首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The task of regulating potentially harmful chemicals in the environment is presently hindered by the lack of appropriate concepts and methods for evaluating the effects of anthropogenic chemicals on ecosystems. Toxicity tests at the molecular and physiological levels have been used successfully as indicators of adverse effects on test organisms and have been extrapolated to humans to establish a basis for risk assessment. However, laboratory measurements of effects upon individuals do not translate readily into potential effects upon natural populations, in part because natural populations interact with other populations and with the physical environment. Even more difficult to assess are the deleterious impacts of anthropogenic chemicals on ecosystems, because of effects on species interactions, diversity, nutrient cycling, productivity, climatic changes, and other processes.Effects on ecosystems resulting from chemical stresses are outside the realm of classical toxicology, and an ecosystem-level perspective is essential for the consideration of such effects; but the science that deals with ecosystem-level effects,ecotoxicology, is still developing. This article synthesizes the topics discussed at a workshop on ecotoxicology held by the Ecosystems Research Center at Cornell University. Topics covered include: the regulatory framework in which ecotoxicological research must be applied; ecosystem modification of toxicant fate and transport; how ecosystem composition, structure, and function are influenced by chemicals; methods currently available for predicting the effects of chemicals at the ecosystem level; and recommendations on research needs to enhance the state of the science of ecotoxicology.  相似文献   

2.
Many species that inhabit seasonally ponded wetlands also rely on surrounding upland habitats and nearby aquatic ecosystems for resources to support life stages and to maintain viable populations. Understanding biological connectivity among these habitats is critical to ensure that landscapes are protected at appropriate scales to conserve species and ecosystem function. Biological connectivity occurs across a range of spatial and temporal scales. For example, at annual time scales many organisms move between seasonal wetlands and adjacent terrestrial habitats as they undergo life‐stage transitions; at generational time scales, individuals may disperse among nearby wetlands; and at multigenerational scales, there can be gene flow across large portions of a species’ range. The scale of biological connectivity may also vary among species. Larger bodied or more vagile species can connect a matrix of seasonally ponded wetlands, streams, lakes, and surrounding terrestrial habitats on a seasonal or annual basis. Measuring biological connectivity at different spatial and temporal scales remains a challenge. Here we review environmental and biological factors that drive biological connectivity, discuss implications of biological connectivity for animal populations and ecosystem processes, and provide examples illustrating the range of spatial and temporal scales across which biological connectivity occurs in seasonal wetlands.  相似文献   

3.
Wildlife conservation policy for endangered species restoration follows a six-phase process. Population viability analysis (PVA) can play a major contributing role in four of these. PVA, as discussed here, is a technique where extinction vulnerabilities of small populations are estimated using computer simulation modeling. The benefits and limitations of using PVA in wildlife decision and policy processes are reviewed based on our direct experience. PVA permits decision makers to set time frames for management, estimate the required magnitude of restoration efforts, identify quantitative targets for species recovery, and select, implement, monitor, and evaluate management strategies. PVA is of greatest value for rare species policy and management. However, a limitation of PVA simulation models is that they are constrained by the amount of biological data available, and such data are difficult to obtain from small populations that are at immediate risk of extinction. These problems may be overcome with improved models and more data. Our experience shows benefits of PVA far outweigh its limitations, and applications of the approach are most useful when integrated with decision analysis and completed within an adaptive management philosophy. PVAs have been carried out for 14 Victorian species and less used elsewhere in Australia. Management and recovery plans are developed from these PVAs. We recommend that PVA be used to guide research programs, develop conservation strategies, and inform decision and policy making for both endangered and nonendangered species because it can significantly improve many aspects of natural resource policy and management.  相似文献   

