首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张毅 《环境化学》2020,39(6):1699-1708
采集了2017—2018年秋冬季长治市审计局站、监测站、清华站等3个监测站点的大气PM_(2.5)样品,分析了其元素、水溶性离子及碳质组分特征,并利用化学质量平衡模型(CMB)对PM_(2.5)进行来源解析.结果表明,采样期间长治市PM_(2.5)浓度为67.9μg·m~(-3),其中审计局站PM_(2.5)浓度最高(70.6μg·m~(-3)),其次为监测站(70.0μg·m~(-3))和清华站(63.0μg·m~(-3));二次无机离子(SO_4~(2-)、NO~-_3、NH~+_4)平均浓度(20.7μg·m~(-3))占PM_(2.5)浓度的30.5%,与大量排放到大气中的SO_2、NO_2二次生成有关;OC(12.6μg·m~(-3))和EC(6.6μg·m~(-3))分别占PM_(2.5)的18.6%和9.7%;OC/EC为2.06,且SOC(5.9μg·m~(-3))在OC中占比高达63.1%,表明长治市秋冬季二次污染较重;典型地壳元素Si和Ca占元素组分平均浓度的29.8%和22.8%,说明扬尘污染对长治市PM_(2.5)的有一定影响;源解析结果表明,长治市秋冬季PM_(2.5)主要来源为:机动车源17.0%、燃煤源16.5%、扬尘源14.6%、二次硝酸盐13.9%、二次硫酸盐11.0%、二次有机气溶胶10.8%、工艺过程源9.3%、生物质燃烧源1.9%、其他源5.0%.因此,为进一步降低长治市环境空气中PM_(2.5)的污染,需在加强管控机动车,燃煤和扬尘等一次排放源的基础上,降低一次污染物SO_2、NO_2等的排放,从而实现对二次污染源前体物的控制.  相似文献   

2.
为了揭示桂林市大气中PM_(2.5)组分特征,本研究于2015年秋季在桂林5个环境受体点采集了PM_(2.5)样品,分析了PM_(2.5)质量浓度及多种无机元素、水溶性离子和有机碳(OC)、元素碳(EC)的含量,并运用富集因子法、比值法等分别研究了PM_(2.5)中元素富集程度、颗粒物来源等情况,并探讨了PM_(2.5)中高硫酸盐(SO_4~(2-))的污染成因.结果表明,采样期间,桂林市PM_(2.5)的浓度为(57.0±35.8)μg·m-3,PM_(2.5)中以水溶性离子(56.7%)和有机物OM(22.6%)污染最为突出,其次是元素(7.2%)和EC(6.3%).PM_(2.5)中Se、Pb、As、Zn、V、Cu严重富集,表明燃煤源排放对桂林市大气中元素产生了较大的影响;[NO_3~-]/[SO_4~(2-)]比值小于1,也进一步证明了固定燃烧源的主导作用.SO_4~(2-)/PM_(2.5)的比值为41%,高于国内其他城市报道值;而SOR均值0.51远高于一次排放源特征值(0.1),表明除本地和区域传输的一次SO_4~(2-)排放外,SO_4~(2-)主要来自SO_2的二次转化.因此,桂林市在控制本地燃煤源排放的同时,还应当注意区域污染传输对PM_(2.5)的影响.  相似文献   

