首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
为探究临沂市PM2.5和PM10中元素的污染特征及来源,于2016年12月至2017年10月对临沂市环境空气中PM2.5和PM10进行了同步采样.利用电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES)测定了其中的23种元素,并采用富集因子法和PMF法分析其来源.结果表明,采样期间临沂市PM2.5和PM10中主要元素为Si、Ca、Al、Fe、K、Na和Mg,分别占所测元素的质量分数为92.93%和94.61%. 18种元素(除Ti、Ni、Mo、Cd和Mg)的浓度水平在冬春季最高,夏秋季最低.其中Si、Al、Ca、K和Na表现为春季浓度最高,主要分布在粗颗粒中;Cu、Zn、Pb和Sb表现为冬季浓度最高,主要分布在细颗粒中.富集因子结果表明Cd、Sb和Bi元素富集程度显著,主要受燃煤、工业生产、垃圾焚烧等人为源共同影响.PMF源解析结果表明,临沂市PM2.5中元素来源主要有燃煤和铜冶炼的混合源、市政垃圾焚烧...  相似文献   

2.
为探讨曹妃甸采暖期和非采暖期PM2.5中Cr、Pb、As和Cd元素的污染特征、来源及健康风险,以华北理工大学曹妃甸校区为研究地点,于2017年12月—2018年10月采集98份PM2.5样品.利用重量法测定空气中PM2.5浓度,使用电感耦合等离子体质谱仪分析PM2.5中4种重金属元素(Cr、Pb、As和Cd)的浓度;采用Wilcoxon Mann-Whitney U检验比较采暖期与非采暖期,以及PM2.5超标日与非超标日各元素含量的差异,利用Kruskal-Wallis H检验法比较不同PM2.5浓度分级下4种金属元素浓度差异,用PMF(正定矩阵因子分解)模型对4种重金属元素的来源及贡献率进行解析,并用美国环境保护局推荐的人体暴露健康风险评价模型进行健康风险评估.结果表明:①曹妃甸采暖期PM2.5及Pb、As和Cd浓度均高于非采暖期,而Cr浓度略低于非采暖期.②PM2.5超标日Pb、As和Cd浓度均高于非超标日,不同PM2.5浓度级别下Pb、As和Cd浓度有所差异,且Pb、As和Cd浓度随PM2.5浓度的增加而增加.③PMF模型源解析表明,燃煤源及交通源是曹妃甸采暖期PM2.5金属元素主要来源,二者贡献率分别为50.4%和31.7%;工业源及交通源是非采暖期PM2.5金属元素的主要来源,二者贡献率分别为47.4%和37.0%.④健康风险评价结果表明,采暖期和非采暖期4种重金属元素的非致癌风险值均小于1.采暖期3种致癌性重金属(Cr、As和Cd)对成年男性、成年女性和儿童青少年的致癌风险均高于人类可接受风险水平(1×10-6);非采暖期Cr和As对成年男性、成年女性和儿童青少年的致癌风险均高于人类可接受风险水平;重金属非致癌风险(Cr、Pb、As和Cd)和致癌风险(Cr、As和Cd)指数高低均呈成年男性>成年女性>儿童青少年的特征.研究显示,在采暖期和非采暖期曹妃甸PM2.5中Pb、As和Cd浓度随PM2.5浓度的增加而增加,燃煤源和工业源是其主要来源,Cr、As和Cd对人群存在一定的致癌风险.   相似文献   

