首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The Fresno Supersite intends to 1) evaluate non-routine monitoring methods, establishing their comparability with existing methods and their applicability to air quality planning, exposure assessment, and health effects studies; 2) provide a better understanding of aerosol characteristics, behavior, and sources to assist regulatory agencies in developing standards and strategies that protect public health; and 3) support studies that evaluate relationships between aerosol properties, co-factors, and observed health end-points. Supersite observables include in-situ, continuous, short-duration measurements of 1) PM2.5, PM10, and coarse (PM10 minus PM2.5) mass; 2) PM2.5 SO4 -2, NO3 -, carbon, light absorption, and light extinction; 3) numbers of particles in discrete size bins ranging from 0.01 to ~10μm; 4) criteria pollutant gases (O3, CO, NOx); 5) reactive gases (NO2, NOy, HNO3, peroxyacetyl nitrate [PAN], NH3); and 6) single particle characterization by time-of-flight mass spectrometry. Field sampling and laboratory analysis are applied for gaseous and particulate organic compounds (light hydrocarbons, heavy hydrocarbons, carbonyls, polycyclic aromatic hydrocarbons [PAH], and other semi-volatiles), and PM2.5 mass, elements, ions, and carbon. Observables common to other Supersites are 1) daily PM2.5 24-hr average mass with Federal Reference Method (FRM) samplers; 2) continuous hourly and 5-min average PM2.5 and PM10 mass with beta attenuation monitors (BAM) and tapered element oscillating microbalances (TEOM); 3) PM2.5 chemical specia-tion with a U.S. Environmental Protection Agency (EPA) speciation monitor and protocol; 4) coarse particle mass by dichotomous sampler and difference between PM10 and PM2.5 BAM and TEOM measurements; 5) coarse particle chemical composition; and 6) high sensitivity and time resolution scalar and vector wind speed, wind direction, temperature, relative humidity, barometric pressure, and solar radiation. The Fresno Supersite is coordinated with health and toxicological studies that will use these data in establishing relationships with asthma, other respiratory disease, and cardiovascular changes in human and animal subjects.  相似文献   

2.
Measurements collected using five real-time continuous airborne particle monitors were compared to measurements made using reference filter-based samplers at Bakersfield, CA, between December 2, 1998, and January 31, 1999. The purpose of this analysis was to evaluate the suitability of each instrument for use in a real-time continuous monitoring network designed to measure the mass of airborne particles with an aerodynamic diam less than 2.5 microns (PM2.5) under wintertime conditions in the southern San Joaquin Valley. Measurements of airborne particulate mass made with a beta attenuation monitor (BAM), an integrating nephelometer, and a continuous aerosol mass monitor (CAMM) were found to correlate well with reference measurements made with a filter-based sampler. A Dusttrak aerosol sampler overestimated airborne particle concentrations by a factor of approximately 3 throughout the study. Measurements of airborne particulate matter made with a tapered element oscillating microbalance (TEOM) were found to be lower than the reference filter-based measurements by an amount approximately equal to the concentration of NH4NO3 observed to be present in the airborne particles. The performance of the Dusttrak sampler and the integrating nephelometer was affected by the size distribution of airborne particulate matter. The performance of the BAM, the integrating nephelometer, the CAMM, the Dusttrak sampler, and the TEOM was not strongly affected by temperature, relative humidity, wind speed, or wind direction within the range of conditions encountered in the current study. Based on instrument performance, the BAM, the integrating nephelometer, and the CAMM appear to be suitable candidates for deployment in a real-time continuous PM2.5 monitoring network in central California for the range of winter conditions and aerosol composition encountered during the study.  相似文献   