4.
ABSTRACT: Longitudinal succession indicates that diversity and species richiess of fish communities increases with increasing river size (increasing habitat complexity and environmental stability). Cultural impacts tend to decrease diversity, species richness, and evenness. To assess the impacts of cultural events on the fish community of a river system, the bias caused by longitudinal succession was removed by normalizing diversity indices and species richness values for river size. The relationships between an impact index and the community parameters of evenness, normalized diversity, and normalized species richness were determined by regression analysis. Similar relationships were determined using nonnormalized data, and the results compared. The two sets of regressions were similar in terms of variance explained. Evenness, which is unaffected by longitudinal sucession, appears to be the most impact sensitive parameter. A major source of error and confusion rsults from introduced species which are simultaneously sources of biological impact and a component of the community. Numbers of introduced species tend to increase with both impact and river size.  相似文献   

5.
The development of conservation strategies for nontimber forest products requires the characterization of the management systems and ethnoecological knowledge of the used species, as well as the analysis of the biological impacts of these processes. This study aimed to evaluate management systems and extractivist areas and related ethnoecological knowledge of Dimorphandra gardneriana (fava d’anta) in the semiarid region of Ceará, Northeast of Brazil. Fava d’anta produces fruits with high concentration of bioflavonoids, substances with various pharmacological properties, being exploited by extractivist communities in the mosaic of protected areas in Chapada do Araripe, Ceará. Ethnoecological knowledge has been concentrated on collectors who have been in activity for a longer time and/or plant the species. We identified three management systems that can impact in different ways on fava d’anta populations, depending on the area and level of human interference with the species. The extractivists respect the zoning of protected areas and do not enter in the full protection area, choosing areas with the highest tree density. The different systems produce a mosaic that creates different extraction opportunities and modifications to the local landscape and to fava d’anta populations. Factors that may have effects on the conservation of the species are the lack of supervision and overexploitation of the resource in native areas, while the factors that affect the health of extractivists are the infrastructure of the work and exposure to wild environments.  相似文献   

6.
Nodes,networks, and MUMs: Preserving diversity at all scales   总被引:14,自引:0,他引:14  
The present focus of practical conservation efforts is limited in scope. This narrowness results in an inability to evaluate and manage phenomena that operate at large spatiotemporal scales. Whereas real ecological phenomena function in a space-time mosaic across a full hierarchy of biological entities and processes, current conservation strategies address a limited spectrum of this complexity. Conservation typically is static (time-limited), concentrates on the habitat content rather than the landscape context of protected areas, evaluates relatively homogeneous communities instead of heterogeneous landscapes, and directs attention to particular species populations and/or the aggregate statistic of species diversity. Insufficient attention has been given to broad ecological patterns and processes and to the conservation of species in natural relative abundance patterns (native diversity).The authors present a conceptual scheme that evaluates not only habitat content within protected areas, but also the landscape context in which each preserve exists. Nodes of concentrated ecological value exist in each landscape at all levels in the biological hierarchy. Integration of these high-quality nodes into a functional network is possible through the establishment of a system of interconnected multiple-use modules (MUMs). The MUM network protects and buffers important ecological entities and phenomena, while encouraging movement of individuals, species, nutrients, energy, and even habitat patches across space and time. An example is presented for the southeastern USA (south Georgia-north Florida), that uses riparian and coastal corridors to interconnect existing protected areas. This scheme will facilitate reintroduction and preservation of wide-ranging species such as the Florida panther, and help reconcile species-level and ecosystem-level conservation approaches.  相似文献   