3.
为研究唐山市大气PM2.5中元素组成特征及其来源,于2017年10月19日—2018年1月31日(秋冬季)在唐山市的超级站(典型城市站点)、开平站(工业站点)和古冶站(工业站点)开展了PM2.5的手工连续采样,定量分析测定了PM2.5中23种无机元素.结果表明:Si、Al、Ca和Na等地壳元素的质量浓度均在10月最高,在1月最低.10月,ρ(Cr)在开平站最高(0.020 0 μg/m3),随后逐月略微降低,其主要受钢铁冶炼工业的减产和限产影响.多数重金属元素质量浓度在11月或12月最高,包括Zn、Pb、Mn、Cu、Ni、Se、V、Cd和Co,其可能受燃煤取暖影响.Cd、Zn、Pb和Cu四种元素的富集因子值分别为2 677、616、422和77,均达到极强富集,且均受人为排放源影响最大.基于因子分析法得出,唐山市大气PM2.5中元素的主要来源有燃煤源、钢铁工业源与扬尘源的混合源、交通源以及土壤扬尘源,其方差贡献率分别为56.3%、21.6%、7.1%、5.4%.研究显示,秋冬季唐山市大气颗粒物PM2.5中元素最主要的污染来源为工业源、燃煤源和扬尘源.   相似文献   

4.
为了解天津市采暖季PM2.5中重金属的污染特征及健康风险,使用Xact-625重金属在线分析仪于2020年11月至2021年3月对PM2.5中的重金属元素进行连续采样,分析10种重金属元素(Pb、 Cd、 Cr、 As、 Zn、 Mn、 Co、 Ni、 Cu和V)的污染特征,利用HYSPLIT模型分析重金属元素的时空分布特征,并结合美国EPA健康风险评价模型对重金属健康风险展开研究.结果表明,采样期间天津市10种重金属元素的总浓度平均值为(261.56±241.74)ng·m-3,Cr[折算Cr(Ⅵ)]和As元素高于《环境空气质量标准》(GB 3095-2012)的年平均限值.后向轨迹分析表明,天津市主要受到来自西北部中距离气团(1号)、西北部长距离气团(2号)、西南部气团(3号)和东北部气团(4号)的影响.不同气团来向重金属元素呈现不同的污染特征和健康风险,3号气团PM2.5浓度、10种重金属元素总浓度和5种重金属元素经呼吸途径暴露的终身致癌风险值之和均最高,2号气团10种重金属元素经呼吸途径暴露...  相似文献   

5.
为研究淄博市城区冬季环境空气PM2.5载带金属元素的污染特征、来源和生态风险,于2019年1月8~23日在淄博市采集环境空气PM2.5滤膜样品并分析获取14种金属元素的浓度.结果表明,K含量均值为8 071.6 mg·kg-1,是含量最高的元素,但未超过山东省A层土壤背景值,说明K主要来自自然源;Zn、 Pb、 Cu、 Cr、 As、 Ni和Cd等元素含量明显低于K元素(28.4~4 282.3 mg·kg-1),但均明显高于山东省A层土壤背景值,依次为背景值的56.6、 19.0、 7.2、 2.4、 7.3、 1.4和283.8倍,反映出人为源的影响.地累积指数(Igeo)表明,冬季PM2.5中Cd、 Zn、 Pb、 Cu和As受污染程度较高,均为中度污染及以上.潜在生态风险评价结果显示Cd存在极强的生态危害风险.综合运用相关性分析、富集因子法和主成分分析多种方法解析出,土壤扬尘、机动车尾气、燃煤和冶金行业是淄博市城区环境空气PM2.5  相似文献   

