首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Diverse advanced oxidation process (AOP) techniques applying UV, TiO2/UV, O3 and O3/UV were used to degrade pollutants contained in tannery wastewater. The total mineralization of these pollutants is desirable, but it is quite energy consuming and sometimes impossible. Therefore the objective was to achieve an enhancement of biodegradability, preferentially with a decrease in toxicity in parallel. This work demonstrates that the dominant pollutants were chemically degraded by oxidation, while changes in carbon content were only marginal. These results were obtained monitoring the total organic carbon content (TOC), chemical and biochemical oxygen demand (COD and BOD), and substance-specific pollutant content by application of gas chromatography/mass spectrometry (GC-MS) and liquid chromatography/mass spectrometry (LC-MS). Daphnia magna toxicity testing performed in parallel proved a decrease in toxicity after AOP treatment of the tannery wastewater.  相似文献   

2.
The presence of well-known atmospheric pollutants is regularly screened for in large towns but knowledge about the effects of mixtures of different pollutants and especially their genotoxic potential is largely missing. Since falling snow collects pollutants from the air, melted snow samples could be suitable for evaluating potential genotoxicity. For this purpose the Allium cepa anaphase–telophase test was used to analyse melted snow samples from Belgrade, the capital city of Serbia. Samples of snow were taken at two sites, characterized by differences in pollution intensity, in three successive years. At the more polluted site the analyses showed a very high degree of both toxicity and genotoxicity in the first year of the study corresponding to the effects of the known mutagen used as the positive control. At the other site the situation was much better but not without warning signals. The results showed that standard analyses for the presence of certain contaminants in the air do not give an accurate picture of the possible consequences of urban air pollution because the genotoxic potential remains hidden. The A. cepa test has been demonstrated to be very convenient for evaluation of air pollution through analyses of melted snow samples.  相似文献   

3.
Background, Aims and Scope In oil spill investigations, one of the most important steps is a proper choice of approaches that imply an investigation of samples taken from different sedimentary environments, samples of oil contaminants taken in different periods of time and samples taken at different distances from the oil spill. In all these cases, conclusion on the influence of the environment, microorganisms or migration on the oil contaminants' composition can be drawn from the comparison of chemical compositions of the investigated contaminants. However, in case of water contaminants, it is very important to define which part of organic matter has been analyzed. Namely, previous investigations showed that there were some differences in chemical composition of the same oil contaminant depending on the intensity of its contact with ground water. The aim of this work is to define more precisely the interactions between oil contaminant and water, i.e. the influence of the intensity of interaction between the oil contaminant and water on its chemical composition. The study was based on a comparison of four fractionated extracts of an oil pollutant, after they had been analyzed in details. Methods Oil polluted surface water (wastewater canal, Pančevo, Serbia) was investigated. The study was based on a comparison of four extracts of an oil contaminant: extract 1 (decanted part), and extracts 2, 3 and 4 (extracted by shaking for 1 minute, 5 minutes and 24 hours, respectively). The fractionated extracts were saponified with a solution of KOH in methanol, and neutralized with 10% hydrochloric acid. The products were dissolved in a mixture of dichloromethane and hexane, and individually fractionated by column chromatography on alumina and silica gel (saturated hydrocarbon, aromatic, alcohol and fatty acid fractions). n-Alkanes and isoprenoid aliphatic alkanes, polycyclic alkanes of sterane and triterpane types, alcohols and fatty acids were analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). δ13CPDB values of individual n-alkanes in the aliphatic fractions were determined using gas chromatography-isotope ratio monitoring-mass spectrometry (GC-irmMS). Results and discussion. Extracts 1 and 2 are characterized by uniform distribution of n-alkanes, whereas extract 3 is characterized by an even-numbered members dominating the odd-ones, and extract 4 showed a bimodal distribution. Extract 1 is characterized by the least negative δ13CPDB values of C19-C26 n-alkanes. Sterane and triterpane analysis confirmed that all extracts originated from the same oil contaminant. n-Fatty acids, C19-C24, in all extracts are very low, being somewhat higher in extract 4. Even-numbered n-alcohols, C12–C16, were identified in the highest concentration in extract 3. It was assumed that algae were responsible for the composition of extract 3. Furthermore, a possible reason for higher concentrations of C19–C26 n-alkanes and C19–C24 fatty acids in extract 4 is the formation of inclusion compounds with colloidal micelles formed between the oil contaminant's NSO-compounds and water. Conclusion It was undoubtedly confirmed that there were specific differences in the compositions of the different extracts depending on the intensity of the interaction between the oil contaminant and the surface water. Recommendation and Outlook. When comparing the composition of oil contaminants from different water samples (regardless of the ultimate investigation goal) it is necessary to compare the extracts isolated under the same conditions, in other words, extracts that were in the same or very similar interaction with water.  相似文献   