7.
Large geographic areas can have numerous incipient invasive plant populations that necessitate eradication. However, resources are often deficient to address every infestation. Within the United States, weed lists (either state-level or smaller unit) generally guide the prioritization of eradication of each listed species uniformly across the focus region. This strategy has several limitations that can compromise overall effectiveness, which include spending limited resources on 1) low impact populations, 2) difficult to access populations, or 3) missing high impact populations of low priority species. Therefore, we developed a novel science-based, transparent, analytical ranking tool to prioritize weed populations, instead of species, for eradication and tested it on a group of noxious weeds in California. For outreach purposes, we named the tool WHIPPET (Weed Heuristics: Invasive Population Prioritization for Eradication Tool). Using the Analytic Hierarchy Process that included expert opinion, we developed three major criteria, four sub-criteria, and four sub-sub-criteria, taking into account both species and population characteristics. Subject matter experts weighted and scored these criteria to assess the relative impact, potential spread, and feasibility of eradication (major criteria) for 100 total populations of 19 species. Species-wide population scores indicated that conspecific populations do not necessarily group together in the final ranked output. Thus, priority lists based solely on species-level characteristics are less effective compared to a blended prioritization based on both species attributes and individual population and site parameters. WHIPPET should facilitate a more efficacious decision-making process allocating limited resources to target invasive plant infestations with the greatest predicted impacts to the region under consideration.  相似文献   

8.
The most widespread invasive alien plant species in South Africa’s Kruger National Park (KNP) were either introduced unintentionally along rivers and roads, or intentionally for use as ornamentals. We examine the spatial distribution of ornamental alien plants in KNP, look at the link between human population size, history, and species richness, and show how the distribution of particular species reflects the likely history of ornamental plantings. Results are used to assess whether past management actions have been appropriately directed. Two hundred and fifty-eight alien species have been recorded in the 36 tourist camps and staff villages. The number of staff housed in villages explains much of the diversity of cultivated alien plant species. Older camps also tend to have more ornamental alien plant species. However, the lack of a strong link between camp age and number of cultivated species suggests that ornamental plants have been widely spread around the KNP by humans. We also show that increased camp activity (either size or age) has led to more ornamental species, while, with the notable exception of Skukuza, camp activity has had a much smaller effect on the number of noncultivated species. Noncultivated species tend to be naturally dispersed, as opposed to directly spread by humans between camps. Past management prioritized certain species on the basis of their potential to invade KNP and on the prevailing national legislation. These species were removed manually and follow-up control was carried out. Once the priority species were deemed to be under control, less invasive species were targeted. All alien species were removed from vacated houses, regardless of the potential invasiveness of the species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The term biodiversity describes the array of interacting, genetically distinct populations and species in a region, the communities they comprise, and the variety of ecosystems of which they are functioning parts. Ecosystem health, a closely related concept, is described in terms of a process identifying biological indicators, end points, and values. The decline of populations or species, an accelerating trend worldwide, can lead to simplification of ecosystem processes, thus threatening the stability and sustainability of ecosystem services directly relevant to human welfare in the chain of economic and ecological relationships. The challenge of addressing issues of such enormous scope and complexity has highlighted the limitations of ecology-as-science. Additionally, biosphere-scale conflicts seem to lie beyond the scope of conventional economics, leading to differences of opinion about the commodity value of biodiversity and of the services that intact ecosystems provide. In the face of these uncertainties, many scientists and economists have adopted principles that clearly assign burdens of proof to those who would promote the loss of biodiversity and that also establish near-trump (preeminent) status for ecological integrity. Electric utility facilities and operations impact biodiversity whenever construction, operation, or maintenance of generation, delivery, and support facilities alters landscapes and habitats and thereby impacts species. Although industry is accustomed to dealing with broad environmental concerns (such as global warming or acid rain), the biodiversity issue invokes hemisphere-wide, regional, local, and site-specific concerns all at the same time. Industry can proactively address these issues of scope and scale in two main ways: first, by aligning strategically with the broad research agenda put forth by informed scientists and institutions; and second, by supporting focused management processes whose results will contribute incrementally to the broader agenda of rebuilding or maintaining biodiversity.  相似文献   