6.
为研究阜新市秋冬交替期间大气PM2.5无机元素污染特征及来源,于2017年10月、12月对城区4个点位采集样品,利用ICP-MS、AFS-8900、ICP-AES测定18种元素含量,结合气象参数,分析秋、冬两季PM2.5污染特征,运用富集因子法(EF)、主成分分析法(PCA)及聚类分析法解析PM2.5元素污染特征及来源.结果表明,阜新城区冬季PM2.5质量浓度(56.5μg/m3)是秋季的1.5倍,秋、冬两季PM2.5平均质量浓度为47.5μg/m3;冬季PM2.5与SO2、NO2的同源性表现强于秋季;冬季PM2.5中V、Cr、Mn、Ni、Cu、Zn、Pb、As、Cd、Hg、Mg、Ti 12种典型人为源标识性元素总质量百分比(8.78%)是秋季的1.45倍,表明城区冬季PM2.5显著受到人为活动影响.富集因子分析显示EF值大于100的元素为Cd、Hg、Zn,冬季EF(Cd)高达532.34,可能与城南3km公里处露天矿坑大量残煤自燃排烟有关;冬季EF(Cr)比秋天增高了7.9倍.源解析结果表明,燃煤与工业烟尘、机动车尾气、生物质燃烧及土壤风沙扬尘是阜新PM2.5无机元素的主要来源.秋季表现出明显的来源复合性,第一主因子解释了变量总方差的77.013%,聚类分析第1类包含了Cd、Hg、Mn、Ni、As、V、Cr、Cu、Pb、Zn、Ti和Mg 12种元素;冬季则表现出明显的来源广泛性,表明冬季PM2.5来源相对复杂,应强化冬季PM2.5污染综合防治与管控.  相似文献   

7.
为研究阜新市秋冬交替期间大气PM2.5无机元素污染特征及来源,于2017年10月、12月对城区4个点位采集样品,利用ICP-MS、AFS-8900、ICP-AES测定18种元素含量,结合气象参数,分析秋、冬两季PM2.5污染特征,运用富集因子法(EF)、主成分分析法(PCA)及聚类分析法解析PM2.5元素污染特征及来源.结果表明,阜新城区冬季PM2.5质量浓度(56.5μg/m3)是秋季的1.5倍,秋、冬两季PM2.5平均质量浓度为47.5μg/m3;冬季PM2.5与SO2、NO2的同源性表现强于秋季;冬季PM2.5中V、Cr、Mn、Ni、Cu、Zn、Pb、As、Cd、Hg、Mg、Ti 12种典型人为源标识性元素总质量百分比(8.78%)是秋季的1.45倍,表明城区冬季PM2.5显著受到人为活动影响.富集因子分析显示EF值大于100的元素为Cd、Hg、Zn,冬季EF(Cd)高达532.34,可能与城南3km公里处露天矿坑大量残煤自燃排烟有关;冬季EF(Cr)比秋天增高了7.9倍.源解析结果表明,燃煤与工业烟尘、机动车尾气、生物质燃烧及土壤风沙扬尘是阜新PM2.5无机元素的主要来源.秋季表现出明显的来源复合性,第一主因子解释了变量总方差的77.013%,聚类分析第1类包含了Cd、Hg、Mn、Ni、As、V、Cr、Cu、Pb、Zn、Ti和Mg 12种元素;冬季则表现出明显的来源广泛性,表明冬季PM2.5来源相对复杂,应强化冬季PM2.5污染综合防治与管控.  相似文献   

8.
为了研究城市大气PM2.5中重金属的污染特征和来源,于2017年的7月和10月及2018年的1月和4月,利用在线金属分析仪对郑州市大气PM2.5中的21种元素进行在线检测,分析了重金属浓度变化;通过富集因子、主成分分析和潜在源贡献等方法对重金属进行溯源;采用环境健康风险评价模型评估其健康风险.结果表明,K、 Zn、 Mn、 Pb、 Cu、 As、 Cr和Se的浓度随污染等级的提高而增加;富集因子和主成分分析法结果表明,重金属主要来源为地壳源、混合燃烧源、工业源和机动车源;雷达特征图表明,地壳源主导的污染主要发生在春、冬两季,混合燃烧源主导的污染主要发生在冬季;Pb、 As和Ni受汾渭平原、京津冀和河南南部的传输影响较大,Cd受采样点西北部影响较大;As对成年人和儿童均有显著致癌风险,Pb和Sb对儿童存在显著非致癌风险.  相似文献   

