首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Portions of the mitochondrial genome (ca. 4 kb), encoding three protein-coding (COI, ND4L, ND6) and two ribosomal RNA (srRNA, lrRNA) genes, were sequenced for all six currently recognized species, plus one form, of the pelagic calanoid copepod genus Neocalanus. In Neocalanus gracilis, the ND6 gene was not found in the sequenced portion of the mitochondrial genome. Unambiguously aligned sequences were subjected to Bayesian, maximum-likelihood, maximum-parsimony, and neighbor-joining analyses using Eucalanus bungii as an outgroup. The resultant tree topologies from these four methods were congruent, robust, and all nodes were supported by high bootstrap values and posterior probabilities of 92–100%. Two tropical and subtropical species (N. gracilis and N. robustior) occupied the most basal position, and a subantarctic (N. tonsus) and three subarctic Pacific species (N. cristatus, N. plumchrus, and N. flemingeri) diverged subsequently. Transequatorial dispersal of the ancestral population during glaciations is suggested for this pattern of speciation, in which sister clades exhibited antitropical distributions. Although the area of ocean is much broader in the subantarctic than the subarctic Pacific, a higher number of species occur in the subarctic Pacific (three) than the subantarctic (one). The possibility that marginal seas, such as Japan Sea and Okhotsk Sea, function as natal areas for the divergence of species is discussed.  相似文献   

2.
T. Kobari  T. Ikeda 《Marine Biology》1999,134(4):683-696
Vertical distribution and population structure of Neocalanus cristatus were investigated at Site H in the Oyashio region from September 1996 through October 1997 to evaluate their life cycle mode. Additional temporary samplings were also made at several stations covering the entire subarctic Pacific, Okhotsk Sea and Japan Sea, as a basis for regional comparison of life cycles of this species. At Site H, N. cristatus spawned throughout the year below 500 m depth, with a peak from October to December. The resulting eggs and nauplii floated/migrated upward, and formed an abundance peak of Copepodite Stage 1 (C1) in the surface layer in February. In the surface layer, the C1 developed and reached C5 by early June through a phytoplankton bloom which occurred in mid-March to end of June. The C5 migrated to deeper layers in July and August, where they molted to adults. Apparently, the developmental time from C5 to adults was highly variable (>1 month), and some might overwinter. The life cycle of N. cristatus appeared to be annual for the major portion of the population. Taking into account sampling season, temporal changes in vertical distribution and population structure data collected from regions other than Site H, there was a close correlation in the timing of the life cycle over the entire subarctic Pacific, but the reproduction season (April to June) was observed to be different in the Okhotsk and Japan Sea populations. Regional comparison of prosome length of C5 individuals, including those in the Bering Sea, indicated significantly larger sizes of specimens from the Japan Sea and Okhotsk Sea, as compared with those from the entire subarctic Pacific. Possible causes for regional variability in life cycle patterns and body sizes are discussed. Received: 18 December 1998 / Accepted: 19 April 1999  相似文献   

3.
 Continuous abundance estimates (510 m resolution) of the copepods Neocalanus cristatus, N. flemingeri and Metridia pacifica were obtained with an electronic particle counter along cruise tracks in the subarctic western North Pacific in spring. For all three species, the number of patches decreased exponentially with increasing patch size. Most patches (63 to 83%) were dominated by one species, and patches of the same species more closely spaced than patches of different species. The patches of M. pacifica tended to coexist with those of N. cristatus. In contrast, patches of N. flemingeri rarely co-occurred with those of other copepods. These patterns were more clearly observed in fine-scale observations with sampling intervals of <31 m. Coherence analysis of copepod species pairs showed no characteristic scale at 2 to 50 km wave lengths. At shorter wave lengths (<2 km), frequent positive correlations were observed between N. cristatus and M. pacifica. Thus, the distribution of copepods appears to be a mosaic assemblage of patches of each copepod species. These results suggest that copepods have a mechanism to form species-specific aggregations, and the aggregation and segregation processes are maintained at a scale of <2 km. Received: 24 February 1999 / Accepted: 25 April 2000  相似文献   

