首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Low solubility of certain hydrophobic soil contaminants limits remediation process. Surface-active compounds can improve the solubility and removal of hydrophobic compounds from contaminated soils and, consequently, their biodegradation. Hence, this paper aims to study desorption efficiency of oil from soil of SPB1 lipopeptide biosurfactant. The effect of different physicochemical parameters on desorption potency was assessed. Taguchi experimental design method was applied in order to enhance the desorption capacity and establish the best washing parameters. Mobilization potency was compared to those of chemical surfactants under the newly defined conditions. Better desorption capacity was obtained using 0.1 % biosurfacatnt solution and the mobilization potency shows great tolerance to acidic and alkaline pH values and salinity. Results show an optimum value of oil removal from diesel-contaminated soil of about 87 %. The optimum washing conditions for surfactant solution volume, biosurfactant concentration, agitation speed, temperature, and time were found to be 12 ml/g of soil, 0.1 % biosurfactant, 200 rpm, 30 °C, and 24 h, respectively. The obtained results were compared to those of SDS and Tween 80 at the optimal conditions described above, and the study reveals an effectiveness of SPB1 biosurfactant comparable to the reported chemical emulsifiers. (1) The obtained findings suggest (a) the competence of Bacillus subtilis biosurfactant in promoting diesel desorption from soil towards chemical surfactants and (b) the applicability of this method in decontaminating crude oil-contaminated soil and, therefore, improving bioavailability of hydrophobic compounds. (2) The obtained findings also suggest the adequacy of Taguchi design in promoting process efficiency. Our findings suggest that preoptimized desorption process using microbial-derived emulsifier can contribute significantly to enhancement of hydrophobic pollutants' bioavailability. This study can be complemented with the investigation of potential role in improving the biodegradation of the diesel adsorbed to the soil.  相似文献   

2.
Thermal desorption is widely used for remediation of soil contaminated with volatiles, such as solvents and distillates. In this study, a soil contaminated with semivolatile polychlorinated biphenyls (PCBs) was sampled at an interim storage point for waste PCB transformers and heated to temperatures from 300 to 600 °C in a flow of nitrogen to investigate the effect of temperature and particle size on thermal desorption. Two size fractions were tested: coarse soil of 420–841 μm and fine soil with particles <250 μm. A PCB removal efficiency of 98.0 % was attained after 1 h of thermal treatment at 600 °C. The residual amount of PCBs in this soil decreased with rising thermal treatment temperature while the amount transferred to the gas phase increased up to 550 °C; at 600 °C, destruction of PCBs became more obvious. At low temperature, the thermally treated soil still had a similar PCB homologue distribution as raw soil, indicating thermal desorption as a main mechanism in removal. Dechlorination and decomposition increasingly occurred at high temperature, since shifts in average chlorination level were observed, from 3.34 in the raw soil to 2.75 in soil treated at 600 °C. Fine soil particles showed higher removal efficiency and destruction efficiency than coarse particles, suggesting that desorption from coarse particles is influenced by mass transfer.  相似文献   

3.
Optimizing process parameters that affect the remediation time and power consumption can improve the treatment efficiency of the electrokinetic remediation as well as determine the cost of a remediation action. Lab-scale electrokinetic remediation of Pb-contaminated soils was investigated for the effect of complexant ethylenediaminetetraacetic acid (EDTA) and acetic acid and approaching anode on the removal efficiency of Pb. When EDTA was added to the catholyte, EDTA dissolved insoluble Pb in soils to form soluble Pb–EDTA complexes, increasing Pb mobility and accordingly removal efficiency. The removal efficiency was enhanced from 47.8 to 61.5 % when the EDTA concentration was increased from 0.1 to 0.2 M, showing that EDTA played an important role in remediation. And the migration rate of Pb was increased to 72.3 % when both EDTA and acetic acid were used in the catholyte. The “approaching anode electrokinetic remediation” process in the presence of both EDTA and acetic acid had a higher Pb-removal efficiency with an average efficiency of 83.8 %. The efficiency of electrokinetic remediation was closely related to Pb speciation. Exchangeable and carbonate-bounded Pb were likely the forms which could be removed. All results indicate that the approaching anode method in the presence of EDTA and acetic acid is an advisable choice for electrokinetic remediation of Pb-contaminated soil.  相似文献   

