首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO2 and NH3, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.  相似文献   

2.
Within the context of European Union (EU) energy policy and sustainibility in waste management, recent EU regulations demand energy efficient and environmentally sound disposal methods of Municipal Solid Waste (MSW). Currently, landfill with its many drawbacks is the preferred option in the EU and many other industrialised countries. Within the waste management hierarchy thermal disposal especially incineration is a viable and proven alternative. But, the dominating method, mass-burn grate incineration has drawbacks as well particularly hazardous emissions and harmful process residues. In recent years, pyrolysis and gasification technologies have emerged to address these issues and improve the energy output. To keep the many players in the field comprehensively informed and up-to-date, novel and innovative technology approaches emphasising European developments are reviewed.  相似文献   

3.
采用热重差热分析法和傅里叶变换红外光谱分析联用的方法(TG-FTIR)研究淬火油泥(QOS)的热解过程,解析了热解过程的动力学特性,分析了其中的矿物油(MO)和残渣(SR)在QOS热解过程中的相互作用。实验结果表明:QOS热解过程包含油分热解阶段和矿物质分解阶段;低温段热解温度为150~520 ℃,高温段热解温度为800~980 ℃;SR的热解过程分为油分热解反应和残渣中Fe2O3的还原反应;MO的热解过程只有轻质油分的挥发和重质油分的热解。FTIR表征结果显示:QOS热解过程析出的气体主要为CO2、CO和有机化合物;SR热解过程中CO2的特征峰强度高于其他气体的特征峰强度;MO热解过程中烷烃的特征峰强度高于其他气体的特征峰强度,且MO主要以轻质油分为主。在QOS的热解过程中,初温~480 ℃时,SR所含的Fe2O3对MO的热解起促进作用,300 ℃左右时促进效果最明显。  相似文献   

4.
A system to turn a potentially harmful stream of solid waste into a set of substreams with either commercial value or highly concentrated residual streams is presented. The waste which is considered is metal impregnated (in particular Chromated Copper Arsenate (CCA) treated) wood waste and timber, such as telephone poles, railway sleepers, timber from landscape and cooling towers, wooden silos, hop-poles, cable drums and wooden playground equipment. These waste streams sum up to several 100,000 tons of material per year currently to be dumped in every major country of the European Community (EC). Technologies need to be developed to reduce this CCA treated wood waste, such that all of the metals are contained in a marketable product stream, and the pyrolysis gases and/or pyrolysis liquid are used to their maximum potential with respect to energy recuperation. Pyrolysing the CCA treated wood waste may be a good solution to the growing disposal problem since low temperatures and no oxidising agents are used, which result in lower loss of metals compared to combustion. An experimental labscale pyrolysis system has been developed to study the influence of the pyrolysis temperature and the duration of the pyrolysis process on the release of metals and the mass reduction. The macrodistribution and microdistribution of the metals in the solid pyrolysis residue is studied using Inductively Coupled Plasma Mass Spectrometry (ICP–MS) and Scanning Electron Microscopy coupled with Energy Dispersive X-ray Analysis (SEM–EDXA). Furthermore, a complete mass balance is calculated over the pyrolysis system. Based on these results a semi-industrial pyrolysis system (pilot plant scale) has been developed consisting of three stages: grinding, packed bed pyrolysis and metal separation. Special types of equipment have been developed to carry out the three stages. A new grinding system has been developed, based on a crushing mechanism rather than a cutting mechanism. The crushed wood is introduced by means of a screw feeding system into a reaction column. In this pyrolysis reactor the wood is heated by subjecting it to a flow of hot gases. This causes an adiabatic pyrolysis, which results in volatilisation of the volatile compounds whereas the mineral compounds (containing the metals) remain entrapped in a coal-type residue which is very rich in carbon. The condensable compounds in the pyrolysis gas condense while leaving the reaction zone due to the inverse temperature gradient. The pyrolysis gas leaving the reactor is used as fuel for the hot gas generator. The charcoal which is extracted at the bottom of the reactor, is cooled, compressed, removed and stored, ready to feed the subsequent stage. A specially developed grinder is used to remove the metal particles from the charcoal and the separation between metal and charcoal particles is accomplished in a pneumatic centrifuge as a result of the difference in density. Using this system the ultimate waste is less than 3% of the initial wood mass. Results obtained with a semi-industrial scale prototype confirm the effectiveness of the process.  相似文献   

