首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accelerated pollution and eutrophication of rivers and streams because of human activity are a concern throughout the world and severe in Africa where Ethiopia is case in point. The objective of this study was to assess the urban impact on the ecological integrity of the Borkena River at the eastern escarpment of the central Ethiopian highlands. The water quality status and macroinvertebrate distribution and diversity of the river were assessed during the dry and wet seasons. Diversity indices revealed that a severe decline in the ecological integrity of the Borkena River downstream of Dessie and within Kombolcha towns in terms of macroinvertebrate abundance and composition. Clustering and ordination analysis clearly separated reference sites from urban impacted sites. At the urban-impacted sites, dissolved oxygen was also depleted to 0.5 mg/l and BOD5 values were reached to a level of above 1,000 mg/l, with extremely low biological diversity of pollution-sensitive taxa. These patterns are the result of a combination of rampant dumping of untreated wastes exacerbated by geologic, topographic, climatic and land use factors.  相似文献   

2.
Changes in physicochemical conditions and lotic benthic macroinvertebrates along the recovery gradient of the impounded Colorado (USA) and Duratón (Spain) Rivers were examined to identify and compare major factors affecting the structure of the macrobenthic community. Although both impounded rivers were exposed to hypolimnial releases from dams, they exhibited different impoundment use; Granby Dam (Colorado River) is used for water storage whereas Burgomillodo Dam (Duratón River) is used for hydroelectric production. The major factor responsible for macroinvertebrate responses in the Colorado River appeared to be the anomalous temperature pattern caused by Granby Dam, with relatively cool temperatures during the summer and relatively warm temperatures during the winter. In contrast, the major factors responsible for macroinvertebrate responses in the Duratón River seemed to be short-term flow fluctuations and low oxygen concentrations caused by Burgomillodo Dam. Values of taxonomic richness and relative abundances of shredders (Colorado River) and scrapers (Duratón River) increased along the recovery gradient of the impounded rivers. In general, chironomids (Diptera) were tolerant to both types of impoundment use, whereas elmids (Coleoptera) and psychomyiids (Trichoptera) were very sensitive. Overall, this environmental monitoring study denotes that the downstream changes in the biotic and abiotic components of impounded rivers is a function of the particular use of impoundments.  相似文献   

3.
不同土地利用对溪流大型底栖无脊椎动物群落的影响   总被引:1,自引:0,他引:1  
2010年4月调查了钱塘江中游区域29个样点的水环境特征和底栖动物。聚类排序将样点分为参照、农业和城镇3组,相似性分析表明不同组间底栖动物群落有显著差异(r=0.863,P=0.001)。环境因子的主成分分析表明,研究区域主要的环境胁迫是农业和城镇用地及其引起的水质变化,并能较好解释组间物种差异的关键环境胁迫因子为农业用地比例、城镇用地比例、溶解氧、总氮和平均底质得分(Rho=0.568,P=0.001)。底栖动物参数(总分类单元数、Shannon-Weaver多样性指数、BI指数和丰富度指数)和k-优势度曲线显示农业和城镇组的生物完整性遭到很大程度的破坏,且农业组较城镇组严重。  相似文献   

4.
AusRivAS is an Australia-wide program that measures river condition using predictive models to compare the macroinvertebrate families occurring at a river site with those expected if the site were in natural condition. Results of assessment of 685 sites across all major rivers in Western Australia are presented. Most rivers were in relatively natural condition in the northern half of the state where the human population is low and pastoralism is the major land use. In the south, where the human population is higher and agriculture is more intensive, rivers were mostly more disturbed. AusRivAS assessment produced some erroneous results in rivers of the south-west cropping zone because of the lack of appropriate reference site groups and biased distribution of sampling sites. Collecting low numbers of animals from many forested streams, because of low stream productivity and samples that were difficult to sort, also affected assessments. Overall, however, AusRivAs assessment identified catchment processes that were inimical to river health. These processes included salinisation, high nutrient and organic loads, erosion and loss of riparian vegetation. River regulation, channel modification and fire were also associated with river degradation. As is the case with other assessment methods, one-off sampling at individual sites using AusRivAS may be misleading. Seasonal drought, in particular, may make it difficult to relate conditions at the time of sampling to longer-term river health. AusRivAS has shown river condition in Western Australia is not markedly different from other parts of Australia which, as a whole, lacks the substantial segments of severely degraded river systems reported in England.  相似文献   

