首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A Literature Review of Poly(Lactic Acid)   总被引:32,自引:0,他引:32  
A literature review is presented regarding the synthesis, and physicochemical, chemical, and mechanical properties of poly(lactic acid)(PLA). Poly(lactic acid) exists as a polymeric helix, with an orthorhombic unit cell. The tensile properties of PLA can vary widely, depending on whether or not it is annealed or oriented or what its degree of crystallinity is. Also discussed are the effects of processing on PLA. Crystallization and crystallization kinetics of PLA are also investigated. Solution and melt rheology of PLA is also discussed. Four different power-law equations and 14 different Mark–Houwink equations are presented for PLA. Nuclear magnetic resonance, UV–VIS, and FTIR spectroscopy of PLA are briefly discussed. Finally, research conducted on starch–PLA composites is introduced.  相似文献   

3.
A new route to prepare poly(lactic acid) (PLA)/thermoplastic starch (TPS) blends is described in this work using poly(ethylene glycol) (PEG), a non-toxic polymer, as a compatibilizer. The influence of PEG on the morphology and properties of PLA/TPS blends was studied. The blends were processed using a twin-screw micro-compounder and a micro-injector. The morphologies were analyzed by scanning and transmission electron microscopies and the material properties were evaluated by dynamic-mechanical, differential scanning calorimetry, thermogravimetric analysis and mechanical tests. PLA/TPS blends presented large TPS phase size distribution and low adhesion between phases which was responsible for the lower elastic modulus of this blend when compared to pure PLA. The addition of PEG resulted in the increase of PLA crystallization, due to its plasticizing effect, and improvement of the interfacial interaction between TPS and PLA matrix. Results show that incorporation of PEG increased the impact strength of the ternary blend and that the elastic modulus remained similar to the PLA/TPS blend.  相似文献   

4.
In this work, performance of cow dung (CD) reinforced poly(lactic acid) (PLA) biocomposites was investigated for the potential use in load bearing application. CD of average 4 mm size was blended with PLA at different CD ratios (0–50 wt%) and their effects on the biocomposite properties were studied. The results showed an improvement in the flexural properties, while the tensile and impact strength dropped by 20 and 28% with the addition of 50% CD. The decline in the tensile and impact strength was due to micro-cracking and voids formation at higher CD content. Also, the incorporation of CD slightly decreased the thermal stability of the biocomposite. However, dynamic mechanical properties of the biocomposites generally improved. SEM analysis of tensile and impact fractured surfaces indicated that the CD had a reasonable adhesion with matrix. Moreover, the SEM micrographs of soil burial studies showed an accelerated degradation of higher CD wt% biocomposites.  相似文献   

5.
Journal of Polymers and the Environment - This study aims to improve low intrinsic ductility of poly (lactic acid) (PLA) by using a novel bio-sourced plasticizer environmentally friendly and...  相似文献   

6.
Fourier transform infrared microscope and confocal Raman spectroscope were employed in this study to investigate four kinds of biodegradable plastics: poly(lactic acid),poly(butylenes adipate-co-terephthalate), poly(butylenes succinate) and poly(hydroxybutyrate-co-hydroxyvalerate), which are used more and more popularly in everyday life but can not be identified easily with other instruments. Infrared and Raman spectra of the plastics were tentatively interpreted. The indicative peaks to characterize the four polymers were also summarized. The result in this study can help the forensic scientists discriminate the plastics accurately when they occurred as trace evidences in cases, it also offers the producer and environment scientists an effective, non-invasive and fast method to characterize and identify these four polymers.  相似文献   

7.
Poly(lactic acid) (PLA) is increasingly utilized as an alternative to petroleum-based polymers in order to reduce their impact on the environment. The monomer of PLA is mainly produced from corn, which, in addition to its food utilization, can be also used for the production of bioethanol or biofuels. In this work the depolymerization (chemical recycling) of PLA pellets in a batch reactor at temperatures near the melting temperature of solid PLA has been investigated to produce lactic acid. New experimental data are presented and a kinetic model is provided for a first analysis. With a residence time less than 120 min, a yield of lactic acid greater than 95 % has been obtained at temperatures of 160 and 180 °C for pressure equal to water vapour pressure and a water/PLA ratio by weight equal ~10.  相似文献   