5.
Thermal treatment is a promising technology for the fast disposal of hazardous municipal solid waste incineration (MSWI) fly ash in China. However, fly ash produced in grate incinerator (GFA) is rich in CaO and chlorides, which promote the formation of toxic hexavalent chromium [Cr(VI)] and ash agglomeration during the thermal process, inhibiting the thermal disposal of GFA. In this study, sintering characteristics of CaO-rich GFA were improved by adding Si/Al-rich MSWI ash residues. According to the results, ash agglomeration was well suppressed during thermal treatment of the mixed ash. Si/Al/Fe-compounds competed with un-oxidized Cr-compounds to react with CaO and suppressed Cr(VI) formation. Meanwhile, chlorides in GFA facilitated heavy metal volatilization from added ashes to the secondary fly ash, favoring the recovery of these metals. Ca-aluminosilicates was found as the main mineral phase in the thermally treated mixed ash, which has attractive potential for applications. The formation of the aluminosilicates made the heavy metals that remained in the treated mixed ash more stable than the thermally treated single ash.  相似文献   

6.
Environmental assessment of residue disposal needs to account for long-term changes in leaching conditions. Leaching of heavy metals from incineration residues are highly affected by the leachate pH; the overall environmental consequences of disposing of these residues are therefore greatly influenced by changes in pH over time. The paper presents an approach for assessing pH changes in leachate from municipal solid waste incineration (MSWI) air-pollution-control (APC) residues. Residue samples were subjected to a stepwise batch extraction method in order to obtain residue samples at a range of pH values (similar to common pH-dependence tests), and then on these samples to determine leaching of alkalinity as well as remaining solid phase alkalinity. On a range of APC residues covering various pretreatment and disposal options, this procedure was used to determine leachable and residual alkalinity as a function of pH. Mass balance calculations for typical disposal scenarios were used to provide data on pH as a function of the liquid-to-solid (L/S) ratio in the leaching system. Regardless of residue type and pretreatment, pH was found to stay above 7 for L/S ratios up to about 2000 L kg(-1) corresponding to about 100,000 years in typical landfill scenarios. It was found that pH changes were mainly governed by alkalinity decreases from leaching processes rather than neutralization reactions. The results suggest that leaching testing for assessment purposes should be carried out in the alkaline range, for example, at pH 9. The paper offers a thorough basis for further modelling of incineration residue leaching and for modelling the environmental consequences of landfilling and utilization of these residues.  相似文献   

7.
The goal of the present work was to carry out a review of the disposal practices for the agro-industry's sugarcane residue and the trends of energy use in Cuba. The lack of an alternative energy carrier to electricity with storage capability for use in off-season has to date been an unsolvable question. The improvement of cogeneration capacity via implementation of CEST or BIG/GTCC and the barriers for their implementation, the introduction of a medium size (3 ton/h) fast pyrolysis module (FPM3) as a solution for off-season energy demand in the agro-industry, and an assessment of the energy required to do so, were also analyzed. Bio-oil production from bagasse and sugarcane agriculture residues (SCAR) and their particularities at the sugar mill are treated. The influence of sugar facility production process configuration is analyzed. The fast pyrolysis products and the trends of their end uses in Cuba are presented. The production cost of a ton of Bio-oil for FPM3 conditions was calculated at 155 USD/ton and the payback time as a function of selling price between 160 and 110 USD/ton was estimated to be from 1.5 to 4 years. The economic feasibility of the FPM3 was estimated, comparing the added values for three scenarios: 1st case, currently-used sugar production, 16.5 USD/ton of cane; 2nd case, factoring in the cogeneration improvement, 27 USD/ton of cane; and 3rd case, with cogeneration improvement and Bio-oil production, 40 USD/ton of cane. The energy use of SCAR and the introduction of FPM3 in the sugar mill are promising improvements that could result in a potential surplus of 80 kWh(e)/ton of cane in-season, or 6 x 10(6)ton of Bio-oil (LHV=15 MJ/kg) for use off-season in a milling season of 4 million tons of raw sugar.  相似文献   