3.
为探究天津市采暖季PM_(2.5)中碳组分的污染特征及来源,于2017年11月28日—2017年12月30日,分昼夜采集天津市大气中的PM_(2.5)样品,并利用热光碳分析仪测定了PM_(2.5)样品中有机碳(OC)和元素碳(EC)的质量浓度。对天津市PM_(2.5)中OC和EC的浓度变化特征进行分析,采用OC/EC最小比值法估算二次有机碳(SOC)的含量,然后利用主成分分析法(PCA)对碳组分进行来源解析,并基于后向轨迹聚类分析方法探讨区域污染传输对天津市碳组分的影响。结果表明,(1)采样期间,PM_(2.5)中OC和EC的平均质量浓度分别为15.63、4.19μg·m~(-3),分别占PM_(2.5)质量浓度的23.78%和6.38%,天津市碳组分污染仍然比较严重。另外,OC和EC的质量浓度及其占PM_(2.5)质量浓度的百分比均呈现出昼低夜高的特点。(2)OC和EC之间的相关性在白天与夜间均较强(R2分别为0.89和0.75),表明OC与EC的来源均较为一致。夜间相关系数R2较低,碳组分来源更为复杂。(3)白天SOC的估算值为5.37μg·m~(-3),占OC的38.71%;夜间SOC的估算值为8.54μg·m~(-3),占OC的48.69%,天津市存在严重的SOC污染。(4)2017年采暖季,天津市PM_(2.5)碳组分污染主要来源于汽油车尾气、道路扬尘、燃煤与生物质燃烧。与白天相比,夜间道路扬尘的贡献作用更加显著。(5)采样期间,天津市气团轨迹主要来自西北与偏北方向。不同方向的气团轨迹对PM_(2.5)中碳组分的影响存在显著差异。研究结果可为天津市制定具有针对性的大气污染控制措施以及区域间的联防联控提供科学依据。  相似文献   

4.
天津城区PM_(2.5)中碳组分污染特征分析   总被引:1,自引:0,他引:1  
为探讨天津城区碳组分的季节污染特征,于2009年4月—2010年1月采集大气PM2.5样品,测定其碳组分浓度,分析有机碳(OC)和元素碳(EC)的相互关系,并探讨气象条件对碳组分浓度的影响.结果表明,天津城区PM2.5质量浓度为141.47μg·m-3,OC和EC质量浓度年均值分别为18.81μg·m-3和6.86μg·m-3,分别占PM2.5质量浓度的13.3%和4.8%,碳组分系PM2.5的重要组成部分;季节分布特征显示,秋、冬季OC和EC污染较为严重,总碳气溶胶(TCA)分别为45.74μg·m-3和46.75μg·m-3,占PM2.5质量浓度的30.1%和40.1%;采用改进的OC/EC最小比值法计算得到的二次有机碳(SOC)浓度显示,秋季和冬季SOC较高,为7.45μg·m-3和7.28μg·m-3.后向轨迹的聚类分析表明,局地气流或偏南气流控制下的PM2.5中碳组分浓度较高.  相似文献   

5.
于2015年1月至11月在广州利用大流量大气颗粒物采样器采集细颗粒物(PM_(2.5))样品,并利用热光反射法(TOR)测定大气颗粒物中有机碳(OC)和元素碳(EC)浓度。结果表明,广州ρ(PM_(2.5))年均值为(69.5±35.6)μg·m~(-3),是GB 3095—2012《环境空气质量标准》中PM_(2.5)年均质量浓度二级标准限值(35μg·m~(-3))的2.0倍,表明广州大气细颗粒物污染严重。OC、EC和总碳气溶胶(TCA)的年均质量浓度分别为(8.31±4.53)、(3.56±2.72)和(16.85±9.60)μg·m~(-3),分别占PM_(2.5)质量浓度的13.2%、5.9%和27.0%,表明含碳组分是PM_(2.5)的重要组成部分。OC和EC浓度季节变化规律存在差异性,OC浓度在冬季最高,而EC浓度在秋季最高。OC和EC的相关性弱和比值高的特征结果表明冬季二次有机碳(SOC)污染最严重,其平均质量浓度为6.9μg·m~(-3),占OC质量浓度的62.4%。主成分分析结果表明,冬季和春季广州PM_(2.5)中碳组分来源较复杂,主要包括机动车尾气、燃煤和生物质燃烧,夏季碳组分的主导污染来源是燃煤和机动车尾气,而秋季碳组分主要来源于机动车尾气。  相似文献   