5.
The Wisconsin Department of Natural Resources (WDNR), with support from the U.S. EPA, conducted an assessment of wadeable streams in the Driftless Area ecoregion in western Wisconsin using a probabilistic sampling design. This ecoregion encompasses 20% of Wisconsin’s land area and contains 8,800 miles of perennial streams. Randomly-selected stream sites (n = 60) equally distributed among stream orders 1–4 were sampled. Watershed land use, riparian and in-stream habitat, water chemistry, macroinvertebrate, and fish assemblage data were collected at each true random site and an associated “modified-random” site on each stream that was accessed via a road crossing nearest to the true random site. Targeted least-disturbed reference sites (n = 22) were also sampled to develop reference conditions for various physical, chemical, and biological measures. Cumulative distribution function plots of various measures collected at the true random sites evaluated with reference condition thresholds, indicate that high proportions of the random sites (and by inference the entire Driftless Area wadeable stream population) show some level of degradation. Study results show no statistically significant differences between the true random and modified-random sample sites for any of the nine physical habitat, 11 water chemistry, seven macroinvertebrate, or eight fish metrics analyzed. In Wisconsin’s Driftless Area, 79% of wadeable stream lengths were accessible via road crossings. While further evaluation of the statistical rigor of using a modified-random sampling design is warranted, sampling randomly-selected stream sites accessed via the nearest road crossing may provide a more economical way to apply probabilistic sampling in stream monitoring programs.  相似文献   

6.
The frequency of morphological deformities in chironomid larvae was used to assess environmental degradation at 12 sites in the Yamaska River, Quebec, that were known to be either impacted by agriculture or urban centres, or were relatively clean and used as reference sites. A total of 2273 chironomid larvae were examined for deformities. The overall frequency of deformities at polluted sites was 2.7%, whereas no deformities were observed at the reference sites. The highest incidence of deformities was found downstream of two urban centres, site 9 at Acton Vale (5.1% deformed) and site 12 at Ste Hyacinthe (5.3% deformed). The frequency of deformities at the agricultural sites ranged from 0.8 to 2.5% and was comparable to sites receiving municipal sewage effluent. The occurrence of higher frequencies of deformities downstream of urban centres indicates that the frequency of deformities increases with environmental degradation.  相似文献   

7.
We conducted an aquatic macroinvertebrate assessment in the channelized reach of the lower Missouri River, and used statistical analysis of individual metrics and multimetric scores to identify community response patterns and evaluate relative biological condition. We examined longitudinal site differences that are potentially associated with water qualityrelated factors originating from the Kansas City metropolitan area, using data from coarse rock substrate in flowing water habitats (outside river bends), and depositional mud substratein slack water habitats (dike fields). Three sites above rivermile (RM) 369 in Kansas City (Nebraska City, RM = 560; St. Joseph, RM = 530; Parkville, RM = 377) and three below (Lexington, RM = 319; Glasgow, RM = 228; Hermann, RM = 94) were sampled with rock basket artificial substrates, a qualitative kicknet method, and the Petite Ponar. We also compared the performance of the methods used. A total of 132 aquatic macroinvertebrate taxa were collected from the lower Missouri River; one third of these taxa belonged to the sensitiveEPOT insect orders (Ephemeroptera, Plecoptera, Odonata, and Trichoptera). Rock baskets had the highest mean efficiency (34.1%) of the methods, and the largest number of taxa was collected by Ponar (n = 69) and kicknet (n = 69) methods. Seven of the 15 metrics calculated from rock basket data, and five ofthe nine metrics calculated from Ponar data showed highly significant differences (ANOVA, P < 0.001) at one or more sitesbelow Kansas City. We observed a substantial reduction in net-spinning Trichoptera in rock habitats below Kansas City (Lexington), an increase in relative dominance of Oligochaeta in depositional habitats at the next site downstream (Glasgow), and lower relative condition scores in rock habitat at Lexingtonand depositional habitat at Glasgow. Collectively, these data indicate that some urban-related impacts on the aquatic macroinvertebrate community are occurring. Our results suggest that the methods and assessment framework we used in this studycould be successfully applied on a larger scale with concurrentwater and sediment chemistry to validate metrics, establish impairment levels, and develop a specific macroinvertebrate community index for the lower Missouri River. We recommend accomplishing this with longitudinal multi-habitat sampling at a larger number of sites related to all potential sources of impairment, including major tributaries, urban areas, and point sources.  相似文献   