8.
 The public perception of risks related to waste disposal facilities appears to reflect general societal anxieties and fears, which may not have a reasonable basis. A three-tier risk assessment study was therefore conducted to evaluate the landfill disposal of asbestos-containing waste (ACW) and geothermal residues. From the tier-1 analysis, the dominant asbestiform phase was identified as chrysotile, that is tightly bound in the matrix of calcite, while arsenic, cadmium, chromium, and lead were identified as the chemicals of potential concern associated with geothermal residues. From the tier-2 analysis, none of the possible exposure pathways associated with the landfill disposal of ACW was found to be potentially significant. On the other hand, there were potentially significant pathways associated with landfill disposal of geothermal residues because of the considerable potential pollution impact of leachate on soil and groundwater quality. From the tier-3 analysis, the health risk associated with landfill disposal of geothermal residues was found to be time-dependent, since the contributions to risk from water-dependent and water-independent pathways occur at different times, as indicated by RESRAD–Chem simulations. Component pathway analyses were performed to identify critical exposure pathways. The results from model sensitivity analysis have identified the input parameters that have the most influence on the time of peak risk, and the cancer risk associated with water-dependent and water-independent pathways. Received: July 9, 2002 / Accepted: October 17, 2002  相似文献   

9.
Leachate from a landfill is collected and flowed in leachate accumulation pond, and sent to treatment facility. However, leachate in the pond can be a source of complaints from residents due to off coloration or odor, particularly near heavily populated urban areas. In this study, for the purpose of appropriate control of leachate pond, pond water and sediment were sampled in an offshore municipal solid waste disposal site 2 years after the disposal site was closed, and analyzed some parameters to estimate their properties. The pond water had high alkalinity due to the disposal of incineration residues, and EC and CODMn were also high. On the other hand, Cr, Mn, Fe, Cu, Zn, Cd, and Pb did not exceed the Japanese effluent water standards. Total sulfide was detected from all sediment samples during the sampling period, and values in the summer were slightly higher than at other times. To investigate the stabilization of targeted disposal site, the relationships among cumulative liquid/solid ratio (L/S) with pH and Cl? elution after closing the site were examined. Both parameters showed a direct relationship with cumulative L/S ratio, which can be anticipated to continue increasing in the future.  相似文献   

10.
Conventional and fast pyrolysis of automobile shredder residues (ASR)   总被引:1,自引:0,他引:1  
This work aims at comparing performance and product yields in conventional pyrolysis and fast pyrolysis of automotive shredded residues. In both processes, carbon conversion to gaseous and liquid products was more than 80%. Gas production was maximised in conventional pyrolysis (about 35% by weight of the initial ASR weight), while fast pyrolysis led to an oil yield higher than 55%. Higher heating values (HHV) of both conventional pyrolysis gas and fast pyrolysis oil increased from 8.8 to 25.07 MJ/Nm3 and from 28.8 and 36.27 MJ/kg with increasing pyrolysis temperature.  相似文献   

11.
热解技术处理废弃电路板的研究进展   总被引:2,自引:2,他引:0  
介绍了回收废弃电路板的热分离方法,综述了热解技术在废弃电路板处理中的研究现状及其所具有的优势。阐述了废弃电路板热解产物的资源价值及热解油的分离与提纯的研究现状,讨论了热解技术处理废弃电路板过程中消除剧毒有机溴化合物及HBr回收的研究进展,同时简介了真空热解技术的研究概况,并指出真空热解技术是今后处理废弃电路板的研究方向之一,有广阔的应用前景。  相似文献   

