首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this perspective article, we provide recommendations for strengthening the policy framework for protecting the Baltic Sea from agricultural nutrient pollution. The most striking weakness is the lax implementation of prescribed abatement measures, particularly concerning manure management, in most countries. Institutions of the EU should also be leveraged for achieving Baltic Sea Action Plan (BSAP) goals. In contrast to the Helsinki Convention, the European Union has economic, political and legal mandates to further implementation and compliance. Equally important is the need for strengthening of local institutions, particularly Water Boards and independent agricultural advisory services in the eastern Baltic Sea Region countries. There is also an urgent need for implementation of voluntary land-use measures where EU funding available to farmers is more broadly and effectively used by providing it on the basis of estimated abatement performance, which can be realized through modelling. The enormous potential for funding performance-based schemes, manure management infrastructure and advisory services through the EU’s Common Agricultural Policy are currently underutilized.Supplementary Informationhe online version contains supplementary material available at 10.1007/s13280-021-01573-3.  相似文献   

2.
The environmental targets of the recently agreed Baltic Sea Action Plan (BSAP) targets are likely associated with a considerable cost, which motivates a search for low-cost policies. The following review shows there is a substantial literature on cost-efficient nutrient reduction strategies, including suggestions regarding low-cost abatement, but actual policies at international and national scale tend to be considerably more expensive due to lack of instruments that ensure a cost-efficient allocation of abatement across countries and sectors. Economic research on the costs of reducing hazardous substances and oil spill damages in the Baltic Sea is not available, but lessons from the international literature suggest that resources could be used more efficiently if appropriate analysis is undertaken. Common to these pollution problems is the need to ensure that all countries in the region are provided with positive incentives to implement international agreements.  相似文献   

3.
Gren IM  Destouni G 《Ambio》2012,41(2):151-160
Successful implementation of an international nutrient abatement agreement, such as the Baltic Sea Action Plan (BSAP), requires consistent understanding of the baseline nutrient loads, and a perception of acceptable costs and fairness in targeted reductions of these base line loads. This article presents a general framework for identifying the implications of divergence between different nutrient load quantification approaches, with regard to both cost and fairness criteria outcomes, for the international agreement to decrease nutrient loads into the Baltic Sea as presented in the BSAP. The results indicate that even relatively small divergence in the nutrient load quantification translates into relatively large differences in abatement cost for different Baltic Sea countries. A robust result, irrespective of differences in nutrient load assessments, is a conflict between abatement cost effectiveness and fairness, with relatively poor countries facing heavy abatement cost burdens for cost-effective international load abatement.  相似文献   

4.
The Baltic Sea Action Plan (BSAP) requires tools to simulate effects and costs of various nutrient abatement strategies. Hierarchically connected databases and models of the entire catchment have been created to allow decision makers to view scenarios via the decision support system NEST. Increased intensity in agriculture in transient countries would result in increased nutrient loads to the Baltic Sea, particularly from Poland, the Baltic States, and Russia. Nutrient retentions are high, which means that the nutrient reduction goals of 135 000 tons N and 15 000 tons P, as formulated in the BSAP from 2007, correspond to a reduction in nutrient loadings to watersheds by 675 000 tons N and 158 000 tons P. A cost-minimization model was used to allocate nutrient reductions to measures and countries where the costs for reducing loads are low. The minimum annual cost to meet BSAP basin targets is estimated to 4.7 billion €.  相似文献   

5.
Multi-model ensemble simulations using three coupled physical-biogeochemical models were performed to calculate the combined impact of projected future climate change and plausible nutrient load changes on biogeochemical cycles in the Baltic Sea. Climate projections for 1961-2099 were combined with four nutrient load scenarios ranging from a pessimistic business-as-usual to a more optimistic case following the Helsinki Commission's (HELCOM) Baltic Sea Action Plan (BSAP). The model results suggest that in a future climate, water quality, characterized by ecological quality indicators like winter nutrient, summer bottom oxygen, and annual mean phytoplankton concentrations as well as annual mean Secchi depth (water transparency), will be deteriorated compared to present conditions. In case of nutrient load reductions required by the BSAP, water quality is only slightly improved. Based on the analysis of biogeochemical fluxes, we find that in warmer and more anoxic waters, internal feedbacks could be reinforced. Increased phosphorus fluxes out of the sediments, reduced denitrification efficiency and increased nitrogen fixation may partly counteract nutrient load abatement strategies.  相似文献   