8.
“Green”/bio-based blends of poly(lactic acid) (PLA) and cellulolytic enzyme lignin (CEL) were prepared by twin-screw extrusion blending. The mechanical and thermal properties and the morphology of the blends were investigated. It was found that the Young’s modulus of the PLA/CEL blends is significantly higher than that of the neat PLA and the Shore hardness is also somewhat improved. However, the tensile strength, the elongation at break, and the impact strength are slightly decreased. Thermogravimetric analysis (TGA) shows that the thermal stability of the PLA is not significantly affected by the incorporation of the CEL, even with 40 wt% CEL. The results of FT-IR and SEM reveal that the CEL and the PLA are miscible and there are efficient interactions at the interfaces between them. These findings show that the CEL is a kind of feasible filler for the PLA-based blends.  相似文献   

9.
The synthesis and characterization of poly(lactic acid)-co-aspartic acid copolymers (PLA-co-Asp) were presented. Subsequently, the synthesized PLA-co-Asp copolymers were tested as biodegradable carriers in drug delivery systems. PLA-co-Asp copolymers were synthesized by solution polycondensation procedure, using different molar ratios PLA/l-aspartic acid (2.33/1, 1/1, 1/2.33), manganese acetate and phosphoric acid as catalysts and N,N′-dimethyl formamide (DMF)/toluene as solvent mixture. The copolymers were characterized by FT-IR and 1H-NMR spectroscopy, gel permeation chromatography (GPC), DSC and TG-DTG analyses. Diclofenac sodium, a non steroidal anti-inflammatory drug was subsequently loaded into PLA-co-Asp copolymers. The in vitro drug release experiments were done by dialysis of the copolymer/drug systems, in phosphate buffer solution (pH = 7.4, at 37 °C) and monitored by UV spectroscopy.  相似文献   

10.
Thermal and Rheological Properties of Commercial-Grade Poly(Lactic Acid)s   总被引:2,自引:0,他引:2  
Poly(lactic acid) is the subject of considerable commercial development by a variety of organizations around the world. In this work, the thermal and rheological properties of two commercial-grade poly(lactic acid)s (PLAs) are investigated. A comparison of the commercial samples to a series of well-defined linear and star architecture PLAs provides considerable insight into their flow properties. Such insights are valuable in deciding processing strategies for these newly emerging, commercially significant, biodegradable plastics. Both a branched and linear grade of PLA are investigated. The crystallization kinetics of the branched polymer are inferred to be faster than the linear analog. Longer relaxation times in the terminal region for the branched material compared to the linear material manifests itself as a higher zero shear rate viscosity. However, the branched material shear thins more strongly, resulting in a lower value of viscosity at high shear rates. Comparison of the linear viscoelastic spectra of the branched material with the spectra for star PLAs suggests that the branched architecture is characterized by a span molecular weight of approximately 63,000 g/mol. The present study conclusively demonstrates that a wide spectrum of flow properties are available through simple architectural modification of PLA, thus allowing the utilization of this important degradable thermoplastic in a variety of processing operations.  相似文献   

11.
The development of synthetic biodegradable polymers using solvent free polymerization has a unique potential to be used as sustainable polymers in biomedical applications. The aim of this work was to synthesize and characterize a sustainable class of poly(lactic acid) (PLA) under different operating conditions via direct polycondensation of lactic acid (LA). Several parameters were tested including the absence of solvents and catalysts on the polymerization, in addition to polymerization temperature and time. Polymerization conditions were evaluated using response surface method (RSM) to optimize the impact of temperature, time, and catalyst. Results showed that molecular weight (Mw) of PLA increased with increasing polymerization time. Highest Mw of 28.4 kD with relatively a broad polydispersity 1.9 was achieved at polymerization temperature 170?°C at 24 h in the free solvent polymerization. This led to a relevant inherent viscosity of 0.37 dl/g. FTIR spectra exhibited a disappearance of the characteristic peak of the hydroxyl group in LA at 3482 cm?1 by increasing the intensity of carbonyl group. The 1H nuclear magnetic resonance (NMR) exhibited the main chain at 5.22 ppm and the signal of methyl proton at 1.61 ppm as well as a signal at 4.33 and 1.5 assigned to the methane proton next to the terminal hydroxyl group and carboxyl group respectively. Meanwhile, the PLA synthesized with a catalyst [Sn(Oct)2] in a free solvent demonstrated comparatively high thermal transition properties of glass transition, melting, and crystallinity temperatures of 48, 106, and 158?°C, respectively. These results are of significant interest to further expand the use of PLA in biomedical applications.  相似文献   