4.
A typical subarctic copepod,Neocalanus cristatus, occurred in the mesopelagic layer (500 to 1000 m) in Sagami Bay, central Japan, throughout the year. Specimens were collected from 1982 to 1986. A small number of adult females were distributed from 800 to 900 m only, but no adult males were collected. This species appeared to be abundant in April and August, when intermediate Oyashio water flowed strongly into Sagami Bay. Mean prosome lengths of copepodite stages IV and V and adults were 4.33, 6.87 and 6.87 mm, respectively. The condition factor [wet wt/(prosome length)3 × 100] of copepodite stage V did not vary remarkably, and mean values ranged from 4.7 to 5.0. Prosome length, body weight and condition factor ofN. cristatus collected from Sagami Bay were smaller than those of copepods in the northern North Pacific.N. cristatus transported from the north cannot molt to adult stages (except for those originating in mesopelagic waters) due to the adverse environmental conditions in Sagami Bay; instead, they die in the mesopelagic layer and sink to the bathypelagic layer (1 000 to 1 400 m), close to the bottom. Since nauplii and early copepodite stages did not occur in any season,N. cristatus probably do not reproduce in Sagami Bay.  相似文献   

5.
A. Tsuda  H. Sugisaki 《Marine Biology》1994,120(2):203-210
Time series sampling with a multi-layer plankton sampler was carried out in the western subarctic North Pacific during spring 1991. Neocalanus cristatus, N. flemingeri and Eucalanus bungii dominated and accounted for 88.5% of the copepod population in volume. Neocalanus spp. were distributed in the upper mixed layer, while E. bungii was mainly distributed between 120 and 300 m throughout the day and night. In contrast, Metridia pacifica, Pleuromamma scutullata and Gaetanus simplex showed clear diel vertical migration. Grazing activities were estimated simultaneously by gut fluorescence. Nocturnal grazing was observed for diel migrating species. Neocalanus spp. did not have a diel feeding rhythm and had relatively low gut fluorescence. E. bungii was considered to be dormant during the observation period. The estimated grazing rate of the copepod population on phytoplankton was 1.4 to 2.0% of the primary production while the metabolic requirement was 8.3 to 12.4% of the primary production. These facts suggest that the copepod population was unimportant as primary consumers and that microzooplankton plays a much more important role in sustaining low standing stock of phytoplankton and a high nutrient concentration in the western subarctic Pacific Ocean.  相似文献   

6.
A similar, sexual dimorphism in Copepodite Stage V was observed in winter generations of Calanus finmarchicus (Gunnerus) and C. helgolandicus (Claus), co-existing in the Firth of Clyde, Scotland. In both species, the frequency distribution of prosome length in the Copepodite V population was bimodal. Among individual Stage V copepodites kept in the laboratory, those of the larger form alone produced adult males. Indications of morphological distinctions between the forms other than in size, however, were absent. Differences in least-squares regressions of individual cephalosome on metasome lengths, previously attributed to a distinction in prosome shape by Grigg et al. (1985), reflected size alone. These two measurements also were greater in the “large” form, but this independently of each other. Variations in their relative contributions to the prosome length distinguished individuals, and were continuous between the forms. Present and previously published observations on members of the family Calanidae have been compared. The presence, or not, of a sexual distinction in prosome length in the Stage V copepodite is variable among calanids, within and between species. A possible association with the extent of seasonal variations in size and life-cycle characteristics is suggested.  相似文献   