6.
For many coastal areas including the Baltic Sea, ambitious nutrient abatement goals have been set to curb eutrophication, but benefits of such measures were normally not studied in light of anticipated climate change. To project the likely responses of nutrient abatement on eelgrass (Zostera marina), we coupled a species distribution model with a biogeochemical model, obtaining future water turbidity, and a wave model for predicting the future hydrodynamics in the coastal area. Using this, eelgrass distribution was modeled for different combinations of nutrient scenarios and future wind fields. We are the first to demonstrate that while under a business as usual scenario overall eelgrass area will not recover, nutrient reductions that fulfill the Helsinki Commission’s Baltic Sea Action Plan (BSAP) are likely to lead to a substantial areal expansion of eelgrass coverage, primarily at the current distribution’s lower depth limits, thereby overcompensating losses in shallow areas caused by a stormier climate.  相似文献   

7.
Arheimer B  Dahné J  Donnelly C 《Ambio》2012,41(6):600-612
To reduce eutrophication of the Baltic Sea, all nine surrounding countries have agreed upon reduction targets in the HELCOM Baltic Sea Action Plan (BSAP). Yet, monitoring sites and model concepts for decision support are few. To provide one more tool for analysis of water and nutrient fluxes in the Baltic Sea basin, the HYPE model has been applied to the region (called Balt-HYPE). It was used here for experimenting with land-based remedial measures and future climate projections to quantify the impacts of these on water and nutrient loads to the sea. The results suggest that there is a possibility to reach the BSAP nutrient reduction targets by 2100, and that climate change may both aggravate and help in some aspects. Uncertainties in the model results are large, mainly due to the spread of the climate model projections, but also due to the hydrological model.  相似文献   

8.
We assess the physical potential to reduce nutrient loads from waste water treatment plants in the Baltic Sea region and determine the costs of abating nutrients based on the estimated potential. We take a sample of waste water treatment plants of different size classes and generalize its properties to the whole population of waste water treatment plants. Based on a detailed investment and operational cost data on actual plants, we develop the total and marginal abatement cost functions for both nutrients. To our knowledge, our study is the first of its kind; there is no other study on this issue which would take advantage of detailed data on waste water treatment plants at this extent. We demonstrate that the reduction potential of nutrients is huge in waste water treatment plants. Increasing the abatement in waste water treatment plants can result in 70 % of the Baltic Sea Action Plan nitrogen reduction target and 80 % of the Baltic Sea Action Plan phosphorus reduction target. Another good finding is that the costs of reducing both nutrients are much lower than previously thought. The large reduction of nitrogen would cost 670 million euros and of phosphorus 150 million euros. We show that especially for phosphorus the abatement costs in agriculture would be much higher than in waste water treatment plants.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-013-0435-1) contains supplementary material, which is available to authorized users.  相似文献   

9.
Riverine nutrient loads are among the major causes of eutrophication of the Baltic Sea. This study applied the Soil & Water Assessment Tool (SWAT) in three catchments flowing to the Baltic Sea, namely Vantaanjoki (Finland), Fyrisån (Sweden), and Słupia (Poland), to simulate the effectiveness of nutrient control measures included in the EU’s Water Framework Directive River Basin Management Plans (RBMPs). Moreover, we identified similar, coastal, middle-sized catchments to which conclusions from this study could be applicable. The first modelling scenario based on extrapolation of the existing trends affected the modelled nutrient loads by less than 5%. In the second scenario, measures included in RBMPs showed variable effectiveness, ranging from negligible for Słupia to 28% total P load reduction in Vantaanjoki. Adding spatially targeted measures to RBMPs (third scenario) would considerably improve their effectiveness in all three catchments for both total N and P, suggesting a need to adopt targeting more widely in the Baltic Sea countries.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01393-x) contains supplementary material, which is available to authorized users.  相似文献   

10.
Nutrient loads from inland sources to the Baltic Sea and adjacent inland waters need to be reduced in order to prevent eutrophication and meet requirements of the European Water Framework Directive (WFD) and the Baltic Sea Action Plan (BSAP). We here investigate the spatial implications of using different possible criteria for reducing water-borne phosphorous (P) loads in the Northern Baltic Sea River Basin District (NBS-RBD) in Sweden. Results show that most catchments that have a high degree of internal eutrophication do not express high export of P from their outlets. Furthermore, due to lake retention, lake catchments with high P-loads per agricultural area (which is potentially of concern for the WFD) did not considerably contribute to the P-loading of the Baltic Sea. Spatially uniform water quality goals may, therefore, not be effective in NBS-RBD, emphasizing more generally the need for regional adaptation of WFD and BSAP-related goals.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-014-0523-x) contains supplementary material, which is available to authorized users.  相似文献   