4.
Polycyclic aromatic hydrocarbon (PAH) and metal-polluted sites caused by abandoned coking plants are receiving wide attention. To address the associated environmental concerns, innovative remediation technologies are urgently needed. This study was initiated to investigate the feasibility of a cleanup strategy that employed an initial phase, using methyl-β-cyclodextrin (MCD) solution to enhance ex situ soil washing for extracting PAHs and metals simultaneously, followed by the addition of PAH-degrading bacteria (Paracoccus sp. strain HPD-2) and supplemental nutrients to treat the residual soil-bound PAHs. Elevated temperature (50 °C) in combination with ultrasonication (35 kHz, 30 min) at 100 g MCD L?1 was effective in extracting PAHs and metals to assist soil washing; 93 % of total PAHs, 72 % of Cd, 78 % of Ni, 93 % of Zn, 84 % of Cr, and 68 % of Pb were removed from soil after three successive washing cycles. Treating the residual soil-bound PAHs for 20 weeks led to maximum biodegradation rates of 34, 45, 36, and 32 % of the remaining total PAHs, 3-ring PAHs, 4-ring PAHs, and 5(+6)-ring PAHs after washing procedure, respectively. Based on BIOLOG Ecoplate assay, the combined treatment at least partially restored microbiological functions in the contaminated soil. The ex situ cleanup strategy through MCD-enhanced soil washing followed by microbial augmentation can be effective in remediating PAH and metal-contaminated soil.  相似文献   

5.
Polycyclic aromatic hydrocarbons and heavy metals in the environment are a concern, and their removal to acceptable level is required. Phytoremediation, the use of plants to treat contaminated soils, could be an interesting alternative to conventional remediation processes. This work evaluates the role of single and combined applications of chelates to single or mixed Cr + benzo[a]pyrene (B[a]P)-contaminated soil. Medicago sativa was grown in contaminated soil and was amended with 0.3 g citric acid, 0.146 g ethylenediaminetetraacetic acid (EDTA), or their combination for 60 days. The result shows that in Cr-contaminated soil, the application of EDTA + citric acid significantly (p?<?0.05) decreased the shoot dry matter of M. sativa by 55 % and, as such, decreased the Cr removal potential from the soil. The soluble Cr concentration in single Cr or Cr + B[a]P-contaminated soil was enhanced with the amendment of all chelates; however, only the application of citric acid in Cr-contaminated soil (44 %) or EDTA and EDTA + citric acid in co-contaminated soil increased the removal of Cr from the soil (34 and 54 %, respectively). The dissipation of B[a]P in single B[a]P-contaminated soil was effective even without planting and amendment with chelates, while in co-contaminated soil, it was related to the application of either EDTA or EDTA + citric acid. This suggests that M. sativa with the help of chelates in single or co-contaminated soil can be effective in phytoextraction of Cr and promoting the biodegradation of B[a]P.  相似文献   