7.
Metabolism [respiratory oxygen consumption, electron-transfer-system (ETS) activity] and body composition [water, ash, carbon (C), nitrogen (N), carbon/nitrogen (C/N) ratio] of stage C5/C6 Neocalanus cristatus from 1000 to 2000 m depth of the Oyashio region, western subarctic Pacific, were determined during the period of July 2000 through June 2003. Compared with the C5 specimens from shallow depths (<250 m), those from 1000 to 2000 m were characterized by quiescent behavior, reduced respiration rates (30% of the rates at active feeding), very low water content (61–70% of wet weight), but high C content (56–64% of dry weight) and C/N ratios (7.2–10.6, by weight). Artifacts due to the recovery of live specimens from the bathypelagic zone appeared to be unlikely in this study, as judged by the consistent results between re-compression (100 atm) and non-compression (1 atm) respiration experiments, and between ETS activities and respiration rates directly measured. In addition, the respiration rates of C6 males and females of N. cristatus from the same 1000–2000 m depth were two to three times higher than the rates of C5 individuals, but were similar to the rates of a bathypelagic copepod, Paraeuchaeta rubra. Combining these results with literature data, C budgets of: (1) diapausing C5 specimens, weighing 6–10 mg dry weight; (2) molt to C6 females; and (3) the complete the life span were established, taking into account assorted losses in respiration during diapause at stages C5 and C6, molt production and egg production. Respiratory C losses by C5 and C6 specimens were estimated on the basis of body N as adjusted metabolic rates [AMR; µl O2 (mg body N)–0.843 h–1], then N budgets were also computed subtracting N lost in the form of cast molts and eggs from the initial stock. Calculations revealed that allocation of the C stock was greatest to egg production (34–57%), followed by respiration (27%) and cast molts (3%), leaving residual C of 13–36% in spent C6 females. The present results for N. cristatus from the North Pacific are compared with those of Calanus spp. in the North Atlantic.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

8.
The spring zooplankton community in the Strait of Georgia (British Columbia, Canada) is characterized by the presence of several calanoid copepod species which collectively make up ~90% of the mezozooplankton biomass. Here, we investigate interspecific, interannual, and geographic variability in the diets and trophic positions of these copepods using a combination of fatty acids and stable isotopes. To characterize geographic variability in diet, we compare our findings from the Strait of Georgia with similar data from Ocean Station P in the subarctic northeast Pacific. Both fatty acid and stable isotope signatures indicate the existence of three trophic levels, even within the limited size range of these copepods: Neocalanus plumchrus and Calanus marshallae are primarily omnivorous, while Euchaeta elongata is carnivorous and Eucalanus bungii is herbivorous. Fatty acid markers of trophic position (e.g., DHA/EPA, 18:1n-9/18:1n-7) correlate significantly with δ15N, while markers indicating the proportion of diatoms to flagellates in the diet (e.g., 16PUFA/18PUFA and DHA/EPA) correlate significantly with δ13C, after the effect of lipid concentration on δ13C is accounted for. Despite the general correlation between stable isotopes and fatty acids, the former are not sensitive enough to capture the range of interannual variability observed in the latter, and can only capture substantial shifts in the diet over geographic scales. However, regardless of variability in food quality, the relative trophic positions of these copepods do not change significantly either spatially or temporally.  相似文献   

9.
Relationships between linear dimensions of casts produced at the final moult in the laboratory and definitive sex confirm that Calanus finmarchicus (Gunn.) is sexually dimorphic in Copepodite Stage V. Two forms of Stage V copepodite were present at all times of the year in the Firth of Clyde, Scotland. Except in early spring, when size was similar, these were consistently distinguished by the prosome length. The small form moulted to adult females and the large form to adults of either sex. Relative to the metasome, the length of the cephalosome was greater in the large than small form of Stage V copepodite. This, to an increased extent, distinguished males from all females in the adult. Differences between females of the large and those of the small form were similar in the Stage V copepodite and adult. Feminization in the large form entailed an arrest in the differentiation of secondary male sex-characters. Most morphological females moulting from both forms of Stage V copepodite possessed an apparently normal ovary, with eggs extending into oviducal diverticula. In the case of the large form, however, eggs were occasionally absent from diverticula. The gonad in two specimens resembled an immature testis. In males, a normal testis was always present. Differentiation into the adult male entailed the internal suppression of feminizing factors. On average, within collections, females of the large form moulted later than the small form and definitive males. A similarly consistent difference between females of the small form and males was absent. Moulting times in the large form of Stage V copepodite depended on the presence or not of feminization. Differentiation into the adult male required the environmental stimulation of development. Comparisons with moulting patterns in the sea suggest a mechanism that regulates the recruitment of males to the adult.  相似文献   

