首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight small-scale municipal wastewater treatment plants were evaluated over a period of 19 months in the suburb of Las Rozas in Madrid (Spain). Four plants used compact extended aeration, two used conventional activated sludge, two used conventional extended aeration, one used a rotary biodisc reactor and the other used a peat bed reactor. The best results were obtained from the plants that used conventional technologies and the biodisc. Conventional activated sludge and extended aeration had higher removal efficiencies for ammonia, TSS, COD and BOD(5) and produced good quality final effluents for final disposal in accordance with the discharge standard. Empirical equations that correlated the concentration of dissolved oxygen in the effluents with the efficiencies of TSS, ammonia, COD and BOD(5) removals for all plants evaluated were obtained. The performance of the plants using compact extended aeration was affected more than those using conventional technologies or rotary biodisc when the capacity exceeded that of its initial design.  相似文献   

2.
Impacts of hazardous material releases during transport depend on the characteristics of the cargo, incident location and time, weather conditions (i.e., wind direction and speed), and land use. The objectives of this research were to characterize the dispersion characteristics of two hazardous materials (ammonia and hydrogen fluoride) in relation to meteorological parameters, land use, and cargo characteristics; and evaluate the health risks associated with the exposure after accidental releases. The magnitudes of the impact zones were compared in relation to atmospheric stability and exposure levels. Impact zones were estimated by areal locations of hazardous atmospheres software and imported to ArcGIS. For ammonia, the areas impacted by exposure levels over 1100 ppm Acute Exposure Guideline Level 3 (AEGL-3) were limited to less than 0.3 miles downwind from the incident location under unstable atmospheric conditions, which favor high vertical mixing and rapid dilution, and extended further downwind to distances between 0.5 and 0.7 miles under stable atmospheric conditions. For hydrogen fluoride, the AEGL-3 impact zone (exposure levels over 44 ppm) extended between 0.6 and 0.9 miles directly downwind from the incident location under unstable conditions, and reached approximately 2.0 miles directly downwind from the incident location under stable atmospheric conditions. The results were compared with the Emergency Response Guideline (ERG 2012) and showed agreement. The multilevel analysis of impacts after hazardous material releases during transport (i.e., type of material, geographical data, dispersion profile, meteorological information) can be used for implementing appropriate response and mitigation measures for accidental releases of hazardous cargo.  相似文献   

3.
A combination of biomass treatment, fluidized bed/membrane reactor, and a minimum-suspension fluidized bed reactor is proposed to remove strontium cations from aqueous solutions, such as those generated by nuclear reactors. After conducting a series of screening tests, three adsorbents were selected for their suitability and high adsorptive capacity. The proposed combination uses Chlorella vulgaris in a packed column, followed by the fluidized bed/membrane reactor with bentonite powder in suspension. The membrane is primarily used to retain bentonite powder in the reactor. However, the same can be designed to remove additional amount of contaminant from the aqueous stream. The final separation is carried out in a fluidized bed containing resins that are suspended with minimal airflow. In laboratory scale, a flow rate of 600 ml/h was achieved for 30 min during which period the inlet concentration of 100 mg/l was reduced to 2.5 mg/l at the outlet. Bio-encapsulation with thermophilic bacteria and subsequent separation is proposed at this point in order to reduce the concentration to an even lower level. The proposed separation scheme offers an acceptable solution to removing strontium while minimizing the generation of secondary waste.  相似文献   

4.
A study was conducted to examine N and P removal by a laboratory-scale extended aeration treatment system employing oxidation-reduction potential (ORP) controlled aeration. The system was provided with a 90-L aeration tank. When ORP controlled aeration was applied, the aeration tank was divided into three zones, namely the ORP zone (45 L), the anaerobic zone (27 L) and the aerobic zone (18 L). An external anoxic selector of 3.8 L in volume was also added. An ORP set point of 70 mV was used for the ORP zone. The extended aeration treatment system operating without the ORP controlled aeration was used as the control.COD removal (97%) was not affected, but both N and P removal were enhanced significantly in the ORP reactor. Total N removal efficiency was increased from 49.1% (control) to 83.5%. Almost all P was captured (99%), leaving an average of 0.09 mg L−1 P in the effluent. The ORP reactor yielded a sludge P content of 3.1%, compared to only 1.8% for the control. This indicated luxury P uptake in ORP reactor. Very significant P release and denitrification were found in the anoxic selector. Fairly good simultaneous nitrification and denitrification had occurred in the ORP zone. However, P release was very limited in the anoxic zone. However, anoxic P uptake and nitrification were found in this zone.Low F/M bulking was observed in both the control and ORP operation before the installation of a selector. Bacterial Type 0041 was identified as the predominant bulking organism. For the Control, an aerobic selector cured the bulking problem in one sludge age while an anoxic selector fixed up the problem during the ORP operation.  相似文献   