6.
In this study, an environmental assessment on a soil washing process for the remediation of a Pb-contaminated shooting range site was conducted, using a green and sustainable remediation tool, i.e., SiteWise ver. 2, based on data relating specifically to the actual remediation project. The entire soil washing process was classified into four major stages, consisting of soil excavation (stage I), physical separation (stage II), acid-based (0.2 N HCl) chemical extraction (stage III), and wastewater treatment (stage IV). Environmental footprints, including greenhouse gas (GHG) emissions, energy consumption, water consumption, and critical air pollutant productions such as PM10, NO x , and SO x , were calculated, and the relative contribution of each stage was analyzed in the environmental assessment. In stage I, the relative contribution of the PM10 emissions was 55.3 % because the soil excavation emitted the fine particles. In stage II, the relative contribution of NO x and SO x emissions was 42.5 and 52.5 %, respectively, which resulted from electricity consumption for the operation of the separator. Stage III was the main contributing factor to 63.1 % of the GHG emissions, 67.5 % of total energy used, and 37.4 % of water consumptions. The relatively high contribution of stage III comes from use of consumable chemicals such as HCl and water-based extraction processes. In stage IV, the relative contributions of GHG emissions, total energy used, and NO x and SO x emissions were 23.2, 19.4, 19.5, and 25.3 %, respectively, which were caused by chemical and electricity demands for system operation. In conclusion, consumable chemicals such as HCl and NaOH, electric energy consumption for system operation, and equipment use for soil excavation were determined to be the major sources of environmental pollution to occur during the soil washing process. Especially, the acid-based chemical extraction process should be avoided in order to improve the sustainability of soil washing processes.  相似文献   

7.
This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.  相似文献   

8.
Polychlorinated biphenyls (PCBs) pose a threat to the environment due to their high adsorption capacity to soil organic matter, stability and low reactivity, low water solubility, toxicity and ability to bioaccumulate. With Icelandic soils, research on contamination issues has been very limited and no data has been reported either on PCB degradation potential or rate. The goals of this research were to assess the bioavailability of aged PCBs in the soils of the old North Atlantic Treaty Organization facility in Keflavík, Iceland and to find the best biostimulation method to decrease the pollution. The effectiveness of different biostimulation additives (N fertiliser, white clover and pine needles) at different temperatures (10 and 30 °C) and oxygen levels (aerobic and anaerobic) were tested. PCB bioavailability to soil fauna was assessed with earthworms (Eisenia foetida). PCBs were bioavailable to earthworms (bioaccumulation factor 0.89 and 0.82 for earthworms in 12.5 ppm PCB soil and in 25 ppm PCB soil, respectively), with less chlorinated congeners showing higher bioaccumulation factors than highly chlorinated congeners. Biostimulation with pine needles at 10 °C under aerobic conditions resulted in nearly 38 % degradation of total PCBs after 2 months of incubation. Detection of the aerobic PCB degrading bphA gene supports the indigenous capability of the soils to aerobically degrade PCBs. Further research on field scale biostimulation trials with pine needles in cold environments is recommended in order to optimise the method for onsite remediation.  相似文献   

9.
针对修复焦化厂高浓度多环芳烃污染土壤高成本的现实,采用以非食用性植物油、生物柴油、表面活性剂及其乳化合成的微乳液为淋洗剂,比较不同淋洗剂的淋洗效果。结果表明乳化合成的微乳液对焦化厂土壤中多环芳烃的总去除率高于单独使用表面活性剂为淋洗剂对土壤中多环芳烃的总去除率,说明生物柴油及植物油与表面活性剂乳化形成的微乳液对原污染土壤中的多环芳烃具有显著的增溶作用。1%TW-80和2.5%TW-80对土壤中多环芳烃总去除率分别为11%和14%;以2.5%TW-80为原料乳化合成的微乳液的淋洗去除率较以1%TW-80为原料乳化合成的微乳液高,总去除率分别为15%~30%和11%~18%;以生物柴油为原料乳化合成的微乳液的淋洗去除率较以植物油为原料乳化合成的微乳液高,分别为17%~30%和15%~23%,且对多环芳烃的去除率与其辛醇水分配系数(logKow)呈线性相关关系。  相似文献   

10.
Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg?1) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg?1. Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.  相似文献   