6.
西安市大气颗粒物中水溶性无机离子的季节变化特征   总被引:18,自引:0,他引:18  
用离子色谱法对11种无机水溶性离子(Na+,NH4+,K+,Mg2+,Ca2+,F-,Cl-,Br-,NO-2,NO-3和SO2-4)进行分析,探讨大气颗粒物中水溶性无机组分的季节变化与典型污染(灰霾、浮尘、燃烧秸秆和燃放烟花)的理化特性.结果表明,西安市大气中PM2.5和TSP的日均质量浓度分别为167.1和382.0μg·m-3,PM2.5占TSP总质量浓度的44%.PM2.5和TSP中无机水溶性离子组分的年均值分别为75.2μg·m-3和101.7μg·m-3.PM2.5中水溶性离子组分占PM2.5总质量浓度的45%左右,TSP中水溶性离子组分占TSP总质量浓度的30%左右.各种水溶性离子的来源和形成机理不同,其季节变化趋势和粒径分布也不同.典型污染事件期间,颗粒物污染特征与平时相比有很大差异:雾霾时PM2.5和TSP的质量浓度都显著增加,主要污染组分为二次污染离子NH+4,NO-3和SO2-4;浮尘发生时,大气颗粒物中人为污染组分会大大减少,而来自沙尘传输和地面扬尘等的地壳物质显著增加;燃烧秸秆对大气颗粒物中K+和Cl-的影响最大;燃放烟花时K+,Mg2+和Ca2+的质量浓度显著增加.  相似文献   

7.
对乌鲁木齐市中心区域树木年轮实验室(TRL)和黑山头(HST)2013年1月─2014年2月期间采集的大气细颗粒物(PM_(2.5))样品,利用热光碳分析仪分析了其中的有机碳(OC)和元素碳(EC)浓度水平、污染特征及其可能来源,以期为深入了解乌鲁木齐市颗粒物污染现状,确定乌鲁木齐市大气污染治理重点,制定大气污染防治策略提供依据。结果表明:年轮室OC和EC的质量浓度分别为(15.73±8.50)和(5.48±2.70)μg·m-3,分别占PM_(2.5)质量浓度的9.15%和3.19%,黑山头OC和EC的质量浓度分别为(11.31±7.29)和(4.14±3.26)μg·m-3,分别占PM_(2.5)质量浓度的9.26%和3.06%。年轮室OC的月变化呈现单峰型,4月份浓度最小,1月份浓度最大,黑山头OC的月平均浓度1月份最大,6月份最小,两个站点EC月平均浓度分布均无明显的特征,两个站点最大浓度均出现在2013年1月。OC质量浓度的季节变化是冬季(19.80±8.53)μg·m-3秋季(12.83±8.25)μg·m-3夏季(9.82±2.83)μg·m-3春季(9.31±3.91)μg·m-3,EC质量浓度的季节变化是秋季(5.72±3.35)μg·m-3冬季(5.25±2.61)μg·m-3夏季(5.21±2.37)μg·m-3春季(4.89±2.31)μg·m-3。在不同的季节,OC浓度变化比较明显,EC排放相对稳定。乌鲁木齐春夏季OC和EC的相关性较高,并且相关系数较为接近,说明春夏两季OC和EC来源相对简单,来源一致,主要来源于交通源机动车尾气的排放;秋冬季相关性较低,说明OC和EC来源复杂,秋冬季进入采暖期,采暖期燃煤燃气增加,排放量增大,排放源结构复杂。  相似文献   