5.
Nowadays the lab scale feasibility of the chemical looping combustion technology has been proved. This article deals with many of the design requirements that need to be fulfilled to make this technology applicable at industrial scale. A design for a 150 kWth chemical looping combustion reactor system is proposed. In the base case it is supposed to work with gaseous fuels and inexpensive oxygen carriers derived from industrial by-products or natural minerals. More specifically the fuel will be methane and a manganese ore will be the basis for the oxygen carrier. It is a double loop circulating fluidized bed where both the air reactor and the fuel reactor are capable to work in the fast fluidization regime in order to increase the gas solids contact along the reactor body. High operational flexibility is aimed, in this way it will be possible to run with different fuels and oxygen carriers as well as different operating conditions such as variation in air excess. Compactness is a major goal in order to reduce the required solid material and possibly to enclose the reactor body into a pressurized vessel to investigate the chemical looping combustion under pressurized conditions. The mass and heat balance are described, as well as the hydrodynamic investigations performed. Most design solutions presented are taken from industrial standards as one main objective is to meet commercial requirements.  相似文献   

6.
Anaerobic treatment has become a technically as well as economically feasible option for treatment of liquid effluents after the development of reactors such as the upflow anaerobic sludge blanket (UASB) reactor, expanded granular sludge bed (EGSB) reactor, anaerobic biofilter and anaerobic fluidized bed reactor (AFBR). Considerable effort has gone into developing mathematical models for these reactors in order to optimize their design, design the process control systems used in their operation and enhance their operational efficiency. This article presents a critical review of the different mathematical models available for these reactors. The unified anaerobic digestion model (ADM1) and its application to anaerobic biofilm reactors are also outlined.  相似文献   

7.
针对应用于实际工业化的树脂固定床吸附研究较少,而与之相关的固定床吸附穿透曲线可以用来确定固定床吸附操作参数,为固定床的设计和实际操作提供指导。通过对恒定波振荡理论和吸附等温方程的联合,来预测固定床吸附穿透曲线;并研究了不同操作条件对大孔弱碱树脂吸附对硝基酚穿透曲线预测模型的影响。以期望为树脂固定床的设计和实际工业应用产生指导意义。  相似文献   

8.
Chemical-looping combustion (CLC) is a combustion technology where an oxygen carrier is used to transfer oxygen from the combustion air to the fuel, avoiding direct contact between air and fuel. Thus, CO2 and H2O are inherently separated from the rest of the flue gases and the carbon dioxide can be obtained in a pure form without the use of an energy intensive air separation unit. The paper presents results from a 3-year project devoted to developing the CLC technology for use with syngas from coal gasification. The project has focused on: (i) the development of oxygen carrier particles, (ii) establishing a reactor design and feasible operating conditions and (iii) construction and operation of a continuously working hot reactor. Approximately, 300 different oxygen carriers based on oxides of the metals Ni, Fe, Mn and Cu were investigated with respect to parameters, which are important in a CLC system, and from these investigations, several particles were found to possess suitable qualities as oxygen carriers. Several cold-model prototypes of CLC based on interconnected fluidized bed reactors were tested, and from these tests a hot prototype CLC reactor system was constructed and operated successfully using three carriers based on Ni, Fe and Mn developed within the project. The particles were used for 30–70 h with combustion, but were circulated under hot conditions for 60–150 h.  相似文献   

9.
Chemical-looping combustion (CLC) is a promising technology for the combustion of gas or solid fuel with efficient use of energy and inherent separation of CO2. The technique involves the use of an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. A chemical-looping combustion system consists of a fuel reactor and an air reactor. A metal oxide is used as oxygen carrier that circulates between the two reactors. The air reactor is a high velocity fluidized bed where the oxygen carrier particles are transported together with the air stream to the top of the air reactor, where they are then transferred to the fuel reactor using a cyclone. The fuel reactor is a bubbling fluidized bed reactor where oxygen carrier particles react with hydrocarbon fuel and get reduced. The reduced oxygen carrier particles are transported back to the air reactor where they react with oxygen in the air and are oxidized back to metal oxide. The exhaust from the fuel reactor mainly consists of CO2 and water vapor. After condensation of the water in the exit gas from the fuel reactor, the remaining CO2 gas is compressed and cooled to yield liquid CO2, which can be disposed of in various ways.With the improvement of numerical methods and more advanced hardware technology, the time needed to run CFD (Computational fluid dynamics) codes is decreasing. Hence multiphase CFD-based models for dealing with complex gas-solid hydrodynamics and chemical reactions are becoming more accessible. Until now there were a few literatures about mathematical modeling of chemical-looping combustion using CFD approach. In this work, the reaction kinetics model of the fuel reactor (CaSO4 + H2) was developed by means of the commercial code FLUENT. The bubble formation and the relation between bubble formation and molar fraction of products in gas phase were well captured by CFD simulation. Computational results from the simulation also showed low fuel conversion rate. The conversion of H2 was about 34% partially due to fast, large bubbles rising through the reactor, low bed temperature and large particles diameter.  相似文献   

