首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
京津冀西北典型流域地下水化学特征及补给源分析   总被引:1,自引:0,他引:1  
为揭示京津冀西北典型流域地下水循环特征,运用环境同位素和水化学技术等方法分析张家口市不同流域水体氢氧同位素特征、水化学特征及时空变化特征、地表地下水转化关系。结果表明:地表水化学类型主要为HCO3-Mg·Na和HCO3·Cl-Na型;地下水化学类型不同时期表现出不同的类型,水化学类型更为多样,主要以HCO3-Mg·Na型、HCO3·Cl-Na型、HCO3·Cl-Na·Mg为主。地表河水和地下水中离子均主要来源于岩石风化作用;张北和桑干河流域地下水中离子偏向于蒸发浓缩作用控制。张家口市各流域地表地下水δ18O、δD组成较为接近,表明了当地地表水和地下水均受到大气降水的补给。大气降水和地表河水对地下水的补给比例均值分别为37.74%和62.26%,以地表河水的补给为主要方式。  相似文献   

2.
伊洛河流域河水来源及水化学组成控制因素   总被引:15,自引:13,他引:2  
伊洛河是黄河中游南岸重要支流,由伊河和洛河在洛阳偃师汇合而成.流域上游矿产资源开采活动较多,下游城镇密集,工农业活动分布广泛.为探究不同类型人为活动对伊洛河流域河水水化学组成的影响,分别在丰水期(8月)和平水期(12月)采集伊洛河流域干流和支流河水样品,借助水体氢氧同位素组成和阴阳离子组成的时空分布特征,阐明水体来源以及水化学组成控制因素,说明人为活动的影响途径和方式.结果表明:①洛河干流河水丰水期和平水期δD和δ18O均值分别为-56‰和-7.9‰以及-55‰和-8.1‰,伊河干流河水丰水期和平水期δD和δ18O均值分别为-49‰和-6.9‰以及-53‰和-7.8‰,丰水期和平水期河水主要接受当地大气降水补给;②洛河及伊河干流河水水化学类型均为HCO3-SO4-Ca-Mg型,丰水期干流河水Ca2+和HCO-3当量浓度占比低于平水期,而丰水期SO42-当量浓度占比则高于平水期,显示丰水期较多...  相似文献   

3.
采用环境同位素和水化学方法,通过分析南太行山山前平原不同类型水体氢氧稳定同位素(δD和δ18O)、溶解性无机碳同位素(δ~(13)C-DIC)和水化学组成特征,探讨不同水体来源以及人类活动对地下水水质的影响过程。研究区地下水氢氧同位素组成表明,区内地下水均来自大气降水,补给区和排泄区浅部含水层地下水较深部含水层地下水氢、氧同位素值均偏正,氘盈余值(d值)也偏小,显示浅部含水层地下水受蒸发作用影响。同时排泄区地下水氢、氧同位素值较补给区地下水偏正,显示排泄区地下水经历较明显的蒸发过程。研究区地下水溶解性无机碳碳同位素(δ~(13)C-DIC)组成表明,补给区和排泄区浅部含水层地下水δ~(13)C-DIC值较深部含水层δ~(13)C-DIC值均偏负,显示浅部含水层地下水无机碳更多来源于有机物分解。同时排泄区地下水δ~(13)C-DIC值较补给区地下水δ~(13)C-DIC值偏负,表明排泄区地下水溶解性无机碳受有机物分解影响较大。研究区地下水水化学组成表明,补给区地下水水化学类型以Ca-HCO3型为主,排泄区地下水水化学类型以Na-HCO3-SO4型为主。结合同位素组成特征,补给区地下水水化学组成主要受溶滤作用和人类活动的影响,排泄区地下水水化学组成则受溶滤作用、蒸发浓缩作用、阳离子交换作用和人类活动的共同控制。  相似文献   