3.
In this paper, we describe the development and laboratory and field evaluation of a continuous coarse (2.5-10 microm) particle mass (PM) monitor that can provide reliable measurements of the coarse mass (CM) concentrations in time intervals as short as 5-10 min. The operating principle of the monitor is based on enriching CM concentrations by a factor of approximately 25 by means of a 2.5-microm cut point round nozzle virtual impactor while maintaining fine mass (FM)--that is, the mass of PM2.5 at ambient concentrations. The aerosol mixture is subsequently drawn through a standard tapered element oscillating microbalance (TEOM), the response of which is dominated by the contributions of the CM, due to concentration enrichment. Findings from the field study ascertain that a TEOM coupled with a PM10 inlet followed by a 2.5-microm cut point round nozzle virtual impactor can be used successfully for continuous CM concentration measurements. The average concentration-enriched CM concentrations measured by the TEOM were 26-27 times higher than those measured by the time-integrated PM10 samplers [the micro-orifice uniform deposit impactor (MOUDI) and the Partisol] and were highly correlated. CM concentrations measured by the concentration-enriched TEOM were independent of the ambient FM-to-CM concentration ratio, due to the decrease in ambient coarse particle mass median diameter with an increasing FM-to-CM concentration ratio. Finally, our results illustrate one of the main problems associated with the use of real impactors to sample particles at relative humidity (RH) values less than 40%. While PM10 concentrations obtained by means of the MOUDI and Partisol were in excellent agreement, CM concentrations measured by the MOUDI were low by 20%, and FM concentrations were high by a factor of 5, together suggesting particle bounce at low RH.  相似文献   

4.
Particle light scattering (Bsp) from nephelometers and fine particulate matter (PM2.5) mass determined by filter samplers are compared for summer and winter at 35 locations in and around California's San Joaquin Valley from December 2, 1999 to February 3, 2001. The relationship is described using particle mass scattering efficiency (sigmasp) derived from linear regression of Bsp on PM2.5 that can be applied to estimated PM2.5 from nephelometer data within the 24-hr filter sampling periods and between the every-6th-day sampling frequency. An average of sigmaSp = 4.9 m2/g was found for all of the sites and seasons; however, sigmasp averaged by site type and season provided better PM2.5 estimates. On average, the sigmasp was lower in summer than winter, consistent with lower relative humidities, lower fractions of hygroscopic ammonium nitrate, and higher contributions from fugitive dust. Winter average sigmasp were similar at non-source-dominated sites, ranging from 4.8 m2/g to 5.9 m2/g. The sigmasp was 2.3 m2/g at the roadside, 3.7 m2/g at a dairy farm, and 4.1 m2/g in the Kern County oilfields. Comparison of Bsp from nephelometers with and without a PM2.5 inlet at the Fresno Supersite showed that coarse particles contributed minor amounts to light scattering. This was confirmed by poorer correlations between Bsp and coarse particulate matter measured during a fall sampling period.  相似文献   

5.
Measurements in urban Atlanta of transient aerosol events in which PM2.5 mass concentrations rapidly rise and fall over a period of 3-6 hr are reported. The data are based on new measurement techniques demonstrated at the U.S. Environmental Protection Agency (EPA) Atlanta Supersite Experiment in August 1999. These independent instruments for aerosol chemical speciation of NO3-, SO4(2-), NH4+, and organic and elemental carbon (OC and EC), reconstructed the observed hourly dry PM2.5 mass to within 20% or better. Data from the experiment indicated that transient PM2.5 events were ubiquitous in Atlanta and were typically characterized by a sudden increase of EC (soot) and OC in the early morning or SO4(2-) in the late afternoon. The frequent temporal decoupling of these events provides insights into their origins, suggesting mobile sources in metro Atlanta as the main contributor to early morning PM2.5 and more regionally located point SO2 sources for afternoon PM2.5 events. The transient events may also have health implications. New data suggest that short-term PM2.5 exposures may lead to adverse health effects. Standard integrated filter-based techniques used in PM2.5 compliance monitoring networks and in most past PM2.5 epidemiologic studies collect samples over 24-hr periods and thus are unable to capture these transient events. Moreover, health-effects studies that focus on daily PM2.5 mass alone cannot evaluate the health implications of the unique and variable chemical properties of these episodes.  相似文献   