10.
D. Liang  S. Uye 《Marine Biology》1997,128(3):415-421
Population dynamics and production of the egg-carrying calanoid copepod Pseudodiaptomus marinus were studied for a year in Fukuyama Harbor, a eutrophic inlet of the Inland Sea of Japan. This species was perennial, with a large numerical peak in June and small peaks in September/October and November/December. During the study period, at least 11 generations could be detected. For each generation, the stage-specific survival from egg to Copepodite Stage (C) V was determined; it was very high during early life stages (egg to NIII), and gradually decreased beyond. On average, 94% of eggs recruited into NIII, which is strongly contrasted with very high (>ca. 90%) mortality during the corresponding stages for free-spawning copepods, i.e. Acartia omorii, Centropages abdominalis and Paracalans sp. This demonstrates that the egg-carrying strategy has a great advantage to reduce mortality in egg stage. The biomass of this species showed marked seasonal variations largely in parallel with numerical abundance. The instantaneous somatic growth rate increased linearly with temperature. The population production rate was estimated as the sum of somatic growth of larval stages and egg production of adult females; the annual integration was 51.0 mg C m−3 yr−1 or 0.38 g C m−2 yr−1. Received: 11 November 1996 / Accepted: 7 December 1996  相似文献   

11.
Vertical distribution and population structure of Eucalanus bungii were investigated at site H in the Oyashio region (western subarctic Pacific) from September 1996 through October 1997 to evaluate the species lifecycle pattern and associated ontogenetic vertical migration. Additional temporary samplings were also made at several stations covering the entire subarctic Pacific, Okhotsk Sea and Japan Sea, as a basis for regional comparison of lifecycle features of this species. At site H, a marked phytoplankton bloom occurred from mid-March to June, and E. bungii spawned in April/May in the surface layer. Resulting nauplii and copepodite stage 1 (C1) formed a prominent abundance peak in early June. The C1 developed and reached C5 by August. The development of nauplii through C4 occurred in the surface layer. From August onwards, C5 and a small fraction of C3–C4 sank gradually deeper, and entered diapause to overwinter at >500 m depth. The C5 molted to C6 males and females in February and March, respectively. The C6 males and females mated at 250–500 m depth, and only mated C6 females ascended to the surface layer in April for spawning. Judging from the size of lipid droplets in the body, the C3–C5 specimens deposited lipids in the body through the phytoplankton bloom period, and the lipids were consumed gradually during overwintering. Taking account of sampling season, temporal changes in population structure, and vertical distribution, the data collected from the western subarctic Pacific and Okhotsk Sea are consistent with a 1-year lifecycle for the site H population, while the data from the central and eastern subarctic Pacific were consistent with a 2-year lifecycle. The populations from the southern and southeastern Japan Sea did not fit the features of either lifecycle scenario, and because of their very small population size it is suggested that they originated from the northern Japan Sea. Regional comparison of the prosome length of C6 females, including those in the Bering Sea, indicated significantly larger specimens from the Japan Sea and Okhotsk Sea, and smaller specimens in the eastern subarctic Pacific, as compared with those in the western subarctic Pacific (including site H) and Bering Sea. A possible overwintering mechanism of E. bungii is discussed.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