4.
Triolein-containing semipermeable membrane devices (SPMDs) were employed as passive samplers to provide data on the bioavailable fraction of organic, waterborne, organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polynuclear aromatic hydrocarbons (PAHs) in streams flowing through a highly polluted industrial area of Bitterfeld in Saxony-Anhalt, Germany. The contamination of the region with organic pollutants originates in wastewater effluents from the chemical industry, from over one-hundred years of lignite exploitation, and from chemical waste dumps. The main objective was to characterise time-integrated levels of dissolved contaminants, to use them for identification of spatial trends of contamination, and their relationship to potential pollution sources. SPMDs were deployed for 43 days in the summer of 1998 at four sampling sites. The total concentration of pollutants at sampling sites was found to range from a low of 0.8 microgram/SPMD to 25 micrograms/SPMD for PAHs, and from 0.4 microgram/SPMD to 22 micrograms/SPMD for OCPs, respectively. None of the selected PCB congeners was present at quantifiable levels at any sampling site. A point source of water pollution with OCPs and PAHs was identified in the river system considering the total contaminant concentrations and the distribution of individual compounds accumulated by SPMDs at different sampling sites. SPMD-data was also used to estimate average ambient water concentrations of the contaminants at each field site and compared with concentrations measured in bulk water extracts. The truly dissolved or bioavailable portion of contaminants at different sampling sites ranged from 4% to 86% for the PAHs, and from 8% to 18% for the OCPs included in the estimation. The fraction of individual compounds found in the freely dissolved form can be attributed to the range of their hydrophobicity. In comparison with liquid/liquid extraction of water samples, the SPMD method is more suitable for an assessment of the background concentrations of hydrophobic organic contaminants because of substantially lower method quantification limits. Moreover, contaminant residues sequestered by the SPMDs represent an estimation of the dissolved or readily bioavailable concentration of hydrophobic contaminants in water, which is not provided by most analytical approaches.  相似文献   

5.
6.
This study was designed to assess toxic and genotoxic compounds in the urban air of Caserta, South Italy using cuttings from the plant Tradescantia #4430. In situ monitoring of gaseous pollutans was made at 17 sampling points in two seasons of the year. Genotoxicity was evaluated by recording the micronuclei in meiotic pollen mother cells (Trad-MCN assay). In addition, the passive sampler semipermeable membrane devices (SPMDs) were deployed at the sampling points with a significant increase in micronuclei frequency. SPMDs concentrated priority organic pollutants were identified by high performance liquid chromatography and gas chromatography, while toxicity and mutagenesis were assessed on the bacterium Vibrio fischeri using the Microtox and Mutatox systems respectively. Significant toxic and mutagenic effects were observed at different points on the town grid and SPMDs effectively concentrated trace contaminants. The relationship between what was present in the air sampled by SPMDs and the micronuclei frequency was also explored.  相似文献   

7.
Background Atrazine is a widely used herbicide, and its persistence in soil and water causes environmental concerns. In the past, plat uptake processes are mainly investigated for single contaminants. However, in many cases, contaminants co-exist in environmental matrix, such as soil, and plant uptake of one contaminant may be influenced by its co-existing ones.Methods The uptake of atrazine by rice seedlings (Oryza sativa L.) from nutrient solution through the roots was investigated in a solution culture, over an exposure period of 4 weeks. Atrazine accumulation in plant tissues was determined by gas chromatography, and lead was determined using atomic absorption spectrometry.Results and Discussion With different ratios of atrazine and Pb2+ concentrations in solution, the observed atrazine concentrations in shoots and roots varied significantly. In atrazine-Pb2+ mixture systems, the added Pb2+ either increased or decreased the concentrations or BCFs of atrazine in seedlings (relative to those without Pb2+), depending on the atrazine-Pb2+ ratio in nutrient solution. The enhanced atrazine uptake results presumably from atrazine-Pb2+ complex formation. The reduced atrazine uptake, which occurred mainly at high atrazine concentrations, is attributed to atrazine toxicity that inhibited seedling growth and transpiration. Conclusion The formation of atrazine-Pb2+ complex both in the solution and within plant tissues may affect the accumulation of both contaminants by rice plants.  相似文献   

8.