6.
The tapered element oscillating microbalance (TEOM) is one type of continuous ambient particulate matter (PM) monitor. Adsorption and desorption of moisture and semivolatile species may cause positive or negative artifacts in TEOM PM mass measurement. The objective of this field study was to investigate possible uncertainties associated with TEOM measurements in the poultry operation environment. For comparisons of TEOM with filter-based gravimetric method, four instruments (TEOM-PM10, low-volume PM10 sampler TEOM-PM2.5, and PM2.5 speciation sampler) were collocated and tested inside a poultry house for PM2.5 and PM10 (PM with aerodynamic equivalent diameter < or =2.5 and < or =10 microm, respectively) measurements. Fifteen sets of 24-hr PM10 concentrations and 13 sets of 24-hr PM2.5 measurements were obtained. Results indicate that compared with filter-based gravimetric method, TEOM gave significantly lower values of both PM10 and PM2.5 mass concentrations. For PM10, the average ratio of TEOM to the gravimetric method was 0.936. For PM2.5, the average ratio of TEOM to the gravimetric method was 0.738. Particulate matter in the poultry houses possibly contains semivolatile compounds and moisture due to high levels of relative humidity (RH) and gas pollutants. The internal heating mechanism of the TEOM may cause losses in mass through volatilization. To investigate the effects of TEOM settings on concentration measurements, the heaters of two identical TEOMs were set at 50 degrees C, 30 degrees C, or no heating at all. They were collocated and tested for total suspended particle (TSP), PM10, and PM25 measurements in layer house for 6 weeks. For all TSR PM10, and PM2.5 measurements, the internal TEOM temperature setting had a significant effect (P < 0.05). Significantly higher PM mass concentrations were measured at lower temperature settings. The effects of environmental (i.e., temperature, RH, NH3 and CO2 concentrations) and instrumental (i.e., filter loading and noise) parameters on PM measurements were also assessed using regression analysis.  相似文献   

7.
ABSTRACT

In this paper, we describe the development and laboratory and field evaluation of a continuous coarse (2.5-10 um) particle mass (PM) monitor that can provide reliable measurements of the coarse mass (CM) concentrations in time intervals as short as 5-10 min. The operating principle of the monitor is based on enriching CM concentrations by a factor of ~25 by means of a 2.5-um cut point round nozzle virtual impactor while maintaining fine mass (FM)—that is, the mass of PM2 5 at ambient concentrations. The aerosol mixture is subsequently drawn through a standard tapered element oscillating microbalance (TEOM), the response of which is dominated by the contributions of the CM, due to concentration enrichment. Findings from the field study ascertain that a TEOM coupled with a PM10 inlet followed by a 2.5-um cut point round nozzle virtual impactor can be used successfully for continuous CM concentration measurements. The average concentration-enriched CM concentrations measured by the TEOM were 26-27 times higher than those measured by the time-integrated PM10 samplers [the micro-orifice uniform deposit  相似文献   

8.
Source identification of atlanta aerosol by positive matrix factorization   总被引:3,自引:0,他引:3  
Data characterizing daily integrated particulate matter (PM) samples collected at the Jefferson Street monitoring site in Atlanta, GA, were analyzed through the application of a bilinear positive matrix factorization (PMF) model. A total of 662 samples and 26 variables were used for fine particle (particles < or = 2.5 microm in aerodynamic diameter) samples (PM2.5), and 685 samples and 15 variables were used for coarse particle (particles between 2.5 and 10 microm in aerodynamic diameter) samples (PM10-2.5). Measured PM mass concentrations and compositional data were used as independent variables. To obtain the quantitative contributions for each source, the factors were normalized using PMF-apportioned mass concentrations. For fine particle data, eight sources were identified: SO4(2-) -rich secondary aerosol (56%), motor vehicle (22%), wood smoke (11%), NO(3-) -rich secondary aerosol (7%), mixed source of cement kiln and organic carbon (OC) (2%), airborne soil (1%), metal recycling facility (0.5%), and mixed source of bus station and metal processing (0.3%). The SO4(2-) -rich and NO(3-) -rich secondary aerosols were associated with NH(4+). The SO4(2-) -rich secondary aerosols also included OC. For the coarse particle data, five sources contributed to the observed mass: airborne soil (60%), NO(3-)-rich secondary aerosol (16%), SO4(2-) -rich secondary aerosol (12%), cement kiln (11%), and metal recycling facility (1%). Conditional probability functions were computed using surface wind data and identified mass contributions from each source. The results of this analysis agreed well with the locations of known local point sources.  相似文献   