4.
为明晰秦皇岛东宫河流域水环境特征,以该流域大气降水、地下水及地表水为研究对象,通过对水化学和氢氧稳定同位素样品测试及特征分析,揭示其时空变化特征及大气降水、地下水和地表水的相互转化关系.结果表明:①东宫河流域地下水(第四系孔隙水、岩溶水、裂隙水)和地表水(河水、泉水)的水化学类型,枯水期较丰水期丰富.丰水期水化学类型主要以HCO3-Ca型、HCO3·SO4-Ca型和HCO3-Ca·Mg型为主;枯水期水化学类型以HCO3-Ca型、HCO3-Ca·Mg型、HCO3·SO4-Ca型、HCO3·SO4-Ca·Mg型为主.②研究区第四系孔隙水和泉水的离子含量变化受季节影响较大,枯水期离子含量变化较丰水期显著;岩溶水和裂隙水各离子含量变幅较小,基本趋于稳定.岩溶含水层和裂隙含水层中富含石膏,为SO42-的主要来源;Na+和Cl-主要来源于易溶解盐NaCl,Ca2+和Mg2+主要来源于方解石的风化溶解.③东宫河流域地下水、地表水及大气降水之间存在密切的水力联系,针对氢氧同位素的组成分析表明,大气降水为地下水和河水的主要来源;不同泉水补给来源存在差异性,泉水主要接受岩溶水补给,同时也受蒸发作用影响;第四系孔隙水接受大气降水和河水的双重补给;裂隙水主要接受山区降水径流补给.研究显示,东宫河流域不同水体中离子含量受降雨量、温度和地质背景等影响,不同水体间联系密切,相互补给排泄.   相似文献   

5.
为探寻西苕溪地表、地下水体的来源和补排关系,对西苕溪流域丰水期和平水期的地表、地下水进行了氢氧同位素(δD和δ18O)组成分析,并结合水体的水化学参数,推断其来源和补排关系。结果表明:西苕溪流域地表、地下水体主要接受降雨补给,在上游山区中的泉水运移过程较为缓慢,上游地表水与地下水补排关系不明显;中游丘陵地区地表、地下水体相互联系紧密,具体补排关系为3号、4号、6号样点处地表水接受地下水补给,其余样点处为地表水补给地下水;下游农田密集区地下水接受河水补给较少。  相似文献   

6.
疏勒河上游地表水水化学主离子特征及其控制因素   总被引:10,自引:14,他引:10  
在系统收集了疏勒河流域上游河水、地下水、降水和冰雪融水水样的基础上,综合运用描述性统计、Gibbs图和Piper阴阳离子三角图等方法,对疏勒河上游地表水中主离子组成特征及其控制因素进行了分析.结果表明,流域内不同水体(大气降水、河水和地下水)之间的主离子组成以及水化学类型差异显著.河水TDS的变化范围为51.7~432.3 mg·L-1,平均值为177.7 mg·L-1;河水中阳离子Ca2+、Mg2+的百分比为45%和31%,优势阴离子为HCO-3,占阴离子总量的75%,河水的水化学类型主要为HCO-3-Ca2+-Mg2+型;河水中主离子浓度值介于大气降水和地下水之间,并且十分接近地下水浓度,说明地表水同时受大气降水和地下水补给并主要依靠地下水补给;地表水样品的水化学组成落在Gibbs分布模型的中翼偏左端,表明研究区的水化学离子组成受到岩石风化作用和蒸发结晶作用的共同影响,且岩石风化作用对水化学离子组成的影响更加显著.  相似文献   

7.
选取鄱阳湖典型洪泛湿地为研究对象,分析了2018年4~10月降水、湖水、河水和湿地地下水的氢氧同位素变化特征,利用δ18O~δD关系确定了不同水文时期湿地各类水体的转化关系,并结合同位素端元混合模型估算了不同水源对湿地地下水的贡献分量.结果表明,研究区降雨δ18O和δD值在6~7月份偏小,其余月份较高,存在明显季节变化和雨量效应.河水、湖水同位素与降水同位素的季节变化规律基本一致,但受蒸发分馏影响,重同位素更为富集,且变化幅度远小于降水同位素.湿地地下水同位素的季节变化较小,δ18O、δD均值(-5.26‰,-31.1‰)高于大气降水(-6.32‰,-40.1‰)、低于湖水(-3.60‰,-26.4‰),与河水同位素(-5.09‰,-34.4‰)较为接近,表明湿地地下水受降水、湖水和河水的共同影响.涨水期(4~5月)河水的补给源为降雨和流域内地下径流,湖水主要受河水和降水共同补给,湿地地下水主要受前期降水和河水补给的滞后影响,河水的贡献比重更大.丰水期(6~8月)地下水主要接受湖水和河水共同补给,湖水的补给贡献比例超过50%,退水期(9~10月)湿地地下水向河道和湖泊等地表水体排泄.  相似文献   