11.
The endophytic bacterium isolated from Scirpus triqueter was proved to be an oil-degraded bacterium. A pot experiment was conducted to investigate the removal ratio of diesel under the combined effect of oil-degraded microorganism (Pseudomonas sp. J4AJ) and S. triqueter. The effect of diesel on plant growth parameters, soil enzymes and microbial community was assessed after 60 days. The results showed that the soils which were planted with S. triqueter and inoculated with J4AJ displayed the highest removal ratio (54.51?±?0.15 %) after 60-day experiment. However, the removal ratio of J4AJ-treated soils was 38.97?±?0.55 %. Diesel was toxic to S. triqueter, as evidenced by growth inhibition during the experimental period. However, the plant height and stem biomass in the soils inoculated with J4AJ significantly increased. The combined effect of S. triqueter and J4AJ improved the enzyme activities of the catalase and dehydrogenase in the contaminated soil. The diversity index in soils under the effect of S. triqueter combined with J4AJ was lower than that of the other soil samples. The principal analysis of phospholipid fatty acid signatures revealed that the combined effect of S. triqueter and J4AJ increased the differences of soil microbial community structure with the other treatments.  相似文献   

12.
土壤砷 (As) 、锑 (Sb) 污染对生态环境和人体健康有着潜在的风险,采用黑曲霉发酵液 (FB) 与纳米零价铁 (nZVI) 联用淋洗修复As、Sb污染土壤。通过振荡淋洗实验,探究nZVI强化FB淋洗去除As、Sb的效果及不同条件下对As、Sb淋洗效率的影响。结果表明,制备的FB对污染土壤中As和Sb有着较好的去除效果,去除率可达84.1%和71.8%;nZVI对FB去除As、Sb有强化作用,在nZVI质量浓度为0.1 g·L−1、pH为1和淋洗时间为60 min的条件下,其淋洗效果最佳,对As、Sb淋洗效率可达96.6%和95.6%,修复后的土壤达到《土壤环境质量 建设用地土壤污染风险管控标准 (试行) 》 (GB 36600-2018) 二类用地标准。nZVI-FB对土壤中As、Sb的解吸动力学符合拟二级动力学方程。nZVI-FB能够有效的提取土壤中As、Sb的铁铝氧化物结合态。本研究结果可为As、Sb复合污染土壤的淋洗修复提供参考。  相似文献   

13.
Remediation of contaminated soil by a solvent/surfactant system   总被引:13,自引:0,他引:13  
Chu W  Kwan CY 《Chemosphere》2003,53(1):9-15
This study investigates a new approach using a solvent/surfactant-aided soil-washing process to improve the performance of conventional surfactant-aided soil remediation. Three surfactants (Brij 35, Tween 80, and SDS) and three organic solvents (acetone, triethylamine, and squalane) were used to evaluate the desorption performances of 4,4'-dichlorobiphenyl (DCB) out of three soils with different sorption characteristics. The performance improvement is likely due to better dissolution of the hydrophobic contaminants from the soil assisted by the solvent, and the formation of solvent-incorporated surfactant micelles, which increases both the size (i.e. capacity) and affinity of micelles for more effective contaminant extraction. The foc of soils were found to be important in determining the performance of a solvent/surfactant-aided soil-washing process. Judging from the experimental data and as verified by the two constants in the proposed soil-washing model, as the organic solvent is coexisting with the surfactant micelles, both the marginal soil-washing performance (right after the use of a very small amount of solvent compared to that of none) and the final soil-washing capacity are increased compared to those of a pure surfactant-aided washing process.  相似文献   