12.
Current disposal options for APC residues in the UK and alternative treatment technologies developed world-wide have been reviewed. APC residues are currently landfilled in the UK where they undergo in situ solidification, although the future acceptability of this option is uncertain because the EU waste acceptance criteria (WAC) introduce strict limits on leaching that are difficult to achieve. Other APC residue treatment processes have been developed which are reported to reduce leaching to below relevant regulatory limits. The Ferrox process, the VKI process, the WES-PHix process, stabilisation/solidification using cementitious binders and a range of thermal treatment processes are reviewed. Thermal treatment technologies convert APC residues combined with other wastes into inert glass or glass-ceramics that encapsulate heavy metals. The waste management industry will inevitably use the cheapest available option for treating APC residues and strict interpretation and enforcement of waste legislation is required if new, potentially more sustainable technologies are to become commercially viable.  相似文献   

13.
Wastewater sewage sludge was co-pyrolyzed with a well characterized clay sample, in order to evaluate possible advantages in the thermal disposal process of solid waste. Characterization of the co-pyrolysis process was carried out both by thermogravimetric-mass spectrometric (TG-MS) analysis, and by reactor tests, using a lab-scale batch reactor equipped with a gas chromatograph for analysis of the evolved gas phase (Py-GC).Due to the presence of clay, two main effects were observed in the instrumental characterization of the process. Firstly, the clay surface catalyzed the pyrolysis reaction of the sludge, and secondly, the release of water from the clay, at temperatures of approx. 450-500 °C, enhanced gasification of part of carbon residue of the organic component of sludge following pyrolysis.Moreover, the solid residue remaining after pyrolysis process, composed of the inorganic component of sludge blended with clay, is characterized by good features for possible disposal by vitrification, yielding a vitreous matrix that immobilizes the hazardous heavy metals present in the sludge.  相似文献   

14.
 It is important to investigate the pyrolysis processes of municipal solid waste (MSW) in the same way as for any mixture comprised of multiple substances. In this article, a two-reaction model for a variety of MSW mixtures is proposed to predict mass changes due to pyrolysis. In order to formulate the model based on pyrolysis kinetics, we conducted experiments to determine the kinetic model parameters. By thermal analysis of the typical components of MSW, mass changes attributable to the pyrolysis reaction were found at about 350°C for paper, 400°–500°C for plastics, and 200°–400°C for garbage (dry condition). Activation energies were obtained by the Ozawa method based on the mass changes in pyrolysis. Thus, the pyrolysis behavior is formulated as a function of temperature. Then the pyrolysis mass change of the mixture can be predicted by using a weighted sum of the individual components. The model proved useful in experiments with real waste (refuse-derived fuels). Furthermore, the weight yields (pyrolysis gas, tars, solid residues) of the mixture can be calculated by their additive property after measuring the mass balance of each component. Received: May 11, 2001 / Accepted: November 16, 2001  相似文献   

15.
An attempted has been made to recover high-calorific fuel gas and useful carbonaceous residue by the electric arc pyrolysis of waste lubricating oil. The characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil were investigated in this study. The produced gas was mainly composed of hydrogen (35–40%), acetylene (13–20%), ethylene (3–4%) and other hydrocarbons, whereas the concentration of CO was very low. Calorific values of gas ranged from 11,000 to 13,000 kcal kg?1 and the concentrations of toxic gases, such as NOx, HCl and HF, were below the regulatory emissions limit. Gas chromatography–mass spectrometry (GC/MS) analysis of liquid-phase residues showed that high molecular-weight hydrocarbons in waste lubricating oil were pyrolyzed into low molecular-weight hydrocarbons and hydrogen. Dehydrogenation was found to be the main pyrolysis mechanism due to the high reaction temperature induced by electric arc. The average particle size of soot as carbonaceous residue was about 10 μm. The carbon content and heavy metals in soot were above 60% and below 0.01 ppm, respectively. The utilization of soot as industrial material resources such as carbon black seems to be feasible after refining and grinding.  相似文献   

16.
17.

Pharmaceuticals can enter the environment through disposal in toilets, sinks and general waste. In the UK, household medicines are correctly disposed of by returning them to a pharmacy. This study examined household patterns of medicine waste, storage and disposal practices via a cross-sectional survey with 663 UK adults. Multiple regression was used to explore the contribution of key variables on self-reported medicines disposal behaviour. Analysis demonstrated that age, information, awareness, probability, attitude and intention all predicted correct disposal behaviour. Results indicate that multiple factors influence different disposal destinations uniquely. Affect and age increase disposal in sink/toilet but reduce disposal in bin. Presence of children increase bin and sink/toilet disposal but decrease pharmacy returns. Awareness and received information on correct disposal reduce bin disposal and increase pharmacy returns. The results suggest people use different mental models for each destination with disposal in sink/toilets and bins considered quicker and safer in the presence of children or for those feeling anxious. It is important to understand the capability, opportunity and motivation people have to return medicines to the pharmacy in addition to raising awareness of correct medicine disposal.