11.
Following decades of international collaboration to restore the Baltic Sea, we provide an assessment of the domestic implementation of measures agreed to limit diffuse agricultural pollution and the patterns of policy instruments applied. Despite the Helsinki Convention being unusually specific in detailing what measures countries should introduce, we find many shortcomings. These are most pronounced in the larger countries (Poland, Germany and Russia), while smaller countries perform better, notably Sweden and Estonia. The patterns of policy instruments applied differ, influenced by domestic politics. The limited use of complementary policy instruments suggests that other priorities overrule full and effective implementation, with engagement mirroring the advantages that a restored Baltic Sea can bring to countries. Using the European Agricultural Fund for Rural Development to support farmers in managing nutrients, particularly advisory services and investments in modern manure management technologies, represents a significant opportunity for reducing agricultural pollution in most countries.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01549-3.  相似文献   

12.
Havenhand JN 《Ambio》2012,41(6):637-644
Increasing partial pressure of atmospheric CO2 is causing ocean pH to fall—a process known as ‘ocean acidification’. Scenario modeling suggests that ocean acidification in the Baltic Sea may cause a ≤3 times increase in acidity (reduction of 0.2–0.4 pH units) by the year 2100. The responses of most Baltic Sea organisms to ocean acidification are poorly understood. Available data suggest that most species and ecologically important groups in the Baltic Sea food web (phytoplankton, zooplankton, macrozoobenthos, cod and sprat) will be robust to the expected changes in pH. These conclusions come from (mostly) single-species and single-factor studies. Determining the emergent effects of ocean acidification on the ecosystem from such studies is problematic, yet very few studies have used multiple stressors and/or multiple trophic levels. There is an urgent need for more data from Baltic Sea populations, particularly from environmentally diverse regions and from controlled mesocosm experiments. In the absence of such information it is difficult to envision the likely effects of future ocean acidification on Baltic Sea species and ecosystems.  相似文献   

13.
Harvesting beach-cast can help mitigate marine eutrophication by closing land-marine nutrient loops and provide a blue biomass raw material for the bioeconomy. Cost–benefit analysis was applied to harvest activities during 2009–2018 on the island of Gotland in the Baltic Sea, highlighting benefits such as nutrient removal from the marine system and improved recreational opportunities as well as costs of using inputs necessary for harvest. The results indicate that the activities entailed a net gain to society, lending substance to continued funding for harvests on Gotland and assessments of upscaling of harvest activities to other areas in Sweden and elsewhere. The lessons learnt from the considerable harvest experience on Gotland should be utilized for developing concrete guidelines for carrying out sustainable harvest practice, paying due attention to local conditions but also to what can be generalized to a wider national and international context.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01641-8.  相似文献   

14.
Lucyna Polak-Juszczak   《Chemosphere》2009,76(10):1334-1339
This study is based on raw data obtained from 1 225 samples of herring (Clupea harengus), sprat (Sprattus sprattus), and cod (Gadus morhua) collected in the 1994–2003 period from the Polish coastal zone of the Baltic Sea. This paper presents the results of investigations of the contents of Cu, Zn, Cd, Pb, Hg, and As in fish. The aim was to identify temporal trends in trace metal contamination and variations in the concentrations of Hg in the flesh of herring, sprat, and cod of different lengths. A positive correlation between fish length and Hg concentration was noted for cod, sprat, and herring. The temporal trend analyses of heavy metal concentrations in the fish in the 1994–2003 period indicated ten significant downward trends out of eighteen tests; these referred to concentrations of Cd, Hg, and Pb in all the species studied, and to As in sprat. Concentrations of Cu and Zn remained stable in all the species studied, as did As in herring and cod. No upward trends were detected in the concentration of trace metals in the fish studied. Smaller scale temporal variations in concentrations of some elements were also observed and were associated with natural events, such as increased river discharge resulting from floods. The most likely factors which contributed to the observed downward trends in heavy metals concentrations in fish could possibly stem from lesser quantities of Cd, Pb, and Hg being introduced to the Baltic Sea with the waters of rivers from Baltic countries, including Poland, and atmospheric depositions in the 1994–2003 period. Diminishing trends of concentrations of these elements in Baltic Sea waters are also evidence of this. These facts might indicate that advantageous changes are occurring in the concentrations of heavy metals in the southern Baltic environment.  相似文献   