10.
The ecological systems of Earth are subjected to a wide array of environmental stresses resulting from human activities. The development of appropriate environmental protection and management policies and the appropriate allocation of resources across environmental stresses require a systematic evaluation of relative risks. The data and methodologies for comprehensive ecological risk assessment do not exist, yet we do have considerable understanding of econological stress-response relationships. A methodology is presented to utilize present knowledge for assignment of relative risks to ecological systems and human welfare from anthropogenic stresses. The resultant priorities, developed for the US Environmental Protection Agency's (EPA) relative risk reduction project, highlight global climate change, habitat alteration, stratospheric ozone depletion, and species depletion as the highest environmental risks, significantly diverging from the present emphasis by EPA and the public on toxic chemical issues. Enhanced attention to ecological issues by EPA and development of ecological risk assessment methodologies that value ecological and economic issues equitably are key recommendations.  相似文献   

11.
This study examines the establishment patterns of exotic and ruderal species along trail corridors in grassland areas of the Colorado Front Range. The effects of trail presence, trail age, and trail traffic levels on exotic and ruderal species establishment are explored to ascertain the potential impacts of trails on surrounding vegetation. Established trails exhibited a greater presence of exotic and ruderal species along the immediate trailside, showing that disturbed trailsides tend to encourage the growth of these species over time. Furthermore, the established trails exhibited significantly less native, nonruderal, and overall species richness at the trailside. These trailside patterns did not show a significant spread away from the trail edge, even after prolonged time periods. Finally, higher trail use tended to hasten the establishment of exotic species along the trailside. The trails did not introduce new species to the recreation areas; rather they acted as reorganizational tools for species that were already present in the study sites.  相似文献   

12.
This study investigated the genetic relationships between the rare terrestrial orchid Diuris fragrantissima and three closely related purple flowered species using Amplified Fragment Length Polymorphisms. The purple-flowered species were found to form individual phenetic clusters confirming recognition of D. fragrantissima at the rank of species. Levels of genetic variation were lower within D. fragrantissima than within its closest relatives but were higher than expected for severely bottlenecked species. Gene flow was detected among all species (Nm = 2.34) and populations (Nm = 0.65) however low among population gene flow indicates that populations may be at risk of divergence. This study has implications for the conservation of D. fragrantissima.  相似文献   

13.
The movement of individuals among populations can be critical in preventing local and landscape-scale species extinctions in systems exposed to human perturbation. Current understanding of spatial population dynamics in streams is largely limited to the reach scale and is therefore inadequate to address species response to spatially extensive perturbation. Using model simulations, I examined species response to perturbation in a drainage composed of multiple, hierarchically arranged stream-patches connected by in-stream and overland pathways of dispersal. Patch extinction probability, the proportion of initially occupied patches extinct after 25 years, was highly sensitive to the extent of species occupancy and perturbation within the drainage, longitudinal species distribution, perturbation decay rate and the covariance pattern of stochastic effects on colonization and extinction probabilities. Results of these simulations underscore the importance of identifying and preserving source populations and dispersal routes for stream species in human-impacted landscapes. They also highlight the vulnerability of headwater specialist taxa to anthropogenic perturbation, and the strong positive effect on species resilience of habitat rehabilitation when recolonization is possible. Efforts to conserve and manage stream species may be greatly improved by accounting for landscape-scale spatial population dynamics.  相似文献   

14.
The presence of ammonia nitrogen in landfill leachates poses a significant problem for treatment plant operators. The nitrification-denitrification process mostly carries out the nitrogen conversion in biological treatment systems. However, recent research shows that other processes by anaerobic ammonia-oxidizing bacteria (Anammox) and ammonia-oxidizing archaea (AOA) were also responsible for the removal of nitrogen in biological systems. In this study, the nitrogen-converting microorganisms in the Bursa Hamitler Leachate Treatment Plant were identified and monitored by using molecular tools. Fluorescent in situ hybridization (FISH) and slot-blot hybridization results showed that the Nitrosomonas and Nitrospira species were the dominant ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), respectively. Quantitative real-time PCR results indicated that AOB, NOB, AOA and Anammox bacteria exist in the leachate treatment plant. However, the removal of ammonia can be ascribed mainly to nitrification because AOB (1.5%) and NOB (11.3%) were predominant among all nitrogen-converting bacteria. The results of the phylogenetic analysis based on amoA and 16S rDNA gene revealed that the uncultured bacterium clone 4-24, Kuenenia stuttgartiensis genome fragment KUST_E and the uncultured Crenarchaeota clone NJYPZT-C1 belong to AOB, Anammox and AOA populations, respectively, and were the dominant species in their cluster.  相似文献   