Background

The state of the art of passive water sampling of (nonpolar) organic contaminants is presented. Its suitability for regulatory monitoring is discussed, with an emphasis on the information yielded by passive sampling devices (PSDs), their relevance and associated uncertainties. Almost all persistent organic pollutants (POPs) targeted by the Stockholm Convention are nonpolar or weakly polar, hydrophobic substances, making them ideal targets for sampling in water using PSDs. Widely used nonpolar PSDs include semi-permeable membrane devices, low-density polyethylene and silicone rubber.

Results and discussion

The inter-laboratory variation of equilibrium partition constants between PSD and water is mostly 0.2?C0.5 log units, depending on the exact matrix used. The sampling rate of PSDs is best determined by using performance reference compounds during field deployment. The major advantage of PSDs over alternative matrices applicable in trend monitoring (e.g. sediments or biota) is that the various sources of variance including analytical variance and natural environmental variance can be much better controlled, which in turn results in a reduction of the number of analysed samples required to obtain results with comparable statistical power.

Conclusion

Compliance checking with regulatory limits and analysis of temporal and spatial contaminant trends are two possible fields of application. In contrast to the established use of nonpolar PSDs, polar samplers are insufficiently understood, but research is in progress to develop PSDs for the quantitative assessment of polar waterborne contaminants. In summary, PSD-based monitoring is a mature technique for the measurement of aqueous concentrations of apolar POPs, with a well-defined accuracy and precision.  相似文献   

9.
3-Chlorocarbazole, 3,6-dichlorocarbazole, dibromocarbazole, and 1,3,6,8-tetrabromocarbazole are emerging environmental contaminants which have been detected recently in water, sediment, and soil samples. However, their sources and occurrence have not been explained. Here, we report an enzymatic synthesis of bromo- and chlorocarbazoles by chloroperoxidase from Caldariomyces fumago in water. Density functional theory (DFT) method was used to predict the most stable products. Carbazole and chloroperoxidase were assayed in vitro in the presence of hydrogen peroxide, bromide, and chloride ions in different substrate ratio treatments against constant and varying enzyme concentrations. Halogenated carbazoles formed were identified by high-resolution gas chromatography coupled to mass spectrometry. In all treatments, bromination and chlorination took place, but the composition and concentration of compounds formed varied from one treatment to another. Mono-, di-, tri-, and tetra-substituted bromo- and chlorocarbazoles which include the reported environmental contaminants were synthesized. 3-Substituted and 3,6-substituted congeners were relatively higher in concentration. Enzyme concentration did not favor preferential formation of any of the compounds synthesized. However, their synthesis was influenced by halide concentration. Congeners with bromine and chlorine at position of C-3, C-3,6, C-1,3,6, and C-1,3,6,8 were calculated as the stable intermediate sigma complexes by DFT method. Regioselectivity in halogenation is discussed and hypothesis of the likely stable products in the environment explained. This study provides evidence that bromo- and chlorocarbazoles reported previously can be formed enzymatically in the environment, demonstrating the need to consider aromatic pollutants transformation and their potential toxicity enhancements in the management of water pollution and contaminated sites.  相似文献   