8.
The proposed removal of three run-of-river dams (all ≤5-m height) in eastern Pennsylvania along lower Bushkill Creek, a tributary of the Delaware River, has provided a valuable opportunity for multidisciplinary research involving the collection of more than 5 years of pre-removal monitoring data, analysis of heavy metals in legacy sediment cores, and associated toxicity assays to determine the singular and interactive effects of lead, copper, and cadmium on survival and behavior of a common macroinvertebrate found in Bushkill Creek. Monitoring data were collected from sites approximately 35 m upstream and downstream of dams and reference sites located approximately 5 km upstream of all dams. Results indicate that oxygen levels, macroinvertebrate diversity, and proportion of sensitive taxa were significantly lower upstream and downstream of dams in comparison with upstream reference reaches. The strong correlation between water quality and macroinvertebrates in this system implies that removal of the lower three dams would lead to improvements in water quality, biotic integrity, and resilience in lower Bushkill Creek. Sediment analyses and toxicity assays suggest that dam removal and sediment mobilization may route contaminated sediments downstream at concentrations that may harm more sensitive biota. However, macroinvertebrate mortality and behavior were not significantly different from clean water controls for the large majority of toxicity assays. All together, these results suggest that dams 1–3 are good candidates for successful stream restoration but that the removals would best be planned in a way that mitigates potential impacts of contaminated legacy sediment.  相似文献   

9.
The number of sites sampled must be considered when determining the effort necessary for adequately assessing taxa richness in an ecosystem for bioassessment purposes; however, there have been few studies concerning the number of sites necessary for bioassessment of large rivers. We evaluated the effect of sample size (i.e., number of sites) necessary to collect vertebrate (fish and aquatic amphibians), macroinvertebrate, and diatom taxa from seven large rivers in Oregon and Washington, USA during the summers of 2006–2008. We used Monte Carlo simulation to determine the number of sites needed to collect 90–95% of the taxa 75–95% of the time from 20 randomly located sites on each river. The river wetted widths varied from 27.8 to 126.0 m, mean substrate size varied from 1 to 10 cm, and mainstem distances sampled varied from 87 to 254 km. We sampled vertebrates at each site (i.e., 50 times the mean wetted channel width) by nearshore-raft electrofishing. We sampled benthic macroinvertebrates nearshore through the use of a 500-μm mesh kick net at 11 systematic stations. From each site composite sample, we identified a target of 500 macroinvertebrate individuals to the lowest possible taxon, usually genus. We sampled benthic diatoms nearshore at the same 11 stations from a 12-cm2 area. At each station, we sucked diatoms from soft substrate into a 60-ml syringe or brushed them off a rock and rinsed them with river water into the same jar. We counted a minimum of 600 valves at 1,000× magnification for each site. We collected 120–211 diatom taxa, 98–128 macroinvertebrate taxa, and 14–33 vertebrate species per river. To collect 90-95% of the taxa 75-95% of the time that were collected at 20 sites, it was necessary to sample 11–16 randomly distributed sites for vertebrates, 13–17 sites for macroinvertebrates, and 16–18 sites for diatoms. We conclude that 12–16 randomly distributed sites are needed for cost-efficient sampling of vertebrate richness in the main stems of our study rivers, but 20 sites markedly underestimates the species richness of benthic macroinvertebrates and diatoms in those rivers.  相似文献   

10.
The increased pollution in ecosystems reinforces the importance of both chemical monitoring and biological monitoring of streams and rivers, as an effective water quality-based approach to assess aquatic ecosystem health. In this study, gudgeon (Gobio gobio) and mullet (Mugil cephalus) liver histopathology (biomarker) and some macroinvertebrate community indexes and metrics (bioindicator) were used to evaluate the effect of the wastewater treatment plant (WWTP) of Febros (Avintes) in Febros River water quality and ecosystem health. Regarding macroinvertebrate communities, the Belgian Biotic Index (BBI) and Iberian Biological Monitoring Working Party (IBMWP) indexes suggested that Febros water was slightly polluted, even though the worst situation was found downstream the WWTP discharge. Concerning community metrics, upstream percent of individuals in five numerically dominant taxa (80%) was slightly more superior than the downstream (78%). The presence of intolerant or sensible individuals, determined by percent of Ephemeroptera, Plecoptera, and Trichoptera individuals and number of Ephemeroptera, Plecoptera, and Trichoptera families metrics, was higher upstream WWTP, reflecting a better water quality. The histopathology shows the presence of hepatic lesions in gudgeon and mullet. The statistical analysis of the lesion gradation showed that only necrosis was significantly higher in gudgeon captured downstream the WWTP, while differences were not observed for mullet. The multivariate analysis of data confirmed the existence of differences in hepatic lesions between gudgeon and mullet and between sampling sites. Regarding macroinvertebrate community, this analysis showed that the organic contamination reflected by the BBI and IBMWP indexes values was a determinant factor in the spatial distribution of macroinvertebrates. This work showed that the study of different biological organization levels can be used for a better assessment of ecosystem ecological integrity and can be used as a tool to reveal anthropogenic activity effects in macroinvertebrate diversity and in fish liver pathology from Febros River.  相似文献   