8.
为研究太原市环境空气中含碳组分的时空分布变化规律,于2014年3月、5月、8月、12月采集了太原市3个点位春、夏、秋、冬等4个季节的PM_(2.5)样品,利用碳分析仪(DRI 2001A)测定了样品中OC1、OC2、OC3、OC4、EC1、EC2、EC3、OPC共8种碳组分含量,计算了有机碳(OC)、元素碳(EC)二者浓度,分析了OC和EC的时空分布特征.结果显示,太原市PM_(2.5)中OC和EC的平均质量浓度分别是13.5±14μg·m~(-3)和6.5±6.1μg·m~(-3),其中OC浓度随季节变化顺序为冬季春季夏季秋季,EC浓度季节变化与OC一致.春、夏、秋、冬4个季节总含碳气溶胶(TCA)占PM_(2.5)比例分别为17.6%、9.5%、8.8%、42.3%,其中冬季最高,表明冬季含碳气溶胶污染较为严重.夏季中OC和EC相关性较弱(R~2=0.4054),而春季(R~2=0.7659)、秋季(R~2=0.8253)、冬季(R~2=0.8184)OC和EC相关性较强,表明夏季碳气溶胶来源不同.通过(OC/EC)min最小比值法估算二次有机碳(SOC)浓度,春、夏、秋、冬季SOC浓度分别为2.8±2.9μg·m~(-3)、1.0±0.8μg·m~(-3)、 0.5±0.4μg·m~(-3)、 3.6±3.5μg·m~(-3),冬季SOC浓度最高. 8种碳组分分析结果显示,不同季节一次排放源中生物质燃烧、机动车尾气排放及煤炭燃烧对太原市含碳气溶胶贡献不同,其中,冬季燃煤和机动车排放使太原市含碳气溶胶污染严重,应加强燃煤和机动车排放源管控,来减轻碳组分污染.  相似文献   

9.
水溶性无机离子是PM_(2.5)的主要组分之一,对研究PM_(2.5)的物理化学性质,来源及其形成机理具有重要意义.本研究于2017年9月—2017年11月期间在贵阳城区采集了80个PM_(2.5)样品,并测定了8种水溶性离子浓度,探讨贵阳秋季PM_(2.5)水溶性离子组成特征及来源.结果表明贵阳秋季PM_(2.5)中无机离子的平均质量浓度为15.99μg·m~(-3),阴离子和阳离子的平均质量浓度分别为10. 90μg·m~(-3)、5. 09μg·m~(-3); SO_4~(2-)(8. 53±4.63μg·m~(-3))平均质量浓度最高,其次是NH_4~+(2.56±1.62μg·m~(-3))、NO_3~-(2.21±2.96μg·m~(-3))、Ca~(2+)(1.98±0.88μg·m~(-3)),最后依次是K~+(0.37±0.24μg·m~(-3))、Cl-(0.16±0.11μg·m~(-3))、Mg~(2+)(0.11±0.03μg·m~(-3))、Na~+(0.07±0.06μg·m~(-3)); NH_4~+、SO_4~(2-)、NO_3~-是主要水溶性离子,所占比例为83%; NO_3~-/SO_4~(2-)值平均为0.21±0.12,远小于1,说明贵阳秋季PM_(2.5)以固定源污染为主.相关性分析表明,PM_(2.5)中NH_4~+主要以(NH_4)_2SO_4、NH_4HSO_4、NH_4NO_3的形式存在,Ca~(2+)与Mg~(2+)来源可能相同.结合富集系数分析NO_3~-、SO_4~(2-)、Ca~(2+)、K~+、Mg~(2+)基本都是来源于陆源贡献,NO_3~-、SO_4~(2-)是人为源,Ca~(2+)、K~+、Mg~(2+)是地壳源,此外Mg~(2+)还有一部分海源贡献.  相似文献   

10.
为探究温州市区大气细颗粒物PM_(2.5)及其19种无机元素的污染特征和主要来源,分别于2015年1月、4月、7月以及10月(代表4个季度)在温州市区选取4个监测点位采集环境空气PM_(2.5)样品共112个,并利用电感耦合等离子体发射光谱仪(ICP-AES)和原子荧光光度计(AFS)分析样品中19种无机元素的含量.结果表明,温州市区环境空气PM_(2.5)平均质量浓度为83.6±50.2μg·m-3.温州市不同季节PM_(2.5)浓度最低的均为市站(SZ),春冬季南浦(NP)采样点PM_(2.5)浓度最高.19种无机元素占PM_(2.5)总量的9.90%.样品中主要元素为Na、K、Ca、Si、Zn、Al、Mg和Fe,占所测元素总量的96.7%.龙湾(LW)采样点PM_(2.5)中Fe、Al和Ca元素在多数季节里浓度较高,可能与采样点附近的机械阀门铸造企业和混凝土企业有关.本研究利用富集因子法和主成分分析法进行PM_(2.5)的初步来源分析,结果表明,温州市区PM_(2.5)污染主要来源于燃煤、交通污染、金属冶炼/加工、建筑扬尘和海盐粒子.  相似文献   