9.
Continuous measurements of particle size distributions of 3-407 nm were collected from August 2002 to July 2004 at the Fresno Supersite to understand their number concentrations, size distributions, and formation processes. Measurements for fine particulate matter (PM2.5) mass, sulfate (SO4(2-)), nitrate (NO3-), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (PAHs), nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3), and meteorological data (wind speed, wind direction, temperature [T], relative humidity [RH], and solar radiation) were used to determine the causes of nanoparticle (3-10 nm) and ultrafine (10-100 nm) particle events. These events were found to be divided into four types: (1) 3- to 10-nm morning nucleation; (2) 10- to 30-nm morning traffic; (3) 10- to 30-nm afternoon photochemical; and (4) 50- to 84-nm evening home heating, including residential wood combustion. Intense examples of the first type (>10(4) number [#]/cm3) were observed on 29 days, nearly always during the summer. The second type of event was observed on more than 73 days and occurred throughout the year. The third type was observed on 36 days, from spring through summer. The fourth type was found on 109 days, all of them during the winter. Although sulfur dioxide (SO2) emissions in Central California are low, the small residual amounts in gasoline and diesel fuel are apparently sufficient to initiate nucleation events. These were measured in the morning, soon after the shallow surface inversion coupled with layers aloft where nucleation probably was initiated. PM2.5 concentrations were poorly correlated with nanoparticle number.  相似文献   

10.
Field evaluations and comparisons of continuous fine particulate matter (PM2,5) mass measurement technologies at an urban and a rural site in New York state are performed. The continuous measurement technologies include the filter dynamics measurement system (FDMS) tapered element oscillating microbalance (TEOM) monitor, the stand-alone TEOM monitor (without the FDMS), and the beta attenuation monitor (BAM). These continuous measurement methods are also compared with 24-hr integrated filters collected and analyzed under the Federal Reference Method (FRM) protocol. The measurement sites are New York City (the borough of Queens) and Addison, a rural area of southwestern New York state. New York City data comparisons between the FDMS TEOM, BAM, and FRM are examined for bias and seasonality during a 2-yr period. Data comparisons for the FDMS TEOM and FRM from the Addison location are examined for the same 2-yr period. The BAM and FDMS measurements at Queens are highly correlated with each other and the FRM. The BAM and FDMS are very similar to each other in magnitude, and both are approximately 25% higher than the FRM filter measurements at this site. The FDMS at Addison measures approximately 9% more mass than the FRM. Mass reconstructions using the speciation trends network filter data are examined to provide insight as to the contribution of volatile species of PM2.5 in the FDMS mass measurement and the fraction that is likely lost in the FRM mass measurement. The reconstructed mass at Queens is systematically lower than the FDMS by approximately 10%.  相似文献   

11.
The ionic compositions of particulate matter with aerodynamic diameter < or = 2.5 microm (PM2.5) and size-resolved aerosol particles were measured in Big Bend National Park, Texas, during the 1999 Big Bend Regional Aerosol and Visibility Observational study. The ionic composition of PM2.5 aerosol was dominated by sulfate (SO4(2-)) and ammonium (NH4+). Daily average SO4(2-) and NH4+ concentrations were strongly correlated (R2 = 0.94). The molar ratio of NH4+ to SO4(2-) averaged 1.54, consistent with concurrent measurements of aerosol acidity. The aerosol was observed to be comprised of a submicron fine mode consisting primarily of ammoniated SO4(2-) and a coarse particle mode containing nitrate (NO3-). The NO3- appears to be primarily associated with sea salt particles where chloride has been replaced by NO3-, although formation of calcium nitrate (Ca(NO3)2) is important, too, on several days. Size-resolved aerosol composition results reveal that a size cut in particulate matter with aerodynamic diameter < or = 1 microm would have provided a much better separation of fine and coarse aerosol modes than the standard PM2.5 size cut utilized for the study. Although considerable nitric acid exists in the gas phase at Big Bend, the aerosol is sufficiently acidic and temperatures sufficiently high that even significant future reductions in PM2.5 SO4(2-) are unlikely to be offset by formation of particulate ammonium nitrate in summer or fall.  相似文献   

