首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a natural adsorbent (activated dry flowers (ADF)) was prepared from plant-derived waste biomass by chemical activation and employed for chromium (VI) removal from aqueous medium using experimental batch technique. Experiments were carried out as function of adsorbent dosage, pH, and contact time. The maximum chromium (Vl) removal was observed at initial pH 3 (~94 % removal). The equilibrium data was fitted well to Langmuir isotherm. The adsorption capacity of ADF was found to be 4.40 (mg chromium (Vl)/g) which was comparable to the adsorption capacity of some other adsorbents documented. Among various kinetic models applied, pseudo second-order model was found to explain the kinetics of chromium (VI) adsorption most effectively (R 2 >0.99). Thermodynamic parameters such as ΔG, ΔS, and ΔH shows that adsorption process was spontaneous and endothermic at all the concentration ranges studied. Desorption of chromium (Vl) with 2 N NaOH was effective (~71 %) and, hence, there exists the possibility of recycling the ADF. The major advantages of using ADF as an adsorbent are due to its effectiveness in reducing the concentration of chromium (Vl) to very low levels. It requires little processing and is reversible as well as eco-friendly in contrast to traditional methods.  相似文献   

2.
In this study, activated carbon was prepared from waste tire by KOH chemical activation. The pore properties including the BET surface area, pore volume, pore size distribution, and average pore diameter were characterized. BET surface area of the activated carbon was determined as 558 m2/g. The adsorption of uranium ions from the aqueous solution using this activated carbon has been investigated. Various physico-chemical parameters such as pH, initial metal ion concentration, and adsorbent dosage level and equilibrium contact time were studied by a batch method. The optimum pH for adsorption was found to be 3. The removal efficiency has also been determined for the adsorption system as a function of initial concentration. The experimental results were fitted to Langmuir, Freundlich, and Dubinin–Radushkevich (D-R) isotherm models. A comparison of best-fitting was performed using the coefficient of correlation and the Langmuir isotherm was found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of uranium ions onto waste tire activated carbon was 158.73 mg/g. The thermodynamic equilibrium constant and the Gibbs free energy were determined and results indicated the spontaneous nature of the adsorption process. Kinetics data were best described by pseudo-second-order model.  相似文献   

3.
Utilization of agrowaste materials for the production of activated carbon, as an excellent adsorbent with large surface area, is well established industrially, for dephenolation of wastewater. In the present work, dried pods of Prosopis cineraria—a novel and low-cost agrowaste material—were used to prepare activated carbons by zinc chloride activation. Batch adsorption experiments were carried out to study the effects of various physicochemical parameters such as initial phenol concentration, adsorbent dose, initial solution pH, and temperature. Pseudo-first-order second-order and diffusion kinetic models were used to identify the possible mechanisms of such adsorption process. The Langmuir and Freundlich equations were used to analyze the adsorption equilibrium. Maximum removal efficiency of 86 % was obtained with 25 mg?L?1 of initial phenol concentration. The favorable pH for maximum phenol adsorption was 4.0. Freundlich equation represented the adsorption equilibrium data more ideally than the Langmuir. The maximum adsorption capacity obtained was 78.32 mg?g?1 at a temperature of 30 °C and 25 mg?L?1 initial phenol concentration. The adsorption was spontaneous and endothermic. The pseudo-second-order model, an indication of chemisorption mechanism, fitted the experimental data better than the pseudo-first-order Lagergren model. Regeneration of spent activated carbon was carried out using Pseudomonas putida MTCC 2252 as the phenol-degrading microorganism. Maximum regeneration up to 57.5 % was recorded, when loaded phenol concentration was 25 mg?L?1. The data obtained in this study would be useful in designing and fabricating an efficient treatment plant for phenol-rich effluents.  相似文献   

4.
ABSTRACT

In this study, the feasibility of preparing activated carbon from waste tea by physical activation using steam was investigated. The effects of activation temperature on yield and pore properties of the prepared activated carbon were studied. The yield decreased with increased activation temperature owing to the decomposition of cellulose and hemicellulose. The specific surface area and pore volume of the activated carbon were estimated using the Brunauer–Emmett–Teller method, Langmuir equation, and t-plot method. The specific surface area and micropore volume increased with increases in activation temperature, as additional volatile materials were released. The specific surface area significantly decreased at first but slightly increased with increasing activation time. The maximum specific surface area reached 995 m2/g at an activation temperature of 800 °C with a water flow rate of 0.075 g/min and a constant hold time of 0.5 hr. According to the nitrogen adsorption isotherms, micropores mainly developed when the activation temperature was below 800 °C, and both micropores and mesopores developed when it was above 800 °C. The results showed that activation temperature significantly affected micropore and mesopore volumes, as well as the specific surface area of the activated carbon. Overall, waste tea was found to be an attractive raw material for producing low-cost activated carbon.