11.
Fish were collected in late 1995 from 34 National Contaminant Biomonitoring Program (NCBP) stations and 12 National Water Quality Assessment Program (NAWQA) stations in the Mississippi River basin (MRB), and in late 1996 from a reference site in West Virginia. The NCBP sites represented key points (dams, tributaries, etc.) in the largest rivers of the MRB. The NAWQA sites were typically on smaller rivers and were selected to represent dominant land uses in their watersheds. The West Virginia site, which is in an Eastern U.S. watershed adjacent to the MRB, was selected to document elemental concentrations in fish used for other aspects of a larger study and to provide additional contemporaneous data on background elemental concentrations. At each site four samples, each comprising (nominally) 10 adult common carp (Cyprinus carpio, 'carp') or black bass (Micropterus spp., 'bass') of the same sex, were collected. The whole fish were composited by station, species, and gender for analysis of arsenic (As), lead (Pb), and selenium (Se) by atomic absorption spectroscopy and for cadmium (Cd), copper (Cu), and zinc (Zn) by inductively-coupled plasma emission spectroscopy. Concentrations of most of the elements examined were lower in both carp and bass from the reference site, a small impoundment located in a rural area, than from the NCBP and NAWQA sites on rivers and larger impoundments. In contrast, there were few overall differences between NCBP sites NAWQA sites. The 1995 results generally confirmed the continued weathering and re-distribution of these elemental contaminants in the MRB; concentrations declined or were unchanged from 1984-1986 to 1995 at most NCBP sites, thus continuing two-decade trends. Exceptions were Se at Station 77 (Arkansas R. at John Martin Reservoir, CO), where concentrations have been elevated historically and increased slightly (to 3.8-4.7 microg g-(1) in bass and carp); and Pb, Cd, and Zn at Station 67 (Allegheny R. at Natrona, PA), where levels of these metals were high in the past and increased from 1986 to 1995.  相似文献   

12.
Direct measurement of the accumulation of non-radioactive traceelements in aquatic biota near uranium mining or processing sites has been relatively rare, with greater focus on the radiological activity in the adjacent soils and groundwater. To evaluate the potential ecological concern associated with trace elements at a former uranium mill site in southeasternUtah, benthic macroinvertebrates were collected and analyzed for 17 trace elements from multiple locations within a small on-site stream, Montezuma Creek, and a nearby reference stream. Key questions of this study relate to the spatial and temporalextent of contamination in aquatic biota, the potential ecological risks associated with that contamination, and the usefulness of benthic macroinvertebrates as a monitoring tool at this site. Composite samples of similar macroinvertebrate taxa and functional feeding groups were collected from each site over atwo year period that was representative of normal and dry-yearconditions. In both years, mean concentrations of arsenic,molybdenum, selenium, and vanadium were significantly higher (afactor of 2–4 times; P < 0.05) in macroinvertebrates collectedfrom one or both of the two Montezuma Creek sites immediatelydownstream of the mill tailing site in comparison toconcentrations from reference locations. Mean uraniumconcentrations in invertebrates immediately downstream of themill site were more than 10 times higher than at reference sites.The site-to-site pattern of contamination in Montezuma Creekinvertebrates was similar in 1995 and 1996, with mill-relatedtrace elements showing a downstream decreasing trend. However,nine of seventeen contaminant concentrations were higher in thesecond year of the study, possibly due to a higher influx of deepgroundwater during the drier second year of the study. Apreliminary assessment of ecological risks, based on the benthicmacroinvertebrate bioaccumulation data, suggests that aquatic andterrestrial population risks are low. Benthic macroinvertebratesappeared to be sensitive integrators of trace element inputs tothe aquatic environment from a former uranium mill tailing site,and provided useful spatial and temporal patterns ofcontamination not easily obtained using conventional surfacewater or groundwater measures.  相似文献   