8.
于2012年7~8月采集黄河流域干流和支流河水样品,通过分析水体氢氧同位素组成的时间和空间变化特征,研究了河水主要来源的变化以及其对流域气候变化的响应.结果表明:除源头河水外,黄河干流河水δD值变化范围为-97.2‰~-62.9‰,均值为-72.2‰,δ~(18)O值范围为-13.0‰~-8.7‰,均值为-9.9‰,d盈余值为4.1‰~11.0‰,均值为7.0‰;支流河水δD值范围为-103.8‰~-30.5‰,均值为-68.9‰,δ~(18)O值范围为-13.7‰~-1.5‰,均值为-9.2‰,d盈余值为-18.5‰~13.2‰,均值为4.5‰.黄河干流兰州段以上以及中游河水氢氧同位素均值均偏负,而兰州至头道拐和下游河水氢氧同位素均值偏正,但河水氘盈余均值呈现由上游到下游逐渐降低的趋势.黄河干流和支流河水Na~+/Cl~-摩尔比值范围为0.94~3.02,源头区黄河干流河水Na~+/Cl~-摩尔比均值为1.02,兰州段以上均值为1.58,兰州至头道拐间均值为1.30,中游均值为1.79,下游均值为1.41.河水Na~+/Cl~-摩尔比值与河水δ~(18)O值呈较好的负相关关系,表明黄河河水受大气降水补给,地下水补给以及蒸发作用等控制.与前人研究结果对比发现,2000年以来黄河河水年径流量逐渐增加,上游河水受二次蒸发过程影响在降低,中游和下游河水受蒸发作用影响在减弱,显示区域气候干旱状况有所降低.  相似文献   

9.
安徽淮北临涣矿区地表水水化学及硫氢氧同位素组成特征   总被引:1,自引:0,他引:1  
以淮北临涣矿区为研究对象,系统的采集了研究区河水、沉陷区积水和矿井排水等共23个水样,分析测试其常规水化学指标及氢氧硫同位素特征值。采用Piper三线图、Gibbs图与线性回归分析等方法,探讨了研究区不同类型地表水水化学组份特征及影响因素、SO_4~(2-)来源等问题。结果表明:研究区地表水TDS含量较高,属高矿化度水质类型,阳离子主要为Na~+和Ca~(2+),阴离子主要为HCO3-与SO_4~(2-),其中浍河河水水化学类型主要为Na~+-Ca~(2+)-HCO_3~-型,沉陷积水主要为Na~+-Cl~--SO_4~(2-)型;研究区河水和沉陷区积水SO_4~(2-)含量较高,平均值分别为412. 90 mg/L和490. 61 mg/L,河水中SO_4~(2-)主要来源于蒸发岩溶解、废水排放,沉陷区积水SO_4~(2-)来源于河水补给及矿井排水的影响;地表水的δD和δ~(18)O值变化范围为-55. 3‰~-29. 3‰和-7. 2‰~-2. 6‰,均落在大气降水线下方,表明其受到不同程度蒸发作用,河水、沉陷积水主要补给来源是大气降水; Gibbs图分析结果表明河水离子组成主要受岩石风化的控制,而沉陷区积水主要受蒸发作用影响。  相似文献   

10.
长江中下游地区丰水期河、湖水氢氧同位素组成特征   总被引:1,自引:0,他引:1  
稳定同位素技术在示踪水体的来源、演化及不同水体间相互转化关系、污染源已被广泛地应用.基于2018年7月对长江中下游地区长江干流河水和湖水同位素样品收集,本文分析了长江中下游地区丰水期河水和湖水中δ18O和δ2H组成特征,在此基础上进一步揭示了其空间上演化特征及其影响因素.结果表明长江干流δ18O和δ2H值自三峡库区向下游地区呈逐渐增大的变化趋势,这与降水同位素变化密切相关.在三峡库区段与宜昌-城陵矶段河水δ18O和δ2H值无显著差异,而河水d-excess值波动范围较小.在洞庭湖-江汉和华阳-鄱阳湖湖泊群中湖水δ18O和δ2H值要贫于太湖-三角洲湖泊群,且太湖-三角洲湖泊群湖水中d-excess值为负值,这主要是太湖-三角洲地区受同位素较为富集的降水和强烈的蒸发作用的影响.在淀山湖和大通湖同位素值最大,洞庭湖和鄱阳湖同位素值偏小,这主要是由于长江与鄱阳湖、洞庭湖直接相通,两湖的水情直接受制于长江影响,水位较高,鄱...  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

14.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

18.
Single and joint effects of pesticides and mercury on soil urease   总被引:3,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
Common silver barb,Puntius gonionotus,exposed to the nominal concentration of 0.06 mg/L Cd for 60 d,were assessed for histopathological alterations(gills,liver and kidney),metal accumulation,and metallothionein(MT)mRNA expression.Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae,vacuolization in hepatocytes,and prominent tubular and glomerular damage in the kidney.In addition,kidney accumulated the highest content of cadmium,more than gills and liver.Expression of MT mRNA was increased in both liver and kidney of treated fish.Hepatic MT levels remained high after fish were removed to Cd-free water.In contrast,MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water.The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号