10.
The main objective of this paper is to develop a complete model that fully simulate a biogas-fueled power plant which can be used to supply a rural farm with sufficient electricity. The reactor is fed with animal manure of the farm. The proposed model consists of three main parts; a biogas reactor, a microturbine (MT) coupled to a permanent magnet synchronous generator, and a storage system. The model describes the dynamics of an MT and it is suitable for both steady state and transient simulation and analysis. The volume of biogas output delivered from the Anaerobic Digester depends on the reactor volume, reactor temperature, and animal manure type. The storage system is used to store the excess value of biogas if any. It is composed of two parts: a comparator and a storage tank. The comparator compares the volume of biogas produced by the reactor with that needed to supply the load. An adaptive controller is developed to withstand the system against any transient condition such as suddenly load increase/decrease. The proposed model is implemented for chemical and physical behaviors of the biogas production process, as well as for different variables of MT-generator operations. The model is implemented in Matlab/Simulink environment and tested under different operating conditions in both steady state and transient status to study the impacts of different variables on the system output. The output results prove its applicability and effectiveness under different operating conditions.  相似文献   

11.
Chemical-looping with oxygen uncoupling (CLOU) is a novel method to burn solid fuels in gas-phase oxygen without the need for an energy intensive air separation unit. The carbon dioxide from the combustion is inherently separated from the rest of the flue gases. CLOU is based on chemical-looping combustion (CLC) and involves three steps in two reactors, one air reactor where a metal oxide captures oxygen from the combustion air (step 1), and a fuel reactor where the metal oxide releases oxygen in the gas-phase (step 2) and where this gas-phase oxygen reacts with a fuel (step 3). In other proposed schemes for using chemical-looping combustion of solid fuels there is a need for an intermediate gasification step of the char with steam or carbon dioxide to form reactive gaseous compounds which then react with the oxygen carrier particles. The gasification of char with H2O and CO2 is inherently slow, resulting in slow overall rates of reaction. This slow gasification is avoided in the proposed process, since there is no intermediate gasification step needed and the char reacts directly with gas-phase oxygen. The process demands an oxygen carrier which has the ability to react with the oxygen in the combustion air in the air reactor but which decomposes to a reduced metal oxide and gas-phase oxygen in the fuel reactor. Three metal oxide systems with suitable thermodynamic properties have been identified, and a thermal analysis has shown that Mn2O3/Mn3O4 and CuO/Cu2O have suitable thermodynamic properties, although Co3O4/CoO may also be a possibility. However, the latter system has the disadvantage of an overall endothermic reaction in the fuel reactor. Results from batch laboratory fluidized bed tests with CuO and a gaseous and solid fuel are presented. The reaction rate of petroleum coke is approximately a factor 50 higher using CLOU in comparison to the reaction rate of the same fuel with an iron-based oxygen carrier in normal CLC.  相似文献   

12.
A mathematical model for a hybrid anaerobic reactor (HAR), which uses self-immobilized anaerobic bacterial granules under completely fluidized condition, has been developed. Stoichiometry of glucose fermentation into methane has been considered in this model. The model includes: (1) a biofilm model which describes substrate conversion kinetics within a single granule; (2) a bed fluidization model which describes the distribution of biogranules within the fluidized bed and (3) a reactor model which links the above two to predict the substrate and products concentration profile along the reactor height. Product and pH inhibition for each group of bacteria has been considered in the kinetic model. The spatial distribution of each group of anaerobic bacteria within granules has been found to play a vital role in bringing about the conversion. Experiments were conducted in the reactor using a synthetic effluent containing glucose as the carbon source to study the treatment efficiency. The model was simulated first assuming a 3-layered distribution [MacLeod, F.A., Guiot, S.R., Costerton, J.W., 1990. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Applied and Environmental Microbiology 56, 1598-1607.] of anaerobic bacteria within granules and then homogeneous distribution [Grotenhuis, J.T.C., Smit, M., Plugge, C.M., Yuansheng, X., van Lammeren, A.A.M., Stams, A.J.M., Zehnder, A.J.B., 1991. Bacterial composition and structure of granular sludge adapted to different substrates. Applied and Environmental Microbiology 57, 1942-1949.] of anaerobic bacteria. The predictions of model simulation with the assumption of layered structure closely represented the experimental data.  相似文献   