13.
The relationship between benthic macroinvertebrate assemblages and cattle density was assessed from fall 2002 through spring 2004 in five small streams that represented a gradient of cattle grazing intensity. All study stream reaches were in pasture with no woody riparian vegetation, but varied in the intensity of cattle grazing (0 cattle ha−1 at site 1 to 2.85 cattle ha−1 at site 5). Regression analysis indicated highly significant and strong macroinvertebrate metric responses to cattle density during most sampling periods. The majority of metrics responded negatively to increased grazing, while a few (total taxa richness, number of sensitive taxa, and % collector filterers) increased along the gradient before declining at the most heavily grazed sites. Total number of sensitive taxa and % Coleoptera had the strongest relationship with cattle density throughout the study period. During some sampling periods, nearly 80% of the variation in these metrics was explained by cattle density. The elmid beetle, Oulimnius, had a particularly strong negative response to the grazing gradient. Study site groupings based on taxa composition, using detrended correspondence analysis (DCA), indicated that benthic samples collected from the reference site and light rotational grazing site were more similar in macroinvertebrate taxa composition than samples collected from the intermediate grazing and heavy grazing sites. Our findings demonstrate that biological integrity, as measured by benthic macroinvertebrate metrics and assemblage composition, is highly related to cattle density in small streams in the Blue Ridge mountains, Virginia, USA. This suggests that the degree of agricultural intensity should be given consideration in stream assessments, as well as land use planning and regulatory decisions.  相似文献   

14.
Urban areas of different land uses can be distinguished by their specific patterns of atmospheric dust and trace element precipitation. Dusts emitted from industrial areas with fossil fuel processing, for instance, are enriched in V, Ni and Co. Cluster analysis groups sampling sites based on their specific element patterns. The resulting groups correspond to the surrounding land use: Urban sampling sites were identified showing similar patterns of dust and trace element precipitation as a reference site; dusts of other urban sites were influenced by diffuse pollution (caused by non-point and dispersed pollution sources), or by specific industrial emissions. Cluster analysis was also used to characterize the chemical dust composition. Three clusters of typical element associations were distinguished. These clusters represent the dust matrix, diffuse urban pollution and pollution due to fossil fuel processing. Dust precipitation and chemical dust composition show seasonal variations. Dust precipitation and concentrations of trace elements in the precipitated dust are negatively correlated during the annual courses. The highest concentrations of trace elements occur during winter, whereas the highest precipitations of dust were found during summer. This finding stresses that both, precipitation and concentration have to be addressed for the environmental assessment of urban dusts.  相似文献   

15.
The condition of the macroinvertebrate fauna of the Yarra River deteriorates progressively downstream from the virtually pristine headwater areas, through cleared rural areas in the mid-Yarra, to urban areas in the lower sections of the Yarra. It was found during a four year study, that the physico-chemical parameters affecting the fauna varied substantially in relation to the different physical characteristics of each site. In general, it is suggested that nutrients and the riparian vegetation had greatest impact on the riffle communities, and turbidities had greatest impact on the pool communities. The physical characteristics of each site also influenced the type and degree of response in the fauna to fluctuations in flow. Full consideration should therefore be given to the type of stream habitat sampled when attempting to determine which water quality parameters have significant long-term effects on the condition of the fauna.  相似文献   

16.
A proactive sampling strategy was designed and implemented in 2000 to document changes in streams whose catchment land uses were predicted to change over the next two decades due to increased building density. Diatoms, macroinvertebrates, fishes, suspended sediment, dissolved solids, and bed composition were measured at two reference sites and six sites where a socioeconomic model suggested new building construction would influence stream ecosystems in the future; we label these "hazard sites." The six hazard sites were located in catchments with forested and agricultural land use histories. Diatoms were species-poor at reference sites, where riparian forest cover was significantly higher than all other sites. Cluster analysis, Wishart's distance function, non-metric multidimensional scaling, indicator species analysis, and t-tests show that macroinvertebrate assemblages, fish assemblages, in situ physical measures, and catchment land use and land cover were different between streams whose catchments were mostly forested, relative to those with agricultural land use histories and varying levels of current and predicted development. Comparing initial results with other regional studies, we predict homogenization of fauna with increased nutrient inputs and sediment associated with agricultural sites where more intense building activities are occurring. Based on statistical separability of sampled sites, catchment classes were identified and mapped throughout an 8,600 km(2) region in western North Carolina's Blue Ridge physiographic province. The classification is a generalized representation of two ongoing trajectories of land use change that we suggest will support streams with diverging biota and physical conditions over the next two decades.  相似文献   