10.
A large-scale groundwater contamination characterises the Pleistocene groundwater system of the former industrial and abandoned mining region Bitterfeld/Wolfen, Eastern Germany. For more than a century, local chemical production and extensive lignite mining caused a complex contaminant release from local production areas and related dump sites. Today, organic pollutants (mainly organochlorines) are present in all compartments of the environment at high concentration levels. An integrated methodology for characterising the current situation of pollution as well as the future fate development of hazardous substances is highly required to decide on further management and remediation strategies. Data analyses have been performed on regional groundwater monitoring data from about 10 years, containing approximately 3,500 samples, and up to 180 individual organic parameters from almost 250 observation wells. Run-off measurements as well as water samples were taken biweekly from local creeks during a period of 18 months. A kriging interpolation procedure was applied on groundwater analytics to generate continuous distribution patterns of the nodal contaminant samples. High-resolution geological 3-D modelling serves as a database for a regional 3-D groundwater flow model. Simulation results support the future fate assessment of contaminants. A first conceptual model of the contamination has been developed to characterise the contamination in regional surface waters and groundwater. A reliable explanation of the variant hexachlorocyclohexane (HCH) occurrence within the two local aquifer systems has been derived from the regionalised distribution patterns. Simulation results from groundwater flow modelling provide a better understanding of the future pollutant migration paths and support the overall site characterisation. The presented case study indicates that an integrated assessment of large-scale groundwater contaminations often needs more data than only from local groundwater monitoring. The developed methodology is appropriate to assess POP-contaminated mega-sites including, e.g. HCH deposits. Although HCH isomers are relevant groundwater pollutants at this site, further organochlorine pollutants are present at considerably higher levels. The study demonstrates that an effective evaluation of the current situation of contamination as well as of the related future fate development requires detailed information of the entire observed system.  相似文献   

11.
The small-scale spatial variability of air pollution observed in urban areas has created concern about the representativeness of measurements used in exposure studies. It is suspected that limit values for traffic-related pollutants may be exceeded near busy streets, although respected at urban background sites. In order to assess spatial concentration gradients and identify weather conditions that might induce air pollution episodes in urban areas, different sampling and modelling techniques were studied.Two intensive monitoring campaigns were carried out in typical street canyons in Paris during winter and summer. Steep cross-road and vertical concentration gradients were observed within the canyons, in addition to large differences between roadside and background levels. Low winds and winds parallel to the street axis were identified as the worst dispersion conditions. The correlation between the measured compounds gave an insight into their sources and fate. An empirical relationship between CO and benzene was established. Two relatively simple mathematical models and an algorithm describing vertical pollutant dispersion were used. The combination of monitoring and modelling techniques proposed in this study can be seen as a reliable and cost-effective method for assessing air quality in urban micro-environments. These findings may have important implications in designing monitoring studies to support investigation on the health effects of traffic-related air pollution.  相似文献   

12.
Organic chemicals have been detected at trace concentrations in the freshwater environment for decades. Though the term trace pollutant indicates low concentrations normally in the nanogram or microgram per liter range, many of these pollutants can exceed an acceptable daily intake (ADI) for humans. Trace pollutants referred to as emerging contaminants (ECs) have recently been detected in the freshwater environment and may have adverse human health effects. Analytical techniques continue to improve; therefore, the number and frequency of detections of ECs are increasing. It is difficult for regulators to restrict use of pollutants that are a human health hazard; scientists to improve treatment techniques for higher priority pollutants; and the public to modify consumption patterns due to the vast number of ECs and the breadth of literature on the occurrence, use, and toxicity. Hence, this paper examines literature containing occurrence and toxicity data for three broad classes of trace pollutants and ECs (industrials, pesticides, and pharmaceuticals and personal care products (PPCPs)), and assesses the relevance of 71 individual compounds. The evaluation indicates that widely used industrials (BPF) and PPCPs (AHTN, HHCB, ibuprofen, and estriol) occur frequently in samples from the freshwater environment but toxicity data were not available; thus, it is important to establish their ADI. Other widely used industrials (BDE-47, BDE-99) and pesticides (benomyl, carbendazim, aldrin, endrin, ethion, malathion, biphenthrin, and cypermethrin) have established ADI values but occurrence in the freshwater environment was not well documented. The highest priority pollutants for regulation and treatment should include industrials (PFOA, PFOS and DEHP), pesticides (diazinon, methoxychlor, and dieldrin), and PPCPs (EE2, carbamazepine, βE2, DEET, triclosan, acetaminophen, and E1) because they occur frequently in the freshwater environment and pose a human health hazard at environmental concentrations.  相似文献   