Implications: Every year, a large amount of waste tea is generated after extraction. The high carbon content of waste tea showed that it can be used as raw material to produce activated carbon. This study investigated the feasibility of preparing activated carbon from waste tea by physical activation using steam. Temperature and time were found to have clear effects on pore properties. Our proposed method and raw material are more environmentally friendly and involve low cost. Furthermore, this offers a potential solution to the problems of waste tea disposal and low-cost activated carbon production.  相似文献   

5.
Low-cost water defluoridation technique is one of the most important issues throughout the world. In the present study, shale, a coal mine waste, is employed as novel and low-cost adsorbent to abate fluoride from simulated solution. Shale samples were collected from Mahabir colliery (MBS) and Sonepur Bazari colliery (SBS) of Raniganj coalfield in West Bengal, India, and used to remove fluoride. To increase the adsorption efficiency, shale samples were heat activated at a higher temperature and samples obtained at 550 °C are denoted as heat-activated Mahabir colliery shale (HAMBS550) and heat-activated Sonepur Bazari colliery shale (HASBS550), respectively. To prove the fluoride adsorption onto different shale samples and ascertain its mechanism, natural shale samples, heat-activated shale samples, and their fluoride-loaded forms were characterized using scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction study, and Fourier transform infrared spectroscopy. The effect of different parameters such as pH, adsorbent dose, size of particles, and initial concentration of fluoride was investigated during fluoride removal in a batch contactor. Lower pH shows better adsorption in batch study, but it is acidic in nature and not suitable for direct consumption. However, increase of pH of the solution from 3.2 to 6.8 and 7.2 during fluoride removal process with HAMBS550 and HASBS550, respectively, confirms the applicability of the treated water for domestic purposes. HAMBS550 and HASBS550 show maximum removal of 88.3 and 88.5 %, respectively, at initial fluoride concentration of 10 mg/L, pH 3, and adsorbent dose of 70 g/L.  相似文献   

6.

Purpose

Two series of activated carbons modified by Fe (II) and Fe (III) (denoted as AC/N-FeII and AC/N-FeIII), respectively, were used as adsorbents for the removal of phosphate in aqueous solutions.

Method

The synthesized adsorbent materials were investigated by different experimental analysis means. The adsorption of phosphate on activated carbons has been studied in kinetic and equilibrium conditions taking into account the adsorbate concentration, temperature, and solution pH as major influential factors.

Results

Maximum removals of phosphate are obtained in the pH range of 3.78?C6.84 for both adsorbents. Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Results suggest that the main phase formed in AC/N-FeII and AC/N-FeIII is goethite and akaganeite, respectively; the presence of iron oxides significantly affected the surface area and the pore structure of the activated carbon.

Conclusions

Studies revealed that iron-doped activated carbons were effective in removing phosphate. AC/N-FeII has a higher phosphate removal capacity than AC/N-FeIII, which could be attributed to its better intra-particle diffusion and higher binding energy. The activation energy for adsorption was calculated to be 22.23 and 10.89 kJ mol?1 for AC/N-FeII and AC/N-FeIII, respectively. The adsorption process was complex; both surface adsorption and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism.  相似文献   

7.
ABSTRACT

Beaded activated carbons (BACs) were derived from waste bamboo tar through carbonization (500°C for 2 hr) followed by physical activation using carbon dioxide (800–900°C for 2–4 hr). The adsorbent was examined for their physical and chemical properties, adsorption capacities toward methylethylketone (MEK) and toluene, and regenerabilities under microwave heating. It was found that the maximum total surface area reached for bamboo-tar-derived BAC after physical activation was 1364 m2 g?1, and more than 95% of the area was attributed to the microporous structures. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were applied to the adsorption isotherm fitting, and the minimum R2 for each model was 0.986, 0.915, and 0.943, respectively. The isosteric heats of adsorption calculated based on D-R parameters for methylethylketone and toluene were 44.04 to 51.50 and 45.88 to 73.27 KJ mol?1, respectively. They were slightly over the range of physisorption and increased with adsorbate loading, which might be related to the micropore filling mechanism. Microwave regeneration under 600 W of power output removed most of the adsorbate (>93.03%) within 8 min. The results of this study are intended to benefit future study on waste-derived adsorbent in environmental applications.  相似文献   