17.
Many organizations in the USA collect aquatic bioassessment data using different sampling and analysis methods, most of which have unknown performance in terms of data quality produced. Thus, the comparability of bioassessments produced by different organizations is often unknown, ultimately affecting our ability to make comprehensive assessments on large spatial scales. We evaluated a pilot approach for determining bioassessment performance using macroinvertebrate data obtained from several states in the Southeastern USA. Performance measures evaluated included precision, sensitivity, and responsiveness to a human disturbance gradient, defined in terms of a land disturbance index value for each site, combined with a value for specific conductance, and instream habitat quality. A key finding of this study is the need to harmonize ecoregional reference conditions among states so as to yield more comparable and consistent bioassessment results. Our approach was also capable of identifying potential areas for refinement such as reevaluation of less precise, sensitive, or responsive metrics that may result in suboptimal index performance. Higher performing bioassessments can yield information beyond “impaired” versus “unimpaired” condition. Acknowledging the limitations of this pilot study, we would recommend that performance evaluations use at least 50 sites, 10 of which are ecoregional reference sites. Efforts should be made to obtain data from the entire human disturbance gradient in an ecoregion to improve statistical confidence in performance measures. Having too few sites will result in an under-representation of certain parts of the disturbance gradient (e.g., too few poor quality sites), which may bias sensitivity and responsiveness estimates.  相似文献   

18.
Portions of the Boulder River watershed contain elevated concentrations of arsenic, cadmium, copper, lead, and zinc in water, sediment, and biota. We measured concentrations of As, Cd, Cu, Pb, and Zn in biofilm and macroinvertebrates, and assessed macroinvertebrate assemblage and aquatic habitat with the objective of monitoring planned remediation efforts. Concentrations of metals were generally higher in downstream sites compared with upstream or reference sites, and two sites contained metal concentrations in macroinvertebrates greater than values reported to reduce health and survival of resident trout. Macroinvertebrate assemblage was correlated with metal concentrations in biofilm and macroinvertebrates. However, macroinvertebrate metrics were significantly correlated with a greater number of biofilm metals (8) than metals in invertebrates (4). Lead concentrations in biofilm appeared to have the most significant impact on macroinvertebrate assemblage. Metal concentrations in macroinvertebrates were directly proportional to concentrations in biofilm, indicating biofilm as a potential surrogate for monitoring metal impacts in aquatic systems.  相似文献   

19.
The Canadian Council of Ministers for the Environment (CCME) has developed a Water Quality Index (WQI) to simplify the reporting of complex water quality data. This science-based communication tool tests multi-variable water data against numeric water quality guidelines and/or objectives to produce a single unit-less number that represents overall water quality. The CCME WQI has been used to rate overall water quality in spatial and temporal comparisons of site(s). However, it has not been used in a comparative-analysis of exposure sites to reference sites downstream of point source discharges. This study evaluated the ability of the CCME WQI to differentiate water quality from metal mines across Canada at exposure sites from reference sites using two different types of numeric water quality objectives: (1) the water quality guidelines (WQG) for the protection of freshwater aquatic life and (2) water quality objectives determined using regional reference data termed Region-Specific Objectives (RSO). The application of WQG to the CCME WQI was found to be a good tool to assess absolute water quality as it relates to national water quality guidelines for the protection of aquatic life, but had more limited use when evaluating spatial changes in water quality downstream of point source discharges. The application of the RSO to the CCME WQI resulted in assessment of spatial changes in water quality downstream of point source discharges relative to upstream reference conditions.  相似文献   

20.
A procedure to select the most relevant metrics for assessing the ecological condition of the Douro basin (north Portugal) was developed based upon a set of 184 benthic community metrics. They were grouped into 16 biological categories selected from literature using data collected over 2 years from 54 sites along 31 rivers covering the whole perceived range of human disturbance. Multivariate analyses were carried out to identify the main trends in the macroinvertebrate data, to select reference versus impaired sites, to avoid multicolinearity between metrics, and to identify those that were clearly independent from natural stream typology. Structural metrics, adaptation metrics, and tolerance measures most effectively responded across a range of human influence. We find these attributes to be ecologically sound for monitoring Portugal’s lotic ecosystems and providing information relevant to the Water Framework Directive, which asserts that the definition of water quality depends on its “ecological status”, independent of the actual or potential uses of those waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号