13.
The efficiency of several lab scale treatments (aerobic, anaerobic and ozone or combination of these) was evaluated using two packaging board mill whitewaters. The effect of the different treatments on the elimination of the organic load, the chemical oxygen demand (COD) and the toxicity was tested as well as the relationship between these parameters. Biocides, phenolic compounds, surfactants, plasticiziers and wood extractives were identified in untreated and treated whitewaters by liquid chromatography coupled with mass spectrometry (LC-MS) or gas chromatography coupled with mass spectrometry (GC-MS). A strong dependency on the water type and treatment efficiency was observed, being the combination of anaerobic and aerobic treatments the best option to reduce the organic contaminants in these waters, although in some cases, the toxicity did not decrease. However, ozone as post-treatment permitted a further reduction of organic compounds, toxicity and COD.  相似文献   

14.
Some preliminary analyses of data selected from three years of smoke shade and sulfur dioxide measurements from the forty air monitoring stations in New York City are presented. The purpose of these analyses is to investigate the spatial-temporal variation in concentration of these pollutants throughout the five boroughs of the city. Air pollution health effects studies in New York City have often used city-wide daily morbidity or mortality statistics and related them to air pollution levels obtained from a single monitoring station. The question of whether readings at one station in New York City can adequately represent the air pollution exposure for the population in the five boroughs is examined in this paper. Some samples of correlation matrices of daily pollution averages obtained from the forty air monitoring stations are presented to illustrate the day-to-day variation in pollution in various sections of New York City. It was found that interstation correlations are not high enough to justify the use of one central pollution measuring station as representative of a large metropolitan area. Sulfur dioxide correlates better between stations than smoke shade; this may reflect the different nature and spatial distribution of sources of the two pollutants. Close proximity of stations, or the fact that they were at similar heights above street or sea level did not necessarily lead to higher correlation coefficients.  相似文献   

15.
Tront JM  Saunders FM 《Chemosphere》2006,64(3):400-407
Aquatic plants uptake, transform and sequester organic contaminants and are used as a bioremediation strategy for the removal of pollutants from wastewaters. A better understanding of factors affecting rate of uptake of contaminants by aquatic plants is needed to improve engineered systems for removal of pollutants from wastewaters. This work focused on delineating sorption to plant surfaces and understanding effects of plant metabolic activity, inhibition, and media pH on the uptake of the ionizable contaminant 2,4,5-trichlorophenol (TCP) by aquatic plant Lemna minor. During L. minor exposure to TCP (0.5-13.9 mg l(-1)), a range of plant metabolic activities was measured using oxygen production rate (0-18.4 micromol h(-1)). A positive correlation was shown between contaminant uptake rate and plant activity. Contaminant uptake was examined at a range of media pH values (6-9) and uptake rates were linearly correlated to fraction of contaminant in protonated form. These results demonstrated a link between plant activity and uptake of contaminant by plants and stress the importance of incorporating plant metabolic activity and contaminant speciation in development of natural and engineered phytoremediation systems. This research also indicates that aquatic plants can actively accumulate trace-organic contaminants and may ultimately serve as a sink for these materials in the natural environment.  相似文献   

16.
The enantiomer composition of six chiral polychlorinated biphenyls (PCBs) were measured in three different certified Standard Reference Materials (SRMs) from the US National Institute of Standards and Technology (NIST): SRM 1946 (Lake Superior fish tissue), SRM 1939a (PCB Congeners in Hudson River Sediment), and SRM 2978 (organic contaminants in mussel tissue--Raritan Bay, New Jersey) to aid in quality assurance/quality control methodologies in the study of chiral pollutants in sediments and biota. Enantiomer fractions (EFs) of PCBs 91, 95, 136, 149, 174, and 183 were measured using a suite of chiral columns by gas chromatography/mass spectrometry. Concentrations of target analytes were in agreement with certified values. Target analyte EFs in reference materials were measured precisely (<2% relative standard deviation), indicating the utility of SRM in quality assurance/control methodologies for analyses of chiral compounds in environmental samples. Measured EFs were also in agreement with previously published analyses of similar samples, indicating that similar enantioselective processes were taking place in these environmental matrices.  相似文献   