12.
The anaerobic biodegradation rates of four different sizes of poly (lactic acid) (PLA) films (thickness 25???m) in anaerobic sludge at 55?°C were examined. The anaerobic biodegradation rates of small pieces of PLA film were slower than for large pieces of PLA film. We also examined whether PLA film could also be used as a reference material in the anaerobic biodegradation test in addition to PLA powder. The anaerobic biodegradation rate of PLA film became slower with lower activity sludge, but the rate of decrease was gradual, and the anaerobic biodegradation rate of PLA film was faster than the PLA powder (125?C250???m). The anaerobic biodegradation rate of the PLA powder (125?C250???m) reflected the plastic anaerobic biodegradation activity of the sludge more accurately than the thin PLA film (thickness 25???m). Consequently, PLA powder (125?C250???m) is more suitable than thin PLA film (thickness?<?25???m) for use as a reference material to assess the plastic anaerobic biodegradation activity of the sludge in an anaerobic biodegradation test at 55?°C.  相似文献   

13.
Modified natural polymers have been gaining increasing scientific interest for many years. In this study carboxymethyl starch (CMS) was grafted with L(+)-lactic acid (LA) in different molar ratios CMS/LA (1/36, 1/22 and 1/12), resulting carboxymethyl starch-g-poly(lactic acid) (CMS-g-PLA) copolymers. The grafting reaction was carried out by solution polycondensation procedure in toluene and stannous 2-ethyl hexanoate Sn(Oct)2 as catalyst was utilized. Poly(lactic acid) (PLA) was synthesized in the same conditions with the copolymers for comparative analyses of the physico-chemical and thermal properties. The copolymers and PLA were structurally and morphologically characterized by FT-IR, 1H-NMR spectroscopy, WAXD and SEM analyses, taking CMS as reference. The molecular weight of the copolymers, CMS and PLA were determined, using a dynamic light scattering technique. The thermal behavior of the products was studied by DSC and TG-DTG analyses. The CMS-g-PLA graft copolymers exhibited lower Tg and thermal stability than pure CMS.  相似文献   

14.
Oil-modified polyesters were synthesized to serve as polymeric plasticizers for PVC. A total of four polymeric plasticizers with different average molecular weights were prepared. Characterizations were done using Fourier-transformed infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and gel permeation chromatography. Some of the tests conducted on PVC films include thermal stability test using thermogravimetric analyser, determination of glass transition temperature (Tg), plasticizer migration and leaching resistance test, morphology study of plasticized PVC films using field emission scanning microscope, toxicity test, and tensile test. Owing to the plasticizing effect of the palm oil-based compound, Tg of the plasticized PVC has decreased to an average of 65 °C at 20 wt% loading. The polymeric plasticizer is also able to contribute positively to the thermal stability and mechanical properties of the PVC films. Some of the advantages of incorporating polymeric plasticizer with high molecular weight includes lower rate of leaching from plastic, and improved tensile strength and elongation at break. Besides, thermal stability of the plastic studied using Kissinger’s and Flynn–Wall–Ozawa’s approaches shows that PVC blended with high molecular weight oil-modified polyester is more thermally stable, evidenced by the increase in the activation energy of decomposition, Ed. Toxicity test using brine shrimp egg shows encouraging results, where the oil-based plasticizer is considerably less toxic compared to some of the commercial plasticizers.  相似文献   

15.
To simulate the behavior of agricultural mulch coextruded poly(lactic acid)(PLA)/starch films, two stages were carried out. The first was an ultraviolet treatment (UV) at 315 nm, during which glass transition temperature Tg, weight, and molecular weight (MW) decreased and a separation between PLA and starch phase was observed. For the second stage, the mineralization of the carbon of the material was followed using the ASTM (D 5209–92 and 5338–92) and ISO/CEN (14852 and 14855) standard procedures. To measure the biodegradability of polymer material, the assessment of the carbon balance allowed determination of the distribution between the carbon rate used to the biomass synthesis or the respiration process (released CO2), as well as the dissolved organic carbon into the culture medium and the carbon in the residual insoluble material. The influence of the nature of the medium and the standardized procedures on the final rate of biodegradation was investigated. Whatever the standardized method, the biodegradation percentage was significantly stronger in liquid medium (92.4–93.4) than on inert medium (80–83%). In the case of the compost process, only released CO2 was measured and corresponded to 79.1–80.3%.  相似文献   