12.
Aerosol size distributions are presented for a winter intensive study at the Fresno Supersite. The size distributions were consistent with and predictive for continuous PM2.5 measured by beta attenuation. They varied temporally with respect to source type and intensity, with the smallest mean diameters associated with high NOx concentrations during weekday morning rush hours. Conversely, small and large particle and black carbon (BC) concentrations were higher during Sunday and weekday evenings in response to traffic and residential wood combustion emissions. Ambient PM2.5 light scattering (Bsp) was precisely but systematically underestimated during winter, probably because of heating in the sample shelter.  相似文献   

13.
The U.S. Environmental Protection Agency (EPA) has proposed a new secondary standard based on visibility in urban areas. The proposed standard will be based on light extinction, calculated from 24-hr averaged measurements. It would be desirable to base the standard on a shorter averaging time to better represent human perception of visibility. This could be accomplished by either an estimation of extinction from semicontinuous particulate matter (PM) data or direct measurement of scattering and absorption. To this end we have compared 1-hr measurements of fine plus coarse particulate scattering using a nephelometer, along with an estimate of absorption from aethalometer measurements. The study took place in Lindon, UT, during February and March 2012. The nephelometer measurements were corrected for coarse particle scattering and compared to the Filter Dynamic Measurement System (FDMS) tapered element oscillating microbalance monitor (TEOM) PM2.5 measurements. The two measurements agreed with a mass scattering coefficient of 3.3 ± 0.3 m2/g at relative humidity below 80%. However, at higher humidity, the nephelometer gave higher scattering results due to water absorbed by ammonium nitrate and ammonium sulfate in the particles. This particle-associated water is not measured by the FDMS TEOM. The FDMS TEOM data could be corrected for this difference using appropriate IMPROVE protocols if the particle composition is known. However, a better approach may be to use a particle measurement system that allows for semicontinuous measurements but also measures particle bound water. Data are presented from a 2003 study in Rubidoux, CA, showing how this could be accomplished using a Grimm model 1100 aerosol spectrometer or comparable instrument.

Implications: Visibility is currently based on 24-hr averaged PM mass and composition. A metric that captures diurnal changes would better represent human perception. Furthermore, if the PM measurement included aerosol bound water, this would negate the need to know particulate composition and relative humidity (RH), which is currently used to estimate visibility. Methods are outlined that could accomplish both of these objectives based on use of a PM monitor that includes aerosol-bound water. It is recommended that these techniques, coupled with appropriate measurements of light scattering and absorption by aerosols, be evaluated for potential use in the visibility based secondary standard.  相似文献   

14.
ABSTRACT

Measurements collected using five real-time continuous airborne particle monitors were compared to measurements made using reference filter-based samplers at Bakers-field, CA, between December 2, 1998, and January 31, 1999. The purpose of this analysis was to evaluate the suitability of each instrument for use in a real-time continuous monitoring network designed to measure the mass of airborne particles with an aerodynamic diam less than 2.5 μm (PM2.5) under wintertime conditions in the southern San Joaquin Valley. Measurements of airborne particulate mass made with a beta attenuation monitor (BAM), an integrating nephelometer, and a continuous aerosol mass monitor (CAMM) were found to correlate well with reference measurements made with a filter-based sampler. A Dusttrak aerosol sampler overestimated airborne particle concentrations by a factor of ~3 throughout the study. Measurements of airborne particulate matter made with a tapered element oscillating microbalance (TEOM) were found to be lower than the reference filter-based measurements by an amount approximately equal to the concentration of NH4NO3 observed to be present in the airborne particles. The performance of the Dusttrak sampler and the integrating nephelometer was affected by the size distribution of airborne particulate matter. The performance of the BAM, the integrating nephelometer, the CAMM, the Dusttrak sampler, and the TEOM was not strongly affected by temperature, relative humidity, wind speed, or wind direction within the range of conditions encountered in the current study. Based on instrument performance, the BAM, the integrating nephelometer, and the CAMM appear to be suitable candidates for deployment in a real-time continuous PM2.5 monitoring network in central California for the range of winter conditions and aerosol composition encountered during the study.  相似文献   