13.
The thermal degradation characteristics of Posidonia Oceanica (PO), a marine biomass abundantly available on the coastal zone of the Mediterranean Basin, were investigated using thermogravimetric analysis under inert and oxidative atmospheres. The kinetic parameters of the both thermal degradations conditions were determined using n-reaction order model. Coats–Redfern and Phadnis–Deshpande methods were used to discuss the probable degradation mechanisms. Results showed that PO is an attractive alternative for energy production owing to its elevated heating value. Moreover, PO thermal degradation follows the usual shape of biomass decomposition. Hence, under inert atmosphere, its thermal degradation had two different stages after moisture release. The first stage corresponded to the volatiles release while the second stage corresponded to the char formation. The solid-state decomposition mechanisms followed by the devolatilization step of PO were two or three dimensional diffusion controlled reaction. However, the decomposition mechanism during PO char formation corresponded to a nucleation and growth mechanism. Under oxidative atmosphere, two stages were also observed corresponding to volatiles release and char combustion, respectively. The solid-state mechanism of volatiles release followed three dimensional diffusion controlled reaction while the char combustion mechanism corresponded to a contracting area phase boundary controlled reaction.  相似文献   

14.
A study of the effluent of an anaerobic fluidized bed reactor acclimated to 2,4,5-TCP was made in order to determine the metabolic pathway and reaction rate limiting step of 2,4,5-TCP. The wastewater with about 2500 mg L−1 COD and 50 mg L−1 2,4,5-TCP was biodegraded by anaerobic digestion, and the intermediate analyzed by HPLC and GC/MS. The results showed the degradative metabolic pathway of 2,4,5-TCP, under anaerobic conditions, to be: 2,4,5-TCP→3,4-DCP→3-CP→phenol→benzoate. For the rate limiting step, the accumulated concentration of 3,4-DCP was higher than other intermediates for Anaerobic Toxicity Assay (ATA) and Biochemical Methane Potential (BMP) tests. From the anaerobic fluidized bed reactor, analyses showed the chloride at the ortho-position was removed very quickly after 2,4,5-TCP entered the reactor. As for the intermediate products, 43% of 3,4-DCP was not decomposed and of the 3-CP only 6.4% left. This shows that the rate limiting step of 2,4,5-TCP was the dechlorination of 3,4-DCP.  相似文献   

15.
This paper describes a methodology used for designing louvered fins. Louvered fins are commonly used in many compact heat exchangers to increase the surface area and initiate new boundary layer growth. Detailed measurements can be accomplished with computational models of these louvered fins to gain a better understanding of the flow field and heat distribution. The particular louver geometry studies for this work have a louver angle of 23° and fin count of 17 fpi.

The flow and heat transfer characteristics for three-dimensional mixed convection flows in a radiator flat tube with louvered fins are analyzed numerically. A three-dimensional model is developed to investigate flow and conjugate heat transfer in the copper-based car radiator. The model was produced with the commercial program FLUENT. The theoretical model has been developed and validated by comparing the predictions of the model with available experimental data. The thermal performance and temperature distribution for the louvered fins were analyzed and a procedure for optimizing the geometrical design parameter is presented.

One fin specification among the various flat tube exchangers is recommended by first considering the heat transfer and pressure drop. The effects of variation of coolant flow conditions and external air conditions on the flow and the thermal characteristics for the selected radiator are investigated also. The results will be used as fundamental data for tube design by suggesting specifications for car radiator tubes.  相似文献   

16.
Modeling and experimental studies were performed on a packed bed for high-temperature energy storage using Zirconium oxide pellets as the storage material. This is an advanced ceramic material that can withstand corrosion and high temperatures. Model predictions compare favorably with experimental results. Zirconium oxide demonstrated great potential as thermal energy storage material. More energy was recovered from the bed in the opposite direction than in the direction used during storage. The gas inlet temperature to the bed showed dominant influence on the uncertainty in the model predictions, implying that special attention should be paid to the measurement of this temperature.  相似文献   