12.
H. Ishii 《Marine Biology》1990,105(1):91-98
In situ diel variations in gut pigment contents of neritic (Acartia omorii andPseudocalanus minutus) and oceanic copepods (Calanus plumchrus andC. cristatus) were analyzed.A. omorii andP. minutus were sampled in Onagawa Bay on the east coast of Japan in May and August 1987, andC. plumchrus andC. cristatus were sampled in the Bering Sea in June 1986. Gut pigments were generally high at night, and bimodal feeding rhythms were observed in all species. The first peak of gut pigments occurred between sunset and midnight and was followed by a midnight decrease in gut pigment levels, resulting in eventual evacuation of the gut. The second peak was observed a few hours after sunrise. Incubation experiments indicated that ingestion rates of starved copepods were higher than those of acclimated copepods. This phenomenon was most notable at high food concentrations. Gut pigments of starved copepods rapidly increased after exposure to high concentrations of culturedThalassiosira decipiens. These findings suggest that in situ feeding behavior of herbivorous copepods includes periods of cessation or reduction in feeding during the night, and consequently, feeding activity is periodically enhanced with starvation. Starvation enhanced feeding behavior is most obvious in the large oceanic species,C. plumchrus andC. cristatus and is not distinct in small coastal species such asA. omorii.  相似文献   

13.
 Behavioral experiments have shown that male copepods of the species Tigriopus japonicus (Nori) can distinguish species, sex, and developmental stage of potential mates using contact chemoreception. Lectin-binding patterns on the body surface of females have indicated that surface-bound glycoproteins may be important signals in mate choice. In the present study, the proteolytic enzyme trypsin was used to cleave surface proteins from females, reducing their attractiveness to males. The protein fragments released were used to make monoclonal antibodies. Three levels of screening were used to identify monoclonal antibodies that recognized proteins involved in mate recognition. One monoclonal antibody bound to the terminal urosome and lateral prosome of CV females, and its binding significantly decreased female attractiveness to males. Western blotting showed that this antibody bound the trypsin-cleaved fragment and proteins of homogenized CV females and virgin adult females, but did not bind proteins of homogenized males, CIII females, or females of T. californicus or T. fulvus. This antibody recognized proteins on the surface of females that may enable males to discriminate conspecifics, sex, and age. It is likely that this molecule has a central role in the evolution of reproductive isolation in this group. Received: 22 July 1999 / Accepted: 21 March 2000  相似文献   

14.
D. Liang  S. Uye 《Marine Biology》1997,128(3):409-414
In situ egg production of the egg-carrying calanoid copepod Pseudodiaptomus marinus was investigated in Fukuyama Harbor, a eutrophic inlet of the Inland Sea of Japan, at 3- to 5-d intervals for a year. This species reproduced throughout the year, and the adults showed a large abundance peak in June/July and a small peak in September/October. Females usually outnumbered males, comprising 61.4% of the annual mean. The composition of ovigerous females varied from 7.9 to 100%, with an annual mean of 55.7%. Adult prosome length was consistently large throughout winter and spring, and decreased with increasing temperature in summer and fall. Egg diameter varied from 98 to 121 μm, and was negatively correlated to temperature. The seasonal variation in clutch size (range: 15.1 to 38.2 eggs) was bicyclical, with peaks in May and December. The egg production rate of breeding females was low in January to March (mean: 2.3 eggs female−1 d−1), while it was constantly high from mid-May to early October (mean: 12.1 eggs female−1 d−1). The specific egg production rate for the breeding females was highly correlated to temperature; it increased linearly from 0.03 d−1 at 9 °C to 0.27 d−1 at 26 °C. Compared to other co-occurring copepods, the reproductive rate of P. marinus was lowest, which is one of the reasons why this species never dominates in this inlet. Received: 11 November 1996 / Accepted: 7 December 1996  相似文献   