8.
Spent coffee grounds (SCG) have been used for the production of activated carbon (AC) by impregnation with different ratios of phosphoric acid at 600?°C, Xp (H3PO4/coffee): 3:130%, 4:130%, 3:150% and 4:150%. The obtained AC was characterized by BET, FTIR and SEM. BET surface area corresponds to 803.422 m2 g?1. The influences of the main parameters such as contact time, the pesticides initial concentration, adsorbent dose, pH and temperature on the efficiency of separation process were investigated during the batch operational mode. Results were modeled by adsorption isotherms: Langmuir, Freundlich and Temkin isotherms, which gave satisfactory correlation coefficients. The maximum adsorption capacities calculated from the Langmuir isotherms were 11.918?mg g?1 for carbendazim and 5.834?mg g?1 for linuron at room temperature. Adsorption kinetics of carbendazim and linuron have been studied by the pseudo-first-order, the pseudo-second-order and the intraparticle diffusion model. The results of adsorption kinetics have been fitted the best by pseudo-second-order model. The resulted data from FTIR characterization pointed to the presence of many functional groups on the AC surface. SCG adsorbent, as an eco-friendly and low-cost material, showed high potential for the removal of carbendazim and linuron from aqueous solutions.  相似文献   

9.
The presence of dyes in water is undesirable due to the toxicological impact of their entrance into the food chain. Owing to the recalcitrant nature of dyes to biological oxidation, a tertiary treatment like adsorption is required. In the present study, unsaturated polyester resin (UPR) has been used as a sorbent in the treatment of dye-contaminated water. Different concentrations of Tropaeoline 000 containing water were treated with UPR. The preliminary investigations were carried out by batch adsorption to examine the effects of pH, adsorbate concentration, adsorbent dosage, contact time, and temperature. A plausible mechanism for the ongoing adsorption process and thermodynamic parameters have also been obtained from Langmuir and Freundlich adsorption isotherm models. Thermodynamic parameter showed that the sorption process of Tropaeoline 000 onto activated carbon (AC) and UPR were feasible, spontaneous, and endothermic under studied conditions. The estimated values for (ΔG) are ?10.48?×?103 and ?6.098?×?103 kJ mol?1 over AC and UPR at 303 K (30 °C), indicating towards a spontaneous process. The adsorption process followed pseudo-first-order model. The mass transfer property of the sorption process was studied using Lagergren pseudo-first-order kinetic models. The values of % removal and k ad for dye systems were calculated at different temperatures (303–323 K). The mechanism of the adsorption process was determined from the intraparticle diffusion model.  相似文献   

10.
The removal of Cu2+, Ni2+, and Zn2+ ions from their multi-component aqueous mixture by sorption on activated carbon prepared from date stones was investigated. In the batch tests, experimental parameters were studied, including solution pH, contact time, initial metal ions concentration, and temperature. Adsorption efficiency of the heavy metals was pH-dependent and the maximum adsorption was found to occur at around 5.5 for Cu, Zn, and Ni. The maximum sorption capacities calculated by applying the Langmuir isotherm were 18.68 mg/g for Cu, 16.12 mg/g for Ni, and 12.19 mg/g for Zn. The competitive adsorption studies showed that the adsorption affinity order of the three heavy metals was Cu2+?>?Ni2+?>?Zn2+. The test results using real wastewater indicated that the prepared activated carbon could be used as a cheap adsorbent for the removal of heavy metals in aqueous solutions.  相似文献   

11.
A particular agricultural waste, peanut shell, has been used as precursor for activated carbon production by chemical activation with H3PO4. Unoxidized activated carbon was prepared in nitrogen atmosphere which was then heated in air at a desired temperature to get oxidized activated carbon. The prepared carbons were characterized for surface area, surface morphology, and pore volume and utilized for the removal of Cr(VI) from aqueous solution. Batch mode experiments were conducted to study the effects of pH, contact time, particle size, adsorbent dose, initial concentration of adsorbate, and temperature on the adsorption of Cr(VI). Cr(VI) adsorption was significantly dependent on solution pH, and the optimum adsorption was observed at pH 2. Pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were used to analyze the kinetic data obtained at different initial Cr(VI) concentrations. The adsorption kinetic data were described very well by the pseudo-second-order model. Equilibrium isotherm data were analyzed by the Langmuir, Freundlich, and Temkin models. The results showed that the Langmuir adsorption isotherm model fitted the data better in the temperature range studied. The adsorption capacity which was found to increase with temperature showed the endothermic nature of Cr(VI) adsorption. The thermodynamic parameters, such as Gibb’s Free energy change (ΔG°), standard enthalpy change (ΔH°), and standard entropy change (ΔS°) were evaluated.  相似文献   