14.
以表面活性剂TritonX-100(TX-100)为洗脱剂,某有机氯农药(organochlorinepesticides,OCPs)污染场地土壤为对象,七氯、氯丹和灭蚁灵为目标污染物,研究微米Cu/Fe双金属对污染土壤洗脱液中OCPs的降解效果。考察了洗脱液中OCPs初始浓度、洗脱液pH值、微米零价铁加入量和cu负载量对Cu/Fe去除OCPs效果的影响。结果表明,微米Cu/Fe可以有效的去除土壤洗脱液中目标污染物。当微米零价铁加入量为1.0g(25g/L),cu负载量为1.0%,洗脱液pH值为6.89时,Cu/Fe对2号土壤洗脱液中七氯、γ-氯丹、α-氯丹和灭蚁灵的去除效果最好,去除率分别为100.0%、99.3%、80.8%和71.1%。洗脱液中OCPs初始浓度越低,微米零价铁加入量越大,Cu/Fe对OCPs去除率越高;偏酸性条件有利于Cu/Fe对γ-氯丹和灭蚁灵的去除,而α-氯丹在中性条件下去除效果最好;1号土壤和2号土壤洗脱液的最佳铜负载量分别为2.O%和1.0%。  相似文献   

15.
Abstract

The adsorption, desorption, and mobility of permethrin in six tropical soils was determined under laboratory and greenhouse conditions. The six soils were selected from vegetable growing areas in Malaysia. Soil organic matter (OM) was positively correlated (r 2 = 0.97) with the adsorption of permethrin. The two soils, namely, Teringkap 1 and Lating series with the highest OM (3.2 and 2.9%) released 32.5 and 30.8% of the adsorbed permethrin after four consecutive repetitions of the desorption process, respectively, compared to approximately 75.4% of the Gunung Berinchang soil with the lowest OM (1.0%) under the same conditions. The mobility of permethrin down the soil column was inversely correlated to the organic matter content of the soil. Permethrin residue penetrated only to the 10–15 cm zone in the Teringkap 1 soil with 3.2% OM but penetrated to a depth of more than 20 cm in the other soils. The Berinchang series soil with the lowest OM (1.0%) yielded leachate with 14.8% permethrin, the highest level in leachates from all the soils tested. Therefore, the possibility for permethrin to contaminate underground water may be greater in the presence of low organic matter content, which subsequently allows a higher percentage of permethrin to move downwards through the soil column.  相似文献   

16.
ABSTRACT

Pesticide contamination results from manufacturing, improper storage, handling, or disposal of pesticides, and from agricultural processes. Since most pesticides are mixtures of different compounds, selecting a remedy for pesticide-contaminated soils can be a complicated process. The various available treatment options for remediation fall into three broad categories: containment-immobilization, separation-concentration, and destruction. This paper categorizes pesticides into waste groups based on available treatment options and provides a review of separation treatment options that have been demonstrated to—or show potential to— treat pesticide-contaminated soil. Technologies include radio frequency heating, soil washing, thermal desorp-tion, and solvent extraction.  相似文献   

17.
Perfluorinated compounds (PFCs) and organochlorine pesticides (OCPs) were analyzed in surface soils along the Huaihe River. Sixteen target PFCs and nine OCPs were quantified in soils from a region of intensive industrial and agricultural development. Concentrations of PFCs and OCPs ranged from less than the limit of detection (LOD) to 1.22 ng/g and 3.63 to 227 ng/g, respectively. Contamination by OCPs was more serious than that of PFCs, which was consistent with the fact that OCPs were widely used in agriculture of the district while there was no known production or application of PFCs in the study area. The predominant PFCs in soils were PFOA and PFOS with concentrations that ranged from <LOD to 0.20 ng/g and <LOD to 0.21 ng/g, respectively. Among the three groups of OCPs, average concentrations of HCHs, DDTs, and HCB were 4.7, 23.7, and 1.4 ng/g, respectively. Results of principal component analysis revealed relatively weak associations between concentrations of PFCs and those of OCPs, while concentrations of OCPs exhibited similar patterns of distributions. Among the mainstream and five tributaries, the highest concentrations of PFCs were observed along the Pihe River, while the highest concentrations of OCPs occurred along the Xifeihe River. In general, concentrations of PFCs were evenly distributed, while those of OCPs exhibited relatively greater spatial differences.  相似文献   

