Spiked filtered river water yielded SPE recoveries ranging from 94.2 % ± 4.8 % for S-triazines and TPs after eliminating three compounds with less that 65 % recovery from analysis and 95.9 % ± 19 % for chloroacetanilides and their TPs. The method was field-tested with filtered water samples collected from four sites over a four-month period. Detectible values of S-triazines and TPs ranged from 0.3 to 1540 ng L(-1) with a mean of 79.3 and a median of 19.4 ng L(-1). Detectible values for chloroacetanilides and TPs ranged from 0.31 to 3780 ng L(-1) with a mean of 252 and a median of 25.6 ng L(-1). An additional goal was to determine if the method was useful for microbial degradation studies using native bacterial communities. The bacteria transformed atrazine (2-chloro-4-ethylamino-6-isopropylamino-S-triazine) solely into 2-hydroxy atrazine (2-hydroxy-4-ethylamino-6-isopropylamino-S-triazine) with concentrations of 78.4, 63.3 and 32.5 ng L(-1) after 12 days of incubation compared with 6.3 and 7.1 ng L(-1) for control dark and control sunlight respectively.  相似文献   

20.
Fluazinam is a widely used pesticide employed against the fungal disease late blight in potato cultivation. A specific, repeatable, and rapid high-performance liquid chromatography (HPLC) method utilizing a diode array detector (DAD) was developed to determine the presence of fluazinam in soil. The method consists of acetonitrile (ACN) extraction, clean-up with solid-phase extraction (SPE), and separation using a mobile phase consisting of 70% ACN and 30% water (v/v), including 0.02% acetic acid. HPLC was performed with a C18 column and the detection wavelength was 240 nm. The method was successfully applied to an incubation experiment and to soil samples taken from potato fields where fluazinam had been applied two to three times during the on-going growing season. In the 90-day incubation experiment, analytical standard fluazinam and the commercial fungicide Shirlan® were added to soil samples that had never been treated with fluazinam, and were then extracted with ACN and 0.01 M calcium chloride (CaCl2). Fluazinam was not extractable with CaCl2, indicating that it does not leach to watercourses in the dissolved form. Recovery with ACN extraction for sandy soils was 72–95% immediately after application and 53–73% after 90 days of incubation. Out of the eight potato field soil samples, fluazinam was found in two samples at concentrations of 2.1 mg kg?1 and 1.9 mg kg?1, well above the limit of quantification (0.1 mg kg?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号