17.
Different monitoring parameters (PM mass concentrations, number–size distribution, black carbon, gaseous pollutants, and chemical composition, among others) are currently used in air quality studies. Urban aerosols are the result of several sources and atmospheric processes, which suggests that a single monitoring technique is insufficient to quantitatively evaluate all of them.This study assesses the suitability of a number of monitoring techniques (PM mass concentrations, number and size distribution of ultra-fine particles, levels of gaseous pollutants, and a complete chemical characterization of PM10 and PM2.5) by examining the response of those techniques to the different emission sources and/or atmospheric processes affecting an urban Mediterranean area (Barcelona, NE Spain).The results of this work reveal that the PM mass, the number concentration and the chemical composition give different, but complementary, information. Whereas the mineral matter, a key atmospheric aerosol component across the Mediterranean, is not properly quantitatively assessed by measuring sub-micrometric particles, the monitoring of the number concentration is indispensable to interpret the origin of specific aerosol episodes. Furthermore, the chemical composition yields very relevant information to deduce the causes of specific pollution episodes.The number concentration of ultra-fine particles in urban areas is strongly dependent upon vehicle exhaust emissions, which may cause adverse health impacts. Moreover, urban Mediterranean environments are favourable to produce nucleation-mode particles (<20 nm) with photochemical origin. In those cases, these particles are expected to be of high solubility and consequently their toxicity may differ from that of traffic-generated ultra-fine particles. Thus, the use of a single monitoring parameter to evaluate the health effects seems to be not enough.  相似文献   

18.
Chironomids may adapt to pollution stress but data are confined to species that can be reared in the laboratory. A microcosm approach was used to test for adaptation and species differences in heavy metal tolerance. In one experiment, microcosms containing different levels of contaminants were placed in polluted and reference locations. The response of Chironomus februarius to metal contaminants suggested local adaptation: relatively more flies emerged from clean sediment at the reference site and the reverse pattern occurred at the polluted site. However, maternal effects were not specifically ruled out. In another species, Kiefferulus intertinctus, there was no evidence for adaptation. In a second experiment, microcosms with different contaminant levels were placed at two polluted and two unpolluted sites. Species responded differently to contaminants, but there was no evidence for adaptation in the species where this could be tested. Adaptation to heavy metals may be uncommon and species specific, but more sensitive species need to be tested across a range of pollution levels. Factors influencing the likelihood of adaptation are briefly discussed.  相似文献   

19.
The problem of allocating liability cleanup costs is an arduous task when more than one potentially responsible party has contributed to the groundwater plume. This problem is most likely to be encountered when dealing with methyl- tert -butyl-ether (MTBE) contamination, as MTBE is seen to travel large distances in underlying aquifers. There has been a signi®cant effort in the recent past to develop liability allocation methodologies that incorporate fate and transport behavior and toxicological characteristics of the contaminants. The application of such methods often requires estimation of contaminant input from the vadose zone into the underlying aquifer. A screening level analysis is presented here to develop preliminary insights on relative mass contributions arising from different source types. The analysis illustrates how different vadose zone conceptualizations lead to vastly different contaminant loadings. Parametric studies indicate that the contaminant flux into the aquifer is very sensitive to changes in water infiltration rates. Hence, a reliable estimate of this parameter is critical for equitable allocation of remedial costs. Conceptual model formulation, should focus on identifying whether the fuel present in the aquifer can flow as a separate phase. It is also important to obtain reliable estimates for fluid saturations at the site.  相似文献   

20.
Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe   总被引:3,自引:0,他引:3  
Contaminated sediment in the river basin has become a source of pollution with increasing importance to the aquatic ecosystem downstream. To monitor the temporal changes of the sediment bound contaminants in the River Elbe and the River Dommel monthly toxicity tests were applied to layered sediment and river water samples over the course of 10 months. There is an indication that contaminated sediments upstream adversely affected sediments downstream, but this process did not cause a continuous increase of sediment toxicity. A clear decrease of toxic effects in water and upper layer sediment was observed at the River Elbe station in spring related to high water discharge and algal blooms. The less obvious variation of sediment toxicity in the River Dommel could be explained by stable hydrological conditions. Future monitoring programmes should promote a more frequent and intensive sampling regime during these particular events for ecotoxicological evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号