15.
Increasing oil transportation and severe oil accidents in the past have led to the development of various sensitivity maps in different countries all over the world. Often, however, the areas presented on the maps are far too large to be safeguarded with the available oil combating equipment and prioritization is required to decide which areas must be safeguarded. While oil booms can be applied to safeguard populations from a drifting oil slick, decision making on the spatial allocation of oil combating capacity is extremely difficult due to the lack of time, resources and knowledge. Since the operational decision makers usually are not ecologists, a useful decision support tool including ecological knowledge must be readily comprehensible and easy to use. We present an index-based method that can be used to make decisions concerning which populations of natural organisms should primarily be safeguarded from a floating oil slick with oil booms. The indices take into account the relative exposure, mortality and recovery potential of populations, the conservation value of species and populations, and the effectiveness of oil booms to safeguard different species. The method has been implemented in a mapping software that can be used in the Gulf of Finland (Baltic Sea) for operational oil combating. It could also be utilized in other similar conservation decisions where species with varying vulnerability, conservational value, and benefits received from the management actions need to be prioritized.  相似文献   

16.
It is often difficult to measure and predict the impacts of toxic chemicals, such as herbicides, on natural communities. This is especially true under conditions of spray drift when the amount received by the organisms downwind from the sprayer may be at sub-lethal doses. Laboratory experiments are either artificial, or have not been generally carried out over long enough time periods, to be realistic. Field experiments are often difficult because of the high variability inherent in natural populations. Here an intermediate microcosm approach was used, where standardized artificial communities (eight dicotyledons with and without a grass) were tested. The artifical communities included species typical of British woodland margins, hedgerows and field margins; communities with a high conservation interest, yet potentially under threat from spray drift. The microcosms were placed downwind of a sprayer and exposed to one of the following herbicides: glyphosate, mecoprop and MCPA. This approach ensures that the communities were standardized at the start and have been exposed to realistic doses of herbicide. The experiments reported here were carried out for at least three years with exposures to herbicides repeated each year. The effects of differential herbicide exposure downwind of the sprayer were measured on species yield, flowering performance, seed production, seed viability and invasion by new species. Responses were extremely variable, but all species showed some effects in some years. Some patterns emerged. For example, one group of species appeared to be more successful near to the sprayer. This was particularly true of the grass when exposed to MCPA and mecoprop. The performance of most species was reduced under the sprayer, and there was a general recovery with increasing distance downwind. A few species showed increased performance in the intermediate downwind zone (2–4 m) and this may be due to a hormonal effect on growth processes, or an effect of reduced interference from other community members. Generally, there were few effects on seed production or seed viability. An important result was that most effects were confined within an 8 m zone, as there were few significant differences between plants exposed at 8 m and those untreated. Although damaging effects were found in the immediate downwind zone from the sprayer, the restriction of effects to 8 m suggests that a buffer zone of this size would be adequate to protect sensitive habitats from most deleterious impacts on community processes.  相似文献   

17.
We conducted a field experiment using constructed communities to test whether species richness contributed to the maintenance of ecosystem processes under fire disturbance. We studied the effects of diversity components (i.e., species richness and species composition) upon productivity, structural traits of vegetation, decomposition rates, and soil nutrients between burnt and unburnt experimental Mediterranean grassland communities. Our results demonstrated that fire and species richness had interactive effects on aboveground biomass production and canopy structure components. Fire increased biomass production of the highest-richness communities. The effects of fire on aboveground biomass production at different levels of species richness were derived from changes in both vertical and horizontal canopy structure of the communities. The most species-rich communities appeared to be more resistant to fire in relation to species-poor ones, due to both compositional and richness effects. Interactive effects of fire and species richness were not important for belowground processes. Decomposition rates increased with species richness, related in part to increased levels of canopy structure traits. Fire increased soil nutrients and long-term decomposition rate. Our results provide evidence that composition within richness levels had often larger effects on the stability of aboveground ecosystem processes in the face of fire disturbance than species richness per se.  相似文献   