9.
为研究石家庄市冬季道路积尘PM2.5中金属元素污染特征及来源,利用移动式采样法收集石家庄市不同类型铺装道路积尘,使用ICP-MS和ICP-OES分析测定PM2.5中Cr、Zn、Mn、Cu、Pb、Ni、Sn、As、Sb、Co、Mo、Cd、Al、Mg、Ca、Fe共16种元素的质量分数.结果表明:石家庄市冬季道路积尘PM2.5中金属元素质量分数之和依次为支路>快速路>主干道>次干道,与车流量、车辆类型、道路类型等影响因素有关,w(Mg)、w(Ca)、w(Cr)、w(Cu)、w(Ni)、w(Zn)、w(Pb)、w(Sn)、w(Sb)、w(Mo)、w(Cd)的平均值均高于当地土壤背景值,是背景值的1.2~40.5倍,其中Cr、Zn、Cu、Pb、Sn、Sb、Mo、Cd等元素中,除Pb的富集因子(9.38)接近10外,其他均高于10,来源于人为污染.Igeo(地累积指数)评价结果显示,Cr、Sn(Igeo为4~5)达到强-极强污染水平;Cd、Cu(Igeo为3~4)达到强污染水平;Sb、Mo、Zn(Igeo为2~3)为中-强污染水平,Pb(Igeo为1~2)为中污染水平.多元统计分析结果表明,石家庄市冬季道路积尘中金属元素来源可分为四大类:As、Mo、Zn、Cd、Ni、Pb主要来自机动车和大气中的燃煤沉降;Mn、Co、Sb来自于自然来源、机动车尾气的排放和焊接材料及轴承的磨损;Cr、Cu、Sn主要来自于工业排放的沉降和机动车刹车片磨损;Al、Ca、Mg、Fe主要来自绿化带或机动车携带的土壤尘.研究显示,石家庄市冬季道路积尘PM2.5中金属元素污染严重,主要来源于交通排放.   相似文献   

10.
王成  闫雨龙  谢凯  李如梅  徐扬  彭林 《环境科学》2020,41(3):1036-1044
采集了阳泉市城区2017年10月15日~2018年1月23日PM2.5样品,分析了优良天和污染天PM2.5及其化学组分特征,并利用富集因子分析法(EF)和正定矩阵因子分析法(PMF)对PM2.5进行来源分析.结果表明,采样期间污染天二次无机离子(SO42-、 NO-3和NH+4)在PM2.5中的比例为23.83%,是优良天的2.43倍,污染天二次无机污染严重,污染天人为源相关的元素Cd、 Sb、 Sn、 Cu、 Pb、 Zn和As富集程度大于优良天;主要的污染源对PM2.5的贡献分别是燃煤29.26%、扬尘23.83%、机动车19.34%、二次源16.01%和工业源11.57%,其中,污染天机动车排放对PM2.5的贡献20.57%,高于优良天时17.82%,而燃煤源的贡献23.04%明显低于优良天时33.75%,静稳天气时机动...  相似文献   

11.
2011~2012北京大气PM2.5中重金属的污染特征与来源分析   总被引:14,自引:12,他引:2  
为研究北京PM_(2.5)中重金属污染特征,于2011年夏季~2012年夏季每3 d采集一次PM_(2.5)样品.利用电感耦合等离子体质谱(ICP-MS)分析了Li、V、Cr、Mn、Co、Cu、Zn、As、Se、Ti、Ga、Ni、Sr、Cd、In、Ba、Tl、Pb、Bi和U的浓度,选取其中Zn、Pb、Mn、Cu、As、V和Cr 7种主要重金属元素进行深入讨论.北京市PM_(2.5)中重金属Zn、Pb、Mn、Cu、As、V和Cr的平均质量浓度分别为(331.30±254.52)、(212.64±182.06)、(85.96±47.00)、(45.19±27.74)、(17.13±19.02)、(4.92±3.38)和(9.04±7.84)ng·m-3.采样期间秋冬季节PM_(2.5)中重金属污染较春夏季节严重,这可能与北京秋冬季节取暖导致煤燃烧增加有关.霾过程会加剧北京PM_(2.5)中主要重金属Zn、Pb、Mn、Cu、As、V和Cr的污染,霾天对重金属污染的增加作用呈现一定的季节变化特征.源分析结果表明北京大气颗粒物中重金属主要来源于扬尘(包括建筑扬尘和道路扬尘)和煤燃烧,少量来自远距离输送和其他工业来源.  相似文献   