15.
 Laboratory culture experiments were performed to study the changes in size-fractionated Fe concentrations during the growth of the oceanic diatom Chaetoceros sp. Fe concentration was estimated for three size fractions: large labile particles (>0.2 μm), small colloidal particles (0.2 μm to 200 kDa) and soluble species (<200 kDa). The size-fractionated Fe concentration in the nutrient-enriched filtered seawater medium without diatom cells became stable within 4 d after the spike of FeCl3 solution. Light irradiation by white fluorescent tubes with a 14 h light:10 h dark cycle did not significantly alter concentrations of the size-fractionated Fe. For the phytoplankton culture experiment, Fe-starved diatom cells were inoculated into the nutrient-enriched media aged for 19 d after the addition of FeCl3. With the growth of diatom cells, total acid-labile Fe concentrations decreased from 0.60 to 0.46 nM during 7 d of incubation. However, only the concentration of the small colloidal particles showed a significant decrease; the concentration of the other size fractions remained relatively constant. Although the media still contained sufficient amounts Fe as large labile particles and soluble species, diatom cells appeared to be Fe-limited once Fe as small colloidal particles had been used up. These results suggest that Fe in the small colloidal particle fraction was the most dynamic size fraction during the growth of the diatom Chaetoceros sp. In addition, to better understand Fe dynamics in the ocean, we must consider the influence of phytoplankton growth on small colloidal Fe [which is typically included in the dissolved Fe fraction (<0.2 μm)]. Received: 9 December 1999 / Accepted: 5 May 2000  相似文献   

16.
J. B. Lewis 《Marine Biology》1998,130(4):651-662
Dipolydora armata (Langerhans, 1880) is a small (4 to 5 mm) spionid polychaete found burrowing in the calcareous hydrozoan Millepora complanata Lamarck, 1816, on coral reefs at Barbados, West Indies. It excavates complex networks of interconnecting burrows and forms aggregations of worms in cavities within branches of the coral. Adult worms have a mixed feeding mode (suspension feeding and deposit feeding). Size–frequency distributions of worms in branch samples suggest that they mature in a single year and that reproduction occurs throughout the year. Burrow openings on the surface of the coral develop distinctive, erect spines caused by combined growth of worm tubes and host tissue. Millepore zooids were absent in the vicinity of tube openings and on spines, and thus the potential feeding surface of the coral will be reduced in heavily colonized branches. Burrows and openings were densest at the bases of millepore branches where weakening of the skeleton would be expected to occur. The absence of openings near the branch tips suggests difficulty in larval settlement there, amongst stinging zooids. Reproduction␣and larval development of the worms were examined, and a sequence of larval stages from one to 20 segments and a juvenile stage of 22 segments are described. Eggs are deposited in brood sacs attached to the burrow wall, and the larvae feed upon nurse eggs (adelphophagy). The presence of larvae and juveniles occurring free in the burrows suggests that larval development may be completed within the host coral as an alternative or in addition to a planktonic larval phase. Lack of provisional larval setae, early development of adult capillary setae, production of special spermatophores and a protracted breeding cycle in D. armata are all traits which would favour complete development within the host skeleton. Received: 6 March 1997 / Accepted: 25 October 1997  相似文献   

17.
The influence of different N:P supply ratios on cell accumulation, chemical composition and toxicity of the marine haptophyte Chrysochromulina polylepis was examined in semi-continuous cultures. A non-axenic strain of C. polylepis was exposed to five different N:P supply ratios (N:P = 1:1, 4:1, 16:1, 80:1 and 160:1, by atoms), in order to create a range of N- and P-limited conditions. The toxicity per cell in C. polylepis was determined on four occasions at steady state cell density using the haemolytic activity of the cells expressed as saponin nanoequivalents. Haemolytic activity was demonstrated in all treatments, and increased in the algae when cell growth was nutrient limited (N:P = 1:1, 4:1, 80:1 and 160:1), compared to cells grown under non-limiting conditions (N:P = 16:1). This occurred regardless of the growth-limiting nutrient (N or P) and became more pronounced as nutrient limitation increased. In P-limited cultures the haemolytic activity per cell increased linearly with the cellular N:P ratio, whereas the N-limited cultures showed an opposite trend. The haemolytic activity per cell showed an inverse relationship with both cellular N and cellular P content. Cells limited by P showed a higher haemolytic activity than cells limited by N. The results suggest that toxicity in C. polylepis is strongly influenced by the physiological state of the algae. This may partially explain the large variability previously observed in the toxicity of C. polylepis blooms. The potential ecological significance of our findings is also discussed. Received: 18 November 1998 / Accepted: 5 July 1999  相似文献   