16.
Eco-friendly completely biodegradable biocomposites have been fabricated using polylactic acid (PLA) and banana fiber (BF) employing melt blending technique followed by compression moulding. BF??s were surface treated by NaOH and various silanes viz. 3-aminopropyltriethoxysilane and bis-(3-triethoxy silyl propyl) tetrasulfane (Si69) to improve the compatibility of the fibers within the matrix polymer. Characterization studies have been suggested that a better fiber matrix interaction because of the newly added functionalities on the BF surface as a result of chemical treatments. In comparison with the untreated BF biocomposite, an increase of 136% in tensile strength and 57% in impact strength has been observed for Si69 treated BF biocomposite. DSC thermograms of surface treated BF biocomposites revealed an increase in glass transition and melting transition due to the more restricted macromolecular movement as a result of better matrix fiber interaction. The thermal stability in the biocomposites also increased in case of biocomposite made up of BF treated with Si69. Viscoelastic measurements using DMA confirmed an increase of storage modulus and low damping values for the same biocomposite. Biodegradation studies of the biocomposites have been investigated in Burkholderia cepacia medium through morphological and weight loss studies.  相似文献   

17.
As an attempt to synthesize new biodegradable polymers from renewable cellulose resources, melt polycondensation of 5-hydroxylevulinic acid (5-HLA) was reported for the first time. The resulting product, poly(5-hydroxylevulinic acid) (PHLA), was synthesized and characterized with GPC, FTIR, 1H NMR and DSC. The in vitro degradation behaviors in phosphate-buffered saline (PBS) and in deionized water (DW) were also examined. The molecular weight of PHLA is not high (several 1,000s), but it possesses unordinary high glass transition temperature (as high as 120 °C). This is very different from existing aliphatic polyesters that usually have T gs lower than 60 °C. The high T g is attributed to the formation of inter- and/or intramolecular hydrogen bonds due to a characteristic keto–enol tautomerism equilibrium in the polymer structure. PHLA readily degraded hydrolytically in aqueous media.  相似文献   

18.
Various kinds of fumed silica nanoparticles, different in terms of specific surface area and surface functionalization, were melt compounded with a poly(lactic acid) biodegradable matrix, with the aim to investigate the thermo-mechanical and optical properties of the resulting materials. Untreated nanoparticles at elevated surface area resulted to be effective in increasing elastic modulus, because of the extended filler?Cmatrix interaction, while the finer dispersion of silica aggregates at the nanoscale obtained with surface treated nanoparticles led to noticeable improvements of the tensile properties at yield and at break, both under quasi-static and impact conditions. Also the fracture toughness and the creep stability were substantially enhanced by nanosilica addition, without impairing the original optical transparency of the matrix.  相似文献   

19.
Twin-screw extrusion was used to prepare the composites consisting of PLA and three types of sugarcane bagasse residues (up to 30 wt%) derived from different steps of a biorefinery process. Each residue had different composition, particle size and surface reactivity due to chemical and biological (enzyme, microbes) treatments that the biomass was subjected to. The effects of different residue characteristics on properties, crystallization behaviors and morphologies of PLA composites were investigated. Besides, a small amount (2 wt%) of coupling agent, Desmodur® VKS 20 (DVKS), was used to improve the interfacial bonding between PLA and bagasse residues. The results indicated that in the presence of 2 % DVKS, PLA composite with pretreated residue exhibited the maximum strength properties (98.94 % tensile strength and 93.91 % flexural strength of neat PLA), while PLA composite with fermentation residue exhibited the minimum strength properties (88.98 % tensile strength and 81.91 % flexural strength of neat PLA).  相似文献   

20.
Two biodegradable polyesters, poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) were melt-compounded in a twin screw extruder to fabricate a novel PBS/PBAT blend. The compatibility of the blend was attributed to the transesterification reaction that was confirmed by Fourier transform infrared spectroscopy. The Gibbs free energy equation was applied to explain the miscibility of the resulting blend. Dynamic mechanical analysis of the blends exhibits an intermediate tanδ peak compared to the individual components which suggests that the blend achieved compatibility. One of the key findings is that the tensile strength of the optimized blend is higher than each of the blended partner. Rheological properties revealed a strong shear-thinning tendency of the blend by the addition of PBAT into PBS. The phase morphology of the blends was observed through scanning electron microscopy, which revealed that phase separation occurred in the blends. The spherulite growth in the blends was highly influenced by the crystallization temperature and composition. In addition, the presence of a dispersed amorphous phase was found to be a hindrance to the spherulite growth, which was confirmed by polarizing optical microscopy. Furthermore, the increased crystallization ability of PBAT in the blend systems gives the blend a balanced thermal resistance property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号