12.
Trajectory clustering, potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) methods were applied to investigate the transport pathways and identify potential sources of PM2.5 and PM10 in different seasons from June 2014 to May 2015 in Beijing. The cluster analyses showed that Beijing was affected by trajectories from the south and southeast in summer and autumn. In winter and spring, Beijing was not only affected by the trajectories from the south and southeast, but was also affected by trajectories from the north and northwest. In addition, the analyses of the pressure profile of backward trajectories showed that backward trajectories, which have important influence on Beijing, were mainly distributed above 970 hPa in summer and autumn and below 950 hPa in spring and winter. This indicates that PM2.5 and PM10 were strongly affected by the near surface air masses in summer and autumn and by high altitude air masses in winter and spring. Results of PSCF and CWT analyses showed that the largest potential source areas were identified in spring, followed by winter and autumn, then summer. In addition, potential source regions of PM10 were similar to those of PM2.5. There were a clear seasonal and spatial variation of the potential source areas of Beijing and the airflow in the horizontal and vertical directions. Therefore, more effective regional emission reduction measures in Beijing''s surrounding provinces should be implemented to reduce emissions of regional sources in different seasons.  相似文献   

13.
海西城市群PM2.5中重金属元素的污染特征及健康风险评价   总被引:1,自引:2,他引:1  
采集2010~2011年海西城市群PM_(2.5)样品,用粒子激发-X射线发射技术(PIXE)方法测试样品中痕量重金属(Zn、Cu、Pb、Mn、Ni、Cr、As)的浓度,分析痕量重金属的污染特征、富集程度和来源,并进行重金属对人体健康风险的评价.结果表明,PM_(2.5)中重金属总浓度的时空分布特征与PM_(2.5)的不一致,这与PM_(2.5)的某些主要贡献源(如建筑尘和扬尘等)并非痕量重金属的贡献源有关.PM_(2.5)中Zn、Cu、Pb、Mn、Ni、Cr、As等重金属的EF值均高于10,呈明显的人为源富集现象.主成分-多元线性回归(PCA-MLR)解析结果显示,PM_(2.5)中痕量重金属主要有3种来源,即燃煤和机动车尾气(70.59%)、混合源(燃煤、燃油和冶炼行业,17.55%)以及其他工业源(11.86%).健康风险评价结果显示,PM_(2.5)中致癌重金属(Ni、Cr、As)的风险值高于非致癌重金属(Zn、Cu、Pb、Mn)风险值,但均低于一般可接受风险水平(10-6),说明海西城市群大气环境PM_(2.5)中重金属未对人体健康造成危害.  相似文献   