11.
2017年1月—12月期间在四川省宜宾市布置4个点位,共采集360个PM_(2.5)样品膜,采用美国沙漠研究所DRI Model 2001型热光分析仪测定PM_(2.5)样品中OC、EC的浓度值,应用OC/EC比值法对SOC进行了估算.结果表明,宜宾市PM_(2.5)年均浓度为75.2μg·m~(-3).OC、EC年均浓度分别为14.3μg·m~(-3)和4.30μg·m~(-3),季节变化趋势为冬季秋季春季夏季,OC占PM_(2.5)比例为19.0%,为PM_(2.5)重要组成部分.SOC年均浓度为4.70μg·m~(-3),对OC贡献较大,在OC中占比为29.3%;SOC在OC中的占比春季冬季≈秋季夏季.进一步对OC1、OC2、OC3、OC4、EC1、EC2、EC3、和OPC进行主成分分析,结果表明机动车尾气、燃煤排放和生物质燃烧是宜宾市PM_(2.5)中OC和EC的主要贡献源,可贡献PM_(2.5)中碳组分的54.0%—69.0%.  相似文献   

12.
为探究济南市采暖季环境空气中PM_(2.5)中碳组分的污染情况及主要来源,于2017年11月16日-2018年3月31日和2017年11月16日-28日分别进行了居住区和背景区离线颗粒物采样,运用美国沙漠研究所DRIModel2015多波长热/光学碳分析仪对大气PM_(2.5)中碳组分进行了分析。研究结果显示,日均质量浓度ρ(OC)、ρ(EC)和ρ(PM_(2.5))在居住区为9.26、3.16、85.32μg·m~(-3),在背景区为2.88、1.44、59.27μg·m~(-3),说明居住区碳组分污染程度明显高于背景区。居住区日均质量浓度最高的碳组分为OC4、OC3和EC2;OC3和OC4日均质量浓度随污染等级从优向重度污染变化的过程逐渐增大,且OC日均质量浓度的变化情况跟OC3和OC4日均质量浓度变化相一致。但OC/PM_(2.5)和EC/PM_(2.5)均随污染等级的加重而呈下降趋势,可见OC和EC并不是济南采暖季重污染天气的控制因子。PMF来源解析结果显示,济南市采暖季居住区碳组分贡献较大的源为燃煤源、汽油车尾气和道路尘。结合碳组分在线监测仪器(美国SUNSET公司,型号RT-4)同期OC和EC质量浓度数据,采用Cabada改进后的方法,计算出SOC和POC质量浓度分别为1.14μg·m~(-3)和4.69μg·m~(-3)对采样时间段内一次典型重污染过程进行分析,发现CO、EC、POC等一次污染物的大量排放、不利的气象因素、区域传输等因素共同导致了此次污染过程的的形成。  相似文献   

13.
为研究成都市冬季PM_(2.5)中碳组分的污染特征和来源,于2019年12月7—28日在成都市进行PM_(2.5)的采集,并利用热光碳分析仪和元素分析仪-同位素质谱仪分别测定了样品中有机碳(OC)和元素碳(EC)的质量浓度以及碳同位素的组成特征。结果表明,成都市PM_(2.5)、OC和EC的平均质量浓度分别为98.23、14.50、2.19μg·m~(-3);OC和EC的相关性较高(相关系数为0.80),表明OC和EC可能具有一致的来源,也有可能是具有较高的混合程度;OC/EC比值大于2.0,表明成都市冬季有二次有机碳(SOC)的形成,且SOC/OC的比值为34.48%;主成分分析结果显示,生物质燃烧、燃煤和汽油车尾气尘混合源是成都市冬季PM_(2.5)碳组分的主要来源,贡献率为59.68%;其次是柴油车尾气尘,贡献率为22.40%;碳同位素组成结果显示,成都市冬季PM_(2.5)碳组分的来源与汽油车尾气排放相关性最强,其次为C3植物燃烧;通过IsoSource模型软件进行计算,可知不同时期各污染源的贡献比例均呈现出汽油车尾气排放C3植物燃烧柴油车尾气排放燃煤C4植物燃烧地质源(农业土壤、扬尘)的规律,但相较于清洁期来说,污染期的汽油车尾气排放和C3植物燃烧污染源所占比例增大。研究结果可为成都市大气污染治理提供理论指导。  相似文献   