18.
As(V) retention capacity is determined by means of adsorption/desorption trials performed for coarse and fine ground mussel shell, forest and vineyard soils with or without fine shell, pine wood ash, oak wood ash, pine sawdust and slate-processing fines. Pine ash shows the highest arsenic retention potential (with >97 % adsorption and ≤1 % desorption), followed by shell-amended forest soil (adsorption between 96 and 92 %), by un-amended forest soil (adsorption between 98 and 86 %) and by the amended vineyard soil (adsorption between 92 and 75 %). Sawdust is the material with the lowest arsenic retention capacity in most cases, with un-amended vineyard soil also showing poor results. In the case of oak ash, As(V) percentage adsorption becomes higher with increasing added arsenic concentrations, while this increase in added arsenic causes lower percentage adsorption in the case of slate fines. Regarding adsorption ability, As(V) adsorption data were fitted to Freundlich and Langmuir models, showing good fitting, with pine ash and shell-amended forest soil having the highest K F values. In view of that, mussel shell amendment would be useful to increase arsenic retention on forest and vineyard soils, while pine ash could be used to retain arsenic even from wastewaters.  相似文献   

19.
热解吸对土壤中POPs农药的去除及土壤理化性质的影响   总被引:1,自引:0,他引:1  
为探索土壤热解吸修复技术对POPs污染土壤的修复效果及修复后土壤可耕作性,选择北京某农药厂旧址的POPs农药污染土壤,研究了不同温度下热解吸处理后土壤中滴滴涕(DDTs)和六六六(HCHs)各组分的去除率以及土壤理化性质的变化。结果表明,热解吸修复技术可有效去除土壤中POPs农药,其中,p,p’-DDE与α-HCH组分去除率受热解吸温度的影响比其他组分更为明显。∑HCH与∑DDT在310℃、340℃时分别达到97%、99%的去除率,且此时土壤中的污染物含量低于我国《展览会用地土壤环境质量评价标准》,此后去除率受温度的影响不明显。热解吸温度对修复后土壤的理化性质有一定的影响,不同温度影响的程度各不相同,其中,有机质含量与全氮含量分别由0.78%、0.0352%降至0.14%、0.0107%;pH波动幅度较小,由7.80变至8.25;阳离子交换量变化存在波动,但呈整体下降趋势,由7.87 mg/kg降至5.00mg/kg;土壤中速效磷显著增加,由7.59 mg/kg升至21.8 mg/kg。而在最优温度条件下,土壤理化性质受热解吸温度的影响较小。由此可以说明,热解吸技术可以用于POPs污染土壤的修复,选择适当的热解吸温度对土壤的可耕作性影响有限,因而是一种潜在的绿色修复技术。  相似文献   

20.
Two petroleum-degrading strains were screened from oil fields and denoted as SWH-1 (Bacillus subtilis) and SWH-2 (Sphingobacterium multivorum), which were used to ferment and prepare bacterial agent to remediate petroleum-contaminated sites in Shengli Oil Field in China. The optimal liquid fermentation medium and conditions were MgSO4·7H2O (0.5 %), NaCl (0.5 %), soybean dregs (3 %), pH 7.0, culturing at 30 °C, and 220 r/min for 16 h. Peat was chosen as the bacterial carrier due to its ability of keeping microbial activity. Mixed fermented liquid was added into peat (1:2) and air-dried, and the bacterial agent was obtained. It was applied to the petroleum-contaminated soil, which was irrigated, tilled, and fertilized. The removal rate reached 67.7 % after 2 months of remediation. During remediation, the quantity of indigenous bacteria varied a lot, while the inoculated bacteria remained stable; the dehydrogenase activity was at high levels and then decreased. Indigenous microorganisms, inoculated bacterial agent, nutrients, water, and soil permeability all played important roles. The study prepared an environment-friendly bacterial agent and established a set of bioremediation technique, which provided further insights into integration of fermentation engineering and soil remediation engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号