12.
In the present study, an activated charcoal (AC) plate was prepared by physical activation method. Its surface was coated with TiO2 nanoparticles by electrophoretic deposition (EPD) method. The average crystallite size of TiO2 nanoparticles was determined approximately 28 nm. The nature of prepared electrode was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) surface area measurement before and after immobilization. The electrosorption and photocatalytic one-stage combined process was investigated in degradation of Lanasol Red 5B (LR5B), and the effect of dye concentration, electrolyte concentration, pH, voltage, and contact time was optimized and modeled using response surface methodology (RSM) approach. The dye concentration of 30 mg L?1, Na2SO4 concentration of 4.38 g L?1, pH of 4, voltage of 250 mV, and contact time of 120 min were determined as optimum conditions. Decolorization efficiency increased in combined process to 85.65 % at optimum conditions compared to 66.03 % in TiO2/AC photocatalytic, 20.09 % in TiO2/AC electrosorption, and 1.91 % in AC photocatalytic processes.  相似文献   

13.
A batch adsorption process was applied to investigate the removal of manganese from aqueous solution by oxidized multiwalled carbon nanotubes (MWCNTs). In doing so, the thermodynamic, adsorption isotherm, and kinetic studies were also carried out. MWCNT with 5–10-nm outer diameter, surface area of 40–600 m2/g, and purity above 95 % was used as an adsorbent. A systematic study of the adsorption process was performed by varying pH, ionic strength, and temperature. Manganese-adsorbed MWCNT was characterized by Raman, FTIR, X-ray diffraction, XPS, SEM, and TEM. The adsorption efficiency could reach 96.82 %, suggesting that MWCNT is an excellent adsorbent for manganese removal from water. The results indicate that second-order kinetics model was well suitable to model the kinetic adsorption of manganese. Equilibrium data were well described by the typical Langmuir adsorption isotherm. Thermodynamic studies revealed that the adsorption reaction was spontaneous and endothermic process. The experimental results showed that MWCNT is an excellent manganese adsorbent. The MWCNTs removed the manganese present in the water and reduced it to a permissible level making it drinkable.  相似文献   

14.
Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).  相似文献   

15.
It is well known that adsorption is an efficient method of removal of various pollutants from wastewater. The present study examines the phenol removal from water by adsorption on a new material, based on zeolitic volcanic tuff. This compound contains zeolitic tuff and cellulose, another known adsorbent, in a mass ratio of 4 to 1. The performances of the new adsorbent composite were compared with those of a widely used adsorbent material, zeolitic volcanic tuff. The adsorbent properties were tested on batch synthetic solutions containing 1–10 mg L?1 (1–10 ppm) phenol, at room temperature without pH adjustment. The influence of the adsorbent dose, pH and contact time on the removal degree of phenol from water was investigated. The experimental data were modeled using the Langmuir, Freundlich, and Temkin adsorption isotherms. The Langmuir model was found to best represent our data revealing a monolayer adsorption with a maximum adsorption capacity between 0.12 and 0.53 mg g?1 at 25 °C, for 2.00 g of adsorbent, depending on the initial phenol concentration. The adsorption kinetic study was performed using a pseudo-first- and pseudo-second-order kinetic models illustrating that phenol adsorption on zeolite composite is well described by pseudo-first kinetic equations. Our results indicated that phenol adsorption on the new adsorbent composite is superior to that on the classic zeolite.  相似文献   

16.
This research involved the use of response surface methodology (RSM) to investigate the adsorption of Disperse Red 167 dye onto the bamboo-based activated carbon activated with H3PO4 (PBAC) in a batch process. F400, a commercially available activated carbon, was used in parallel for comparison. Analysis of variance showed that input variables such as the contact time, temperature, adsorbent dosage and the interaction between the temperature and the contact time had a significant effect on the dye removal for both adsorbents. RSM results show that the optimal contact time, temperature, initial dye concentration and adsorbent dosage for both adsorbents were found to be 15.4 h, 50 °C, 50.0 mg L?1 and 12.0 g L?1, respectively. Under these optimal conditions, the removal efficiencies reached 90.23 % and 92.13 % for PBAC and F400, respectively, with a desirability of 0.937. The validation of the experimental results confirmed the prediction of the models derived from RSM. The adsorption followed a nonlinear pseudo-first-order model and agreed well with the Freundlich and Temkin isotherm as judged by the levels of the AICc and the Akaike weight. Furthermore, the thermodynamics analysis indicated that, for both adsorbents, the adsorption was a physical process that was spontaneous, entropy-increasing and endothermic.  相似文献   