14.
为分析菏泽市大气颗粒物及其水溶性离子组分特征,本研究于2015年8月期间在菏泽市6个监测点位采集环境受体PM_(10)和PM_(2.5)样品共120个,利用离子色谱法测定颗粒物中水溶性无机离子(SO■、NO~-_3、NH~+_4、Cl~-、Ca~(2+)、K~+、Na~+、Mg~(2+)、F~-),并同步收集气象参数及气态污染物质量浓度等资料.结果表明,菏泽市夏季环境受体中颗粒物质量浓度ρ(PM_(10))和ρ(PM_(2.5))分别为94.5μg·m~(-3)、55.2μg·m~(-3),稍低于国内其他城市,这与各城市经济发展、产业能源结构、气象条件等因素有关.PM_(2.5)/PM_(10)值在0.5—0.8之间,表明菏泽市夏季细颗粒物(PM_(2.5))污染较为严重.但PM_(10)和PM_(2.5)中水溶性离子质量总浓度ρ(WSIs)分别为30.5μg·m~(-3)、17.0μg·m~(-3);质量分数w(WSIs)分别为32.4%、29.6%.其中SO■、NO~-_3、NH~+_4为PM_(10)和PM_(2.5)中主要水溶性离子,3种离子浓度和分别占PM_(10)和PM_(2.5)中总离子浓度的84.3%、88.3%.SO■、NO~-_3、NH~+_4、K~+主要集中在细颗粒物(PM_(2.5))中,Ca~(2+)、Mg~(2+)则广泛存在于粗颗粒物(PM_(10))中.各采样点的PM_(10)和PM_(2.5)中,SO■、NO~-_3、NH~+_4、Ca~(2+)和Mg~(2+)浓度分布具有空间差异.离子相关性表明,NH~+_4与SO■、NO~-_3相关性均较强,3种离子主要以NH_4HSO_4、NH_4NO_3形式存在.PM_(10)和PM_(2.5)中NO~-_3/SO■值分别在0.41—0.49和0.36—0.47之间,平均值分别为0.46、0.42,表明固定源是菏泽市夏季颗粒物污染的主要污染贡献源.  相似文献   

15.
2011年冬季天津PM2.5及其二次组分的污染特征分析   总被引:5,自引:0,他引:5  
姚青  韩素芹  蔡子颖 《环境化学》2013,32(2):313-318
2011年11月—12月于天津城区和武清采集PM2.5样品,分析其中的二次水溶性无机离子(NH4+、NO3-和SO24-)、有机碳(OC)和元素碳(EC),估算二次成分浓度,并分析采样期间气象因素对一次持续重污染过程的影响.结果表明,天津地区冬季PM2.5污染严重、城区和武清PM2.5质量浓度平均值分别为166.9μg.m-3和180.0μg.m-3;城区样品中SO24-、NO3-和OC在PM2.5的比例依次为19.4%、16.7%和15.4%,武清样品中则为19.2%、15.5%和20.4%;二次组分占PM2.5质量浓度的47%(城区)和46%(武清),雾霾日二次组分含量明显高于非雾霾日;高湿和静小风等不利气象条件是造成PM2.5质量浓度持续增加以及二次组分浓度迅速升高的重要原因.  相似文献   