18.
We examined the impact of single-tree selective logging and fuel reduction burns on the abundance of hollow-nesting bird species at a regional scale in southeastern Queensland, Australia. Data were collected on species abundance and habitat structure of dry sclerophyll production forest at 36 sites with known logging and fire histories. Sixteen bird species were recorded with most being resident, territorial, obligate hollow nesters that used hollows that were either small (<10 cm diameter) or very large (>18 cm diameter). Species densities were typically low, but combinations of two forest management and three habitat structural variables influenced the abundances of eight bird species in different and sometimes conflicting ways. The results suggest that habitat tree management for biodiversity in production forests cannot depend upon habitat structural characteristics alone. Management histories appear to have independent influence (on some bird species) that are distinguishable from their impacts on habitat structure per se. Rather than managing to maximize species abundances to maintain biodiversity, we may be better off managing to avoid extinctions of populations by identifying thresholds of acceptable fluctuations in populations of not only hollow-nesting birds but other forest dependent wildlife relative to scientifically valid forest management and habitat structural surrogates.  相似文献   

19.
Multiple-species habitat conservation plans (MSHCPs) are designed to eliminate project-by-project review and minimize species-by-species conflicts; but these one-time, short-term processes invariably compress the divergent expectations of interest groups into an exercise driven by economic, amenity, and aesthetic values rather than scientific values. Participants may define an MSHCP as an exchange of habitat preserves for federal permits to take populations of endangered animals and plants, but the outcome is typically driven by overarching arguments over land development and suburban sprawl. Existing land uses also constrain the size, shape, and linkages among wildlife habitats, leading to a divergence of MSHCPs from the scientific preserve selection and design literature. Problems created by constraints to preserve configuration (e.g., land costs, fragmentation, pre-existing amounts of edge, lack of connectivity) must be resolved by long-term, post facto management. To date, estimates of preserve persistence have not been used in MSHCPs. Rather than focus on map-based exercises of preserve elements, it may be more productive to set goals for the persistence of species (states) and ecosystems (processes) within the preserves-accepting that preserve configurations and arrays will be defined by the landscape and politics of suburban areas and that long-term management will provide the primary means of maintaining biodiversity along the wildland/urban interface.  相似文献   

20.
Habitat fragmentation due to human activities is one of the most important causes of biodiversity loss. In Mediterranean areas the species have co-evolved with traditional farming, which has recently been replaced for more severe and aggressive practices. We use a methodological approach that enables the evaluation of the impact that agriculture and land use changes have for the conservation of sensitive species. As model species, we selected Linaria nigricans, a critically endangered plant from arid and semiarid ecosystems in south-eastern Spain. A chronosequence of the evolution of the suitable habitat for the species over more than 50 years has been reconstructed and several geometrical fragmentation indices have been calculated. A new index called fragmentation cadence (FC) is proposed to quantify the historical evolution of habitat fragmentation regardless of the habitat size. The application of this index has provided objective forecasting of the changes of each remnant population of L. nigricans. The results indicate that greenhouses and construction activities (mainly for tourist purposes) exert a strong impact on the populations of this endangered species. The habitat depletion showed peaks that constitute the destruction of 85% of the initial area in only 20 years for some populations of L. nigricans. According to the forecast established by the model, a rapid extinction could take place and some populations may disappear as early as the year 2030. Fragmentation-cadence analysis can help identify population units of primary concern for its conservation, by means of the adoption of improved management and regulatory measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号