15.
As part of a pilot study into the chemical and physical properties of Australian fine particles, a suite of aerosol samples was collected at Ti Tree Bend in Launceston, Tasmania, during June and July 1997. This period represents midwinter in the Southern Hemisphere, a period when aerosol sources in Launceston are dominated by smoke from domestic wood burning. This paper describes the results from this measurement campaign, with the aim of assessing the effect of wood smoke on the chemical and physical characteristics of ambient aerosol. A micro orifice uniform deposit impactor (MOUDI) was used to measure the size distributions of the aerosol from 0.05 to 20 microns aerodynamic diameter. Continuous measurements of fine particle mass were made using a PM2.5 tapered element oscillating microbalance (TEOM) and light scattering coefficients at 530 nm were measured with nephelometers. Mass size distributions tended to be bimodal, with the diameter of the dominant mode tending to smaller sizes with increases in total mass. Non-sea salt potassium and polycyclic aromatic hydrocarbons (PAHs) were used as chemical tracers for wood smoke. Wood smoke was found to increase absolute particle mass (enough to regularly exceed air quality standards), and to concentrate mass in a single mode below 1 micron aerodynamic diameter. The acid-base equilibrium of the aerosol was altered by the wood smoke source, with free acidity hydrogen ion, non-sea salt sulfate, and ammonium concentrations being higher and the concentration of all species, including nitrate (to differing extents), focused in the fine particle size ranges. The wood smoke source also heavily influenced the aerosol scattering efficiency, adding to a strong diurnal cycle in both mass concentration and light scattering.  相似文献   

16.
The Aerosol Research and Inhalation Epidemiology Study (ARIES) was designed to provide high-quality measurements of PM2.5, its components, and co-varying pollutants for an air pollution epidemiology study in Atlanta, GA. Air pollution epidemiology studies have typically relied on available data on particle mass often collected using filter-based methods. Filter-based PM2.5 sampling is susceptible to both positive and negative errors in the measurement of aerosol mass and particle-phase component concentrations in the undisturbed atmosphere. These biases are introduced by collection of gas-phase aerosol components on the filter media or by volatilization of particle phase components from collected particles. As part of the ARIES, we collected daily 24-hr PM2.5 mass and speciation samples and continuous PM2.5 data at a mixed residential-light industrial site in Atlanta. These data facilitate analysis of the effects of a wide variety of factors on sampler performance. We assess the relative importance of PM2.5 components and consider associations and potential mechanistic linkages of PM2.5 mass concentrations with several PM2.5 components. For the 12 months of validated data collected to date (August 1, 1998-July 31, 1999), the monthly average Federal Reference Method (FRM) PM2.5 mass always exceeded the proposed annual average standard (12-month average = 20.3 +/- 9.5 micrograms/m3). The particulate SO4(2-) fraction (as (NH4)2SO4) was largest in the summer and exceeded 50% of the FRM mass. The contribution of (NH4)2SO4 to FRM PM2.5 mass dropped to less than 30% in winter. Particulate NO3- collected on a denuded nylon filter averaged 1.1 +/- 0.9 micrograms/m3. Particle-phase organic compounds (as organic carbon x 1.4) measured on a denuded quartz filter sampler averaged 6.4 +/- 3.1 micrograms/m3 (32% of FRM PM2.5 mass) with less seasonal variability than SO4(2-).  相似文献   

17.
Aerosol carbon sampling methods and biases were evaluated during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) and Fresno Supersite programs. PM2.5 sampling was conducted using Desert Research Institute (DRI) sequential filter samplers (SFS) from December 1999 through February 2001 at two urban sites (Fresno and Bakersfield), one regional transport site (Angiola), and two boundary sites (Bethel Island and Sierra Nevada Foothills) during CRPAQS in the San Joaquin Valley (SJV). Additional filter-based sampling was done in Fresno as part of the US Environmental Protection Agency (EPA) Supersites program. Organic carbon (OC) and elemental carbon (EC) concentrations were higher during winter (December-February) than summer (June-August) and this trend was most pronounced at Fresno and Bakersfield. OC and EC displayed similar diurnal trends during winter and summer at Fresno and during winter at Angiola. The diurnal pattern at Angiola reflected the transport of secondary pollutants to the site. Collocated measurements of OC and EC on undenuded quartz-fiber filters were made at Fresno with the DRI SFS and the Andersen FRM and RAAS samplers. All average differences in OC between samplers were less than their respective measurement uncertainties. Positive and negative OC biases were evaluated at Fresno using the Andersen RAAS sampler with carbon-denuded and undenuded channels with Teflon-membrane and quartz-fiber filter pairs. Differences between the denuded particle OC and that obtained by subtracting the quartz-behind-Teflon or quartz-behind-quartz OC from the undenuded quartz-fiber front filter were less than twice their measurement uncertainties in most cases. Particulate OC in the denuded channel agreed most closely with the difference between undenuded front and backup quartz-fiber OC.  相似文献   