16.
以北京西山森林公园为林内观测点,北京海淀植物园为林外对照点,研究城市森林PM_(2.5)质量浓度变化特征,并对其影响因素进行分析。结果表明,林内外PM_(2.5)质量浓度日变化呈"双峰双谷"型,8:00和21:00左右是一天中的两个峰值,15:00和4:00左右是一天中的两个谷值,PM_(2.5)质量浓度林内(104.02μg·m~(-3))林外(82.52μg·m~(-3))。一年中PM_(2.5)质量浓度在冬季最高,春季次之,夏季最低,PM_(2.5)质量浓度年变化林内为冬季(115.46μg·m~(-3))春季(112.39μg·m~(-3))秋季(106.37μg·m~(-3))夏季(81.87μg·m~(-3)),林外为冬季(97.35μg·m~(-3))春季(94.07μg·m-3)秋季(93.17μg·m~(-3))夏季(61.86μg·m~(-3))。气温、降雨均与PM_(2.5)浓度呈负相关。晴天时,温度高、空气对流旺盛,PM_(2.5)浓度较低;降水对PM_(2.5)有很好的消减作用;风有驱散PM_(2.5)的作用。在高温高湿天气下,PM_(2.5)浓度高于其他天气情况。该研究可以丰富森林净化大气的理论,为环保部门相关政策的制定提供依据。  相似文献   

17.
为深入研究北京市采暖季PM_(2.5)中水溶性离子的污染特征及其影响因素,利用大流量采样器结合石英滤膜采集了2016年11月15日—2016年12月31日期间北京市典型污染天的PM_(2.5)样品(19个),采用离子色谱法测定了其中的水溶性无机离子成分,收集了同期北京市的日均气象数据和海淀区日均PM_(2.5)数据。应用热力学平衡模型ISORROPIA-Ⅱ分析了PM_(2.5)样品的酸度值,Traj Stat软件分析气流的72 h后向轨迹,并采用潜在源贡献因子分析法(PSCF)定位了PM_(2.5)潜在污染源的位置,浓度权重轨迹分析(WCWT)法定量解析了潜在污染源对北京PM_(2.5)质量浓度贡献的大小。结果表明:(1)PM_(2.5)的日均质量浓度变化范围为7.6~383μg·m~(-3),均值为114μg·m~(-3),污染天是清洁天的4.4倍;(2)10种水溶性离子的总质量浓度均值为44.61μg·m~(-3),SNA(NO_3~-、SO_4~(2-)、NH_4~+)占总水溶性离子的81.37%,污染天NO_3~-、SO_4~(2-)、NH_4~+质量浓度均值分别为20.35、16.16、8.68μg·m~(-3),分别是清洁天的4.7、3.5、3.6倍;(3)污染天PM_(2.5)酸性比清洁天强,污染天NH_4~+的存在形式主要是(NH_4)_2SO_4、NH_4HSO_4,清洁天NH_4~+的存在形式主要是(NH_4)_2SO_4、NH_4HSO_4、NH_4NO_3;(4)北京PM_(2.5)及其水溶性离子的污染除受本地污染源影响,还受河北省中部和南部以及内蒙古中部等区域传输的影响;(5)在北京采暖季低大气边界层以及三面环山的特殊条件下,风速和相对湿度是影响北京PM_(2.5)及其水溶性离子污染特征的2个主要气象因素,高湿度低风速的静稳天气条件可以造成以本地污染物为主的大气重污染,此外,一定范围内的低风速可以使周边地区高浓度的污染物传输至北京,加重大气污染。  相似文献   