18.
Life cycle of the copepod Calanus hyperboreus in the Greenland Sea   总被引:11,自引:0,他引:11  
H.-J. Hirche 《Marine Biology》1997,128(4):607-618
The seasonal ontogenetic migration of the Arctic copepod Calanus hyperboreus was described from surface-to-bottom hauls in the central Greenland Sea Gyre (GSG) and in the Westspitsbergen Current (WSC). All stages except females spent the winter below 500 m in the GSG and below 1000 m in the WSC. Seasonal ascent begins in April, and descent in July. For the C.␣hyperboreus population an active downward transport of 8.1 g m−2 dry weight during 8 months of overwintering was estimated, similar to flux rates of particulate matter in sediment traps. Seasonal distribution of biomass was determined from weight measurements of single stages. Annual means varied from 4.0 to 9.2 g m−2 in two different years in the GSG and were 1.1 in 1 year in the WSC. The life cycle in the Greenland Sea was reconstructed from field data on stage composition, vertical distribution, reproduction, and moult cycle phase from tooth development of CV. Laboratory experiments were conducted on the moulting of CIV and CV in fall. A 3-year (males) and 3- to 4-year (females) life cycle is proposed for the GSG and 2 to 3 years for the WSC. However, the small number of young larvae and the incomplete spring ascent by older copepodites observed in the WSC cast doubt on the reproductive success in the WSC. A suite of physiological strategies and adaptations performed by the developmental stages support survival of this species in harsh environments. Received: 25 January 1997 / Accepted: 11 February 1997  相似文献   

19.
M. Sato  Y. Masuda 《Marine Biology》1997,130(2):163-170
Genetic divergence among ten populations of small- and large-egg forms of the brackish-water polychaete Hediste japonica complex was investigated on 14 isozyme loci by electrophoretic analysis. The two forms were distinguishable by complete allele substitutions at five loci, resulting in high genetic differentiation (Nei's D: 0.533 to 0.662). No genetic evidence of hybridization between the two forms was detected in sympatric populations in three rivers. These results indicate that the two forms are reproductively isolated, clearly showing that the two forms are distinct species. The genetic differentiation among populations was higher in the large-egg form (D: 0.005 to 0.111, G ST: 0.435) than that in the small-egg form (D: 0.000 to 0.001, G ST: 0.020). This genetic difference between the two forms seems to be attributable to a difference in their life histories. The average expected heterozygosity was low in populations of both the large-egg form (0.005 to 0.068) and the small-egg form (0.014 to 0.038) in comparison with other marine invertebrates. Received: 11 April 1997 / Accepted: 8 September 1997  相似文献   

20.
All other things being equal, the lifetime reproductive success (LRS) of iteroparous and semelparous individuals should scale with the number of breeding seasons. Deviations from this relationship may occur for many reasons, including age- or size-related fecundity or life history trade-offs, which may differ between sexes. We used 19 brood years of DNA parentage analysis in a small (N = 4–143 year−1) wild, unexploited population of steelhead trout (Oncorhynchus mykiss) to compare the LRS of individuals that spawned only once [“one time spawners” (OTS), N = 355 male, 371 female] to those spawning twice [“repeat spawners” (RPS), N = 13 male, 49 female]. Female RPS had nearly twice the LRS of female OTS (1.17 offspring per female vs 0.91 offspring per female), whereas male RPS had nearly three times the LRS of male OTS (1.54 offspring per male vs 0.57 offspring per male). Female RPS produced slightly more adult offspring during their second breeding season than their first (0.78 vs 0.82 offspring per female); however, male RPS produced all of their adult offspring in their second breeding season (0 vs 1.54 offspring per male). The additional growth in body size of males between breeding seasons may give them an advantage in their second breeding season, but the lack of offspring produced in their first season suggests a trade-off between survival and future reproduction that was not expressed in females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号