15.
Understanding how climate change, exploitation and eutrophication will affect populations and ecosystems of the Baltic Sea can be facilitated with models which realistically combine these forcings into common frameworks. Here, we evaluate sensitivity of fish recruitment and population dynamics to past and future environmental forcings provided by three ocean-biogeochemical models of the Baltic Sea. Modeled temperature explained nearly as much variability in reproductive success of sprat (Sprattus sprattus; Clupeidae) as measured temperatures during 1973-2005, and both the spawner biomass and the temperature have influenced recruitment for at least 50 years. The three Baltic Sea models estimate relatively similar developments (increases) in biomass and fishery yield during twenty-first century climate change (ca. 28 % range among models). However, this uncertainty is exceeded by the one associated with the fish population model, and by the source of global climate data used by regional models. Knowledge of processes and biases could reduce these uncertainties.  相似文献   

16.
Ecosystem-based management requires understanding of food webs. Consequently, assessment of food web status is mandatory according to the European Union’s Marine Strategy Framework Directive (MSFD) for EU Member States. However, how to best monitor and assess food webs in practise has proven a challenging question. Here, we review and assess the current status of food web indicators and food web models, and discuss whether the models can help addressing current shortcomings of indicator-based food web assessments, using the Baltic Sea as an example region. We show that although the MSFD food web assessment was designed to use food web indicators alone, they are currently poorly fit for the purpose, because they lack interconnectivity of trophic guilds. We then argue that the multiple food web models published for this region have a high potential to provide additional coherence to the definition of good environmental status, the evaluation of uncertainties, and estimates for unsampled indicator values, but we also identify current limitations that stand in the way of more formal implementation of this approach. We close with a discussion of which current models have the best capacity for this purpose in the Baltic Sea, and of the way forward towards the combination of measurable indicators and modelling approaches in food web assessments. Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01692-x.  相似文献   

17.
We evaluated performance of species distribution models for predictive mapping, and how models can be used to integrate human pressures into ecological and economic assessments. A selection of 77 biological variables (species, groups of species, and measures of biodiversity) across the Baltic Sea were modeled. Differences among methods, areas, predictor, and response variables were evaluated. Several methods successfully predicted abundance and occurrence of vegetation, invertebrates, fish, and functional aspects of biodiversity. Depth and substrate were among the most important predictors. Models incorporating water clarity were used to predict increasing cover of the brown alga bladderwrack Fucus vesiculosus and increasing reproduction area of perch Perca fluviatilis, but decreasing reproduction areas for pikeperch Sander lucioperca following successful implementation of the Baltic Sea Action Plan. Despite variability in estimated non-market benefits among countries, such changes were highly valued by citizens in the three Baltic countries investigated. We conclude that predictive models are powerful and useful tools for science-based management of the Baltic Sea.  相似文献   

18.
This article focuses on the governing system of the mitigation of eutrophication in the Baltic Sea. Policies and measures of the Baltic Sea coastal countries, the macro--regional (HELCOM) level, and the level of the European Union are described and governance challenges explicated. We found that the main challenges at different governance levels include: differences between coastal countries in terms of environmental conditions including environmental awareness, overlaps of policies between different levels, the lack of adequate spatial and temporal specification of policies, and the lack of policy integration. To help to meet these challenges, we suggest closer involvement of stakeholders and the public, the improvement of the interplay of institutions, and the introduction of a “primus motor” for the governance of the mitigation of eutrophication in the Baltic Sea.  相似文献   

19.
Fish samples from the Baltic, the North Sea and lake Vättern have been found to be contaminated with chlorinated terpenes. These compounds were also present in seal and guillemot from the Baltic at the same concentration - about 10 mg per kg fat - as in their prey, the herring. Chlordane-related compounds were also found in all samples. The most common substances were trans-nonachlor and oxychlordane, but differences could be observed between species. These organochlorine pesticides are not used in Sweden and the probable explanation for their presence in a Swedish lake is air transportation.  相似文献   

20.
Marine protected areas (MPAs) have become a key component of conservation and fisheries management to alleviate anthropogenic pressures. For MPA networks to efficiently promote persistence and recovery of populations, ecological connectivity, i.e. dispersal and movement of organisms and material across ecosystems, needs to be taken into account. To improve the ecological coherence of MPA networks, there is hence a need to evaluate the connectivity of species spreading through active migration and passive dispersal. We reviewed knowledge on ecological connectivity in the Baltic Sea, Kattegat and Skagerrak in the northeast Atlantic and present available information on species-specific dispersal and migration distances. Studies on genetic connectivity are summarised and discussed in relation to dispersal-based analyses. Threats to ecological connectivity, limiting dispersal of populations and lowering the resilience to environmental change, were examined. Additionally, a review of studies evaluating the ecological coherence of MPA networks in the Baltic Sea, Kattegat and Skagerrak was performed, and suggestions for future evaluations to meet management needs are presented.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01684-x.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号