18.
为探究重污染天气期间济南市城区和清洁对照点PM_(2.5)及其组分污染特征,于2016年12月31日-2017年1月7日在市监测站和跑马岭进行连续PM_(2.5)样品采集,并对两个点位的PM_(2.5)及其组分(水溶性离子和碳质组分)污染特征进行分析。结果表明,重污染天气期间市监测站PM_(2.5)质量浓度(260±77)μg·m~(-3)是跑马岭(85±17)μg·m~(-3)的3倍,表明该重污染天气过程对济南市城区影响程度明显大于清洁对照点跑马岭。市监测站水溶性离子浓度高低顺序为SO_4~(2-)NO_3~-NH_4~+Cl~-K~+Na~+Ca~(2+)F~-,跑马岭水溶性离子浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Cl~-K~+Na~+Ca~(2+)F~-。市监测站和跑马岭二次无机离子(SNA)质量浓度分别为(134.7±49.5)μg·m~(-3)和(46.2±19.0)μg·m~(-3),在PM_(2.5)中占比分别是51.8%和54.4%,两个点位PM_(2.5)浓度差别很大,但SNA在PM_(2.5)中占比相差不大。通过NH_4~+计算值与实测值相关性分析可知,市监测站和跑马岭PM_(2.5)中NH_4~+均主要以(NH_4)_2SO_4和NH_4NO_3形式存在。市监测站SOR和NOR分别为0.44和0.32,跑马岭SOR和NOR分别为0.32和0.44,SOR和NOR的值均大于0.1,表明大气中SO_2和NO_2的二次氧化程度较高。采用OC/EC最小比值法估算得到市监测站和跑马岭SOC分别为8.3μg·m~(-3)和1.8μg·m~(-3),分别占OC的38.2%和20.9%,这表明市监测站OC二次反应程度明显高于跑马岭。市监测站有机碳(OC)和元素碳(EC)相关性(R~2=0.57)明显弱于跑马岭(R~2=0.92),表明市监测站OC和EC来源比较复杂,更有利于SOC的生成。  相似文献   

19.
为研究北京城区PM_(2.5)中有机碳(OC)和元素碳(EC)的浓度水平、季节变化特征与主要来源,于2015年4月至2016年3月在北京西三环交通带附近采集4个季节PM_(2.5)有效样品95组,利用热光反射法测定了PM_(2.5)中OC和EC的质量浓度,并对OC/EC值、OC与EC相关性、二次有机碳(SOC)等特征及污染来源进行了分析.结果表明,采样期间PM_(2.5)平均质量浓度为(109.9±7.99)μg·m~(-3). PM_(2.5)中OC的年平均质量浓度为(13.49±4.32)μg·m~(-3),占PM_(2.5)的13.13%; EC的年平均质量浓度为(5.41±1.83)μg·m~(-3),占PM_(2.5)的5.2%.OC和EC平均浓度及OC和EC在PM_(2.5)中所占比例的季节变化特征均为冬季最高,秋季大于春季,夏季最低.4个季节PM_(2.5)中OC/EC比值均大于2.0,表明各季节存在二次有机碳(SOC)的生成,采用OC/EC最小比值法对SOC含量进行了估算,SOC年平均浓度为(6.88±1.10)μg·m~(-3),占OC含量的50.86%,冬秋季节的SOC浓度水平高于春夏季节.夏季SOC对OC的贡献率为62.22%,高于其他季节.相关性分析表明,OC与EC的相关性在春季(R2=0.9046)和秋季(R2=0.8886)高于夏季(R2=0.4472)和冬季(R2=0.6018),表明春秋两季OC与EC来源相似且相对简单.进一步对PM_(2.5)中8个碳组分质量浓度进行分析显示,北京城区大气碳质气溶胶主要来自汽油车排放和燃煤.  相似文献   

20.
通过研究遂宁市环境空气质量变化趋势、城区空气颗粒物组成及浓度变化,系统分析了遂宁市雾霾天气的污染状况及成因,并横向比较了四川省内各城市的空气质量.研究结果表明,细颗粒物(PM2.5)是遂宁市环境空气中的主要污染物.2012年遂宁市大气中PM2.5浓度值为35—119μg·m-3,平均值为68μg·m-3.2013年1—4月,PM2.5浓度值为21—120μg·m-3,达标率不到50%.尤其在2013年3月,PM2.5/PM10由62.0%—87.2%降低为45.3%.由此判断遂宁市环境空气质量主要受细颗粒物类型、气象条件以及大气污染物长距离迁移等因素影响,其中细颗粒物的最主要来源为机动车尾气排放,并提出了细颗粒物污染防治的对策措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号