18.
Deployment of continuous analyzers in the Southeastern Aerosol Research and Characterization Study (SEARCH) network began in 1998 and continues today as new technologies are developed. Measurement of fine particulate matter (PM2.5) mass is performed using a dried, 30 degrees C tapered element oscillating microbalance (TEOM). TEOM measurements are complemented by observations of light scattering by nephelometry. Measurements of major constituents include: (1) SO4(2-) via reduction to SO2; (2) NH4+ and NO3- via respective catalytic oxidation and reduction to NO, (3) black carbon (BC) by optical absorption, (4) total carbon by combustion to CO2, and (5) organic carbon by difference between the latter two measurements. Several illustrative examples of continuous data from the SEARCH network are presented. A distinctive composite annual average diurnal pattern is observed for PM2.5 mass, nitrate, and BC, likely indicating the influence of traffic-related emissions, growth, and break up of the boundary layer and formation of ammonium nitrate. Examination of PM2.5 components indicates the need to better understand the continuous composition of the unmeasured "other" category, because it contributes a significant fraction to total mass during periods of high PM2.5 loading. Selected episodes are presented to illustrate applications of SEARCH data. An SO2 conversion rate of 0.2%/hr is derived from an observation of a plume from a coal-fired power plant during early spring, and the importance of local, rural sources of NH3 to the formation of ammonium nitrate in particulate matter (PM) is demonstrated.  相似文献   

19.
Laboratory tests with generated aerosols were conducted to test the efficacy of two recent design modifications to the well-established tapered element oscillating microbalance (TEOM) continuous particulate matter (PM) mass monitor. The two systems tested were the sample equilibration system-equipped TEOM monitor operating at 30 degrees C, which uses a Nafion dryer as part of the sample inlet, and the differential TEOM monitor, which adds a switched electrostatic precipitator and uses a self-referencing algorithm to determine "true PM mass." Test aerosols included ammonium sulfate, ammonium nitrate, sodium chloride, copper (II) sulfate, and mixed aerosols. Aerosols were generated with an atomizer or a vibrating orifice generator and were equilibrated in a 450-L slow flow chamber before being sampled. Relative humidity in the chamber was varied between 10 and 90%, and step changes in humidity were executed while generating aerosol to test the response of the instruments. The sample equilibration system-equipped TEOM monitor does reduce, but not totally eliminate, the sensitivity of the TEOM mass monitor to changes in humidity. The differential TEOM monitor gives every indication of being a very robust technique for the continuous real-time measurement of ambient aerosol mass, even in the presence of semi-volatile particles and condensable gases.  相似文献   

20.
The impact of various atmospheric transport directions on ambient fine particle (PM2.5) concentrations at several sites in southeastern Canada was estimated (for May-September) using back-trajectory analysis. Three-day back trajectories (four per day) were paired with 6-hr average PM2.5 mass concentrations measured using tapered element oscillating microbalances (TEOM). PM2.5 concentrations at rural locations in the region were affected by nonlocal sources originating in both Canada and the United States. Comparison of sites revealed that, on average, the local contribution to total PM2.5 in the greater Toronto area (GTA) is approximately 30-35%. At each location, average PM2.5 concentrations under south/southwesterly flow conditions were 2-4 times higher than under the corresponding northerly flow conditions. The chemical composition of both urban and rural PM2.5 was determined during two separate 2-week spring/summer measurement campaigns. Components identified included SO4(2-) NO3-, NH4+, black carbon and organic carbon (OC), and trace elements. Higher particle mass at the urban Toronto site was composed of a higher proportion of all components. However, black carbon, NO3-, NaCl, and trace elements were found to be the most enriched over the rural/regional background levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号