  相似文献   

18.
A life cycle assessment (LCA) focused on biochar and bioenergy generation was performed for three thermal treatment configurations (slow pyrolysis, fast pyrolysis and gasification). Ten UK biodegradable wastes or residues were considered as feedstocks in this study. Carbon (equivalent) abatement (CA) and electricity production indicators were calculated. Slow pyrolysis systems offer the best performance in terms of CA, with net results varying from 0.07 to 1.25tonnes of CO(2)eq.t(-1) of feedstock treated. On the other hand, gasification achieves the best electricity generation outputs, with results varying around 0.9MWhet(-1) of feedstock. Moreover, selection of a common waste treatment practice as the reference scenario in an LCA has to be undertaken carefully as this will have a key influence upon the CA performance of pyrolysis or gasification biochar systems (P/GBS). Results suggest that P/GBS could produce important environmental benefits in terms of CA, but several potential pollution issues arising from contaminants in the biochar have to be addressed before biochar and bioenergy production from biodegradable waste can become common practice.  相似文献   

19.
The safe and economical disposal of poultry litter is becoming a major problem for the USA poultry industry. Current disposal methods such as land application and feeding to cattle are now under pressure because of pollution of water resources due to leaching, runoffs and concern for mad cow disease contamination of the food chain. Incineration or combustion is potentially applicable to large scale operations, but for small scale growers and EPA non-attainment areas, this is not a suitable option because of the high cost of operation. Thus, there is a need for developing appropriate technologies to dispose poultry litter.Poultry litters from broiler chicken and turkey houses, as well as bedding material were converted into biocrude oil in a fast pyrolysis fluidized bed reactor. The biocrude oil yields were relatively low ranging from 36 wt% to 50 wt% depending on the age and bedding material content of the litter. The bedding material (which was mostly hardwood shavings) biocrude oil yield was 63 wt%. The higher heating value (HHV) of the poultry litter biocrude oils ranged from 26 MJ/kg to 29 MJ/kg while that of the bedding material was 24 MJ/kg. The oils had relatively high nitrogen content ranging from 4 wt% to 8 wt%, very low sulfur (<1 wt%) content and high viscosity. The viscosities of the oils appeared to be a function of both the source of litter and the pyrolysis temperature. The biochar yield ranged from 27 wt% to 40 wt% depending on the source, age and composition of the poultry litter. The biochar ash content ranged from 24 wt% to 54 wt% and was very rich in inorganic components such as potassium and phosphorous.  相似文献   

20.
Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does not provide enough energy to sustain the pyrolysis process. Supplementing this process may be achieved with spent agricultural plastic films; these feedstocks have large amounts of available energy. Plastic films are often used in soil fumigation. They are usually disposed in landfills, which is wasteful, expensive, and environmentally unsustainable. The objective of this work was to investigate both the energetics of co-pyrolyzing swine solids with spent plastic mulch films (SPM) and the characteristics of its gas, liquid, and solid byproducts. The heating value of the product gas from co-pyrolysis was found to be much higher than that of natural gas; furthermore, the gas had no detectable toxic fumigants. Energetically, sustaining pyrolysis of the swine solids through the energy of the product gas could be achieved by co-pyrolyzing dewatered swine solids (25% m/m) with just 10% SPM. If more than 10% SPM is used, the co-pyrolysis would generate surplus energy which could be used for power generation. Biochars produced from co-pyrolyzing SPM and swine solid were similar to swine solid alone based on the surface area and the 1H NMR spectra. The results of this study demonstrated the potential of using pyrolysis technology to manage two prominent agricultural waste streams (SPM and swine solids) while producing value-added biochar and a power source that could be used for local farm operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号