17.
The literature has paid scarce attention to the modeling of the denitrification-anaerobic digestion process in packed bed biofilm tubular reactors used to treat wastewater. The present study obtained a steady-state model for industrial salmon fishery wastewater treatment in a biofilm tubular reactor, including pH as a variable and the effect of biomass on hydrolysis. The axial profile of the reactor components and process efficiency were predicted with deviations below 6%. The optimal operating zone for the process was found at hydraulic retention time (HRT)>1.5d and inlet protein concentration (S(prot,0))<3000 mgTOCL(-1). Based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on HRT. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH. Organic matter removal was related with the anaerobic digestion process, while denitrification influenced mostly nitrate and nitrite removal.  相似文献   

18.
CO2 and SO2 are some of the main polluting gases emitted into atmosphere in combustion processes using fossil fuel for energy production. The former is one of the major contributors to build-up the greenhouse effect implicated in global climate change and the latter produces acid rain. Oxy-fuel combustion is a technology, which consists in burning the fuel with a mix of pure O2 and recirculated CO2. With this technology the CO2 concentration in the flue gas may be enriched up to 95%, becoming possible an easy CO2 recovery. In addition, oxy-fuel combustion in fluidized beds allows in situ desulfurization of combustion gases by supplying calcium based sorbent.In this work, the effect of the principal operation variables affecting the sulfation reaction rate in fluidized bed reactors (temperature, CO2 partial pressure, SO2 concentration and particle size) under typical oxy-fuel combustion conditions have been analyzed in a batch fluidized bed reactor using a limestone as sorbent. It has been observed that sulfur retention can be carried out by direct sulfation of the CaCO3 or by sulfation of the CaO (indirect sulfation) formed by CaCO3 calcination. Direct sulfation and indirect sulfation operating conditions depended on the temperature and CO2 partial pressure. The rate of direct sulfation rose with temperature and the rate of indirect sulfation for long reaction times decreased with temperature. An increase in the CO2 partial pressure had a negative influence on the sulfation conversion reached by the limestone due to a higher temperature was needed to work in conditions of indirect sulfation. Thus, it is expected that the optimum temperature for sulfur retention in oxy-fuel combustion in fluidized bed reactors be about 925–950 °C. Sulfation reaction rate rose with decreasing sorbent particle size and increasing SO2 concentration.  相似文献   

19.
This study experimentally investigates lean methane/air premixed combustion in a catalytic zirconia foam burner. The burner is packed with an inert perforated alumina plate at the inlet preheating zone and with catalytic zirconia foams at the combustion zone. Catalytic foams are prepared by using a modified perovskite catalyst (LaMn0.4Co0.6O3), in which the transition metal ion Co is partially substituted by Mn and supported by inert zirconia foam. Results indicate that the flame stability limits of both catalytic and inert burners expand with increasing equivalence ratios. The stable combustion region of the catalytic burner is larger than that of the inert burner. The heterogeneous catalytic combustion effect can decrease and increase the lower and upper flame stability limits, respectively. The central temperatures of the flame fronts are higher in the catalytic burner than in the inert burner. The pressure drops of the catalytic burner are almost equal to those of the inert burner in cold flows but are significantly higher than those in the inert burner in reaction flows. Less amounts of carbon monoxide, nitric oxides, and unburned hydrocarbon emissions are detected in the catalytic burner relative to the inert burner. The thermal radiation efficiencies of the catalytic burner vary between 0.24 and 0.39 and are favorably superior to those of the inert burner, ranging from 0.11 to 0.20.  相似文献   

20.
This study presents first operating experience with a 120 kW chemical looping pilot rig. The dual circulating fluidized bed reactor system and its auxiliary units are discussed. Two different oxygen carriers, i.e. ilmenite, which is a natural iron titanium ore, and a designed Ni-based particle, are tested in the CLC unit. The pilot rig is fueled with H2, CO and CH4 respectively at a fuel power of 65–145 kW. High solids circulation, very low solids residence time and low solids inventory are observed during operation. Owing to the scalability of the design concept, these characteristics should be quite similar to those of commercial CLC power plants. Ilmenite shows a high potential for the combustion of H2-rich gases (e.g. from coal gasification with steam). The H2 conversion is quite high but there is still a high potential for further improvement. The Ni-based oxygen carrier achieves the thermodynamic maximum H2 and CO conversion and also very high CH4 conversion. A variation of the air/fuel ratio and the reaction temperature indicates that the Ni/NiO ratio of the particle has an influence on the performance of the chemical looping combustor. Generally, low solids conversion in air and fuel reactors is observed in almost any conditions. Despite a very low H2O/CH4 molar ratio, no carbon formation is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号