17.
An effective dichloromethane (DCM) utilizer Methylobacterium rhodesianum H13 was isolated from activated sludge. A response surface methodology was conducted, and the optimal conditions were found to be 4.5 g/L Na2HPO4·12H2O, 0.5 g/L (NH4)2SO4, an initial pH of 7.55, and a temperature of 33.7 °C. The specific growth rate of 0.25 h?1 on 10 mM DCM was achieved, demonstrating that M. rhodesianum H13 was superior to the other microorganisms in previous investigations of DCM utilization. DCM mineralization paralleled the production of cells, CO2, and water-soluble metabolites, as well as the release of Cl?, whereas the carbon distribution and Cl? yield varied with DCM concentrations. The facts that complete degradation only occurred with DCM concentrations below 15 mM and repetitive degradation of 5 mM DCM could proceed for only three cycles were ascribed to pH decrease (from 7.55 to 3.02) though a buffer system was employed.  相似文献   

18.
Red mud-modified biochar (RM-BC) has been produced to be utilized as a novel adsorbent to remove As because it can effectively combine the beneficial features of red mud (rich metal oxide composition and porous structure) and biochar (large surface area and porous structure properties). SEM-EDS and XRD analyses demonstrated that red mud had loaded successfully on the surface of biochar. With the increasing of pH in solution, arsenate (As(V)) adsorption on RM-BC decreased while arsenite (As(III)) increased. Arsenate adsorption kinetics process on RM-BC fitted the pseudo-second-order model, while that of As(III) favored the Elovich model. All sorption isotherms produced superior fits with the Langmuir model. RM-BC exhibited improved As removal capabilities, with a maximum adsorption capacity (Qmax) for As(V) of 5923 μg g?1, approximately ten times greater than that of the untreated BC (552.0 μg g?1). Furthermore, it has been indicated that the adsorption of As(V) on RM-BC may be strongly associated with iron oxides (hematite and magnetite) and aluminum oxides (gibbsite) by X-ray absorption near-edge spectroscopy (XANES), which was possibly because of surface complexation and electrostatic interactions. RM-BC may be used as a valuable adsorbent for removing As in the environment due to the waste materials being relatively abundant.  相似文献   

19.
Effective disposal of pumpkin husk (PH) as a redundant waste is a significant work for environmental protection and full utilization of resource. Predictive modeling of sorption of Lanaset Red (LR) G on PH was investigated in a batch system as functions of particle size, adsorbent dose, pH, temperature, and initial dye concentration. Fourier transform infrared spectroscopy attenuated total reflectance spectra of PH powders before and after the sorption of LR G were determined. Sorption process was found to be dependent on particle size, adsorbent dose, pH, temperature, initial dye concentration, and contact time. Amine and amide groups of PH had significant effect on the sorption process. The pHzpc of PH was found as 6.4. Sorption process was very fast initially and reached equilibrium within 60 min. Dynamic behavior of sorption was well represented by logistic and Avrami models. The sorption of LR G on PH was excellently described by Langmuir model, indicating a homogeneous phenomenon. Monolayer sorption capacity decreased from 440.78 to 436.28 mg g?1 with increasing temperature. Activation energy, thermodynamic, and desorption studies showed that this process was physical character, exothermic, and spontaneous. This study confirmed that PH as an effective and low-cost adsorbent had a great potential for the removal of LR G as an alternative eco-friendly process.  相似文献   

20.
ABSTRACT

Activated carbons were produced from waste tires using a chemical activation method. The carbon production process consisted of potassium hydroxide (KOH) impregnation followed by pyrolysis in N2 at 600-900 °C for 0-2 hr. The activation method can produce carbons with a surface area (SA) and total pore volume as high as 470 m2/g and 0.57 cm3/g, respectively. The influence of different parameters during chemical activation, such as pyrolysis temperature, holding time, and KOH/tire ratio, on the carbon yield and the surface characteristics was explored, and the optimum preparation conditions were recommended. The pore volume of the resulting carbons generally increases with the extent of carbon gasified by KOH and its derivatives, whereas the SA increases with degree of gasification to reach a maximum value, and then decreases upon further gasification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号