14.
北京冬季PM2.5中金属元素浓度特征和来源分析   总被引:4,自引:2,他引:4  
为了解北京冬季细颗粒物中金属元素的浓度水平及其来源,于2014年12月至2015年1月使用中流量PM_(2.5)采样器在北京城区开展了为期30 d的连续采样,采用滤膜称重法检测PM_(2.5)浓度,电感耦合等离子体质谱法(ICP-MS)分析PM_(2.5)中16种元素总量,并采用富集因子法和因子分析法分析元素污染特征及其来源.结果表明,观测期间PM_(2.5)中主要金属元素为K、Ca、Fe、Al和Mg,占16种元素总量的90.7%.与白天相比,地壳元素如Mg和Al等在夜间的浓度下降30%以上,而人为源金属元素如Cu和Pb等的浓度则上升40%以上.从优良天到重污染天气,上述16种金属元素的总浓度上升1倍,但其在PM_(2.5)中的比例却逐渐降低,说明金属元素的富集不是PM_(2.5)上升的主要原因.随着污染程度的加剧,Cu、Zn、As、Se、Ag和Cd等主要来自人为源的金属元素浓度上升较快,重度污染天与优良天的浓度比值范围为2.9~5.3;而Al、Mg、Ca、Mn和Fe等地壳元素浓度上升则较缓,重度污染天与优良天的浓度比值范围为1.2~1.8.北京冬季PM_(2.5)中金属元素主要来源于燃煤和生物质燃烧、交通和工业排放以及地面扬尘,贡献率分别为34.2%、25.5%和17.1%.  相似文献   

15.
用ICP-MS对厦门市夏冬两季城区和郊区PM_(2.5)(当量直径≤2.5 μm的颗粒物)及其中10种重金属(V、Cr、Mn、Co、Ni、Zn、As、Cd、Pb和Cu)含量进行测定,分析其污染特征,并对重金属的健康风险进行评价。结果表明,采样期间厦门市PM_(2.5)中重金属含量水平表现为ZnPbCuMnVAsNiCrCdCo,其中Zn、Pb、As、Cd和Cu富集因子远远大于10,受人为影响较严重。健康风险评价结果表明,PM_(2.5)中重金属的非致癌健康风险可以忽略;几乎所有重金属的致癌健康风险都高于最大可接受风险值10~(-6)。  相似文献   

16.
常州市大气PM2.5中PAHs污染特征及来源解析   总被引:3,自引:2,他引:1  
2016年1~8月期间,在常州市采集到55个大气细颗粒物PM_(2.5)样品,采用气相色谱-质谱联用仪测定其中17种PAHs的含量.结果表明,冬、春、夏季PAHs的季均浓度分别为140.24、41.42和2.96 ng·m~(-3),冬季污染较严重,且以4~6环中高分子量化合物为主.Ba P日均浓度平均值3.64 ng·m~(-3),超标日占总采样天数的41%.PAHs浓度与气温(相关系数-0.643)和能见度(相关系数-0.466)显著负相关,与大气压呈显著正相关(相关系数0.544),而与风速、相对湿度相关性较差.受昼夜温差、大气层结和污染源变化等因素影响,夜间PAHs浓度高于白天.气团后向轨迹模型分析表明,常州PM_(2.5)中PAHs主要受当地排放源和短距离传输的影响,长距离传输影响小(仅占11%).特征比值法分析发现,PAHs主要来源于燃煤、机动车尾气和生物质燃烧.利用超额终生致癌风险(ILCR)模型评估PAHs通过呼吸暴露途径对人体健康的影响,结果表明:成人的ILCR值高于儿童,冬季和春季人群的ILCR值略高于风险阈值,夏季则不明显.  相似文献   

17.
为了解山西省武乡县城大气PM_(2.5)污染特征及PM_(2.5)中痕量重金属的生态和健康风险,在分析县城环境空气质量状况的基础上,分别于秋季(2014-10-22~2014-11-19)和冬季(2015-01-12~2015-02-13)在武乡县环境保护局楼顶用中流量采样器采集大气PM_(2.5)样品,每天换膜一次,利用称重法计算PM_(2.5)浓度,运用电感耦合等离子体原子发射光谱仪(ICP-AES)测定样品中As、Cd、Cr、Cu、Ni、Pb、Zn 7种元素含量,运用地累积指数法、生态风险指数法、相关性分析和主成分分析、美国环保署暴露模型等表征痕量重金属的污染程度、来源、潜在的生态和健康风险等.结果表明,冬季大气PM_(2.5)浓度是秋季的3倍左右,有65%的天数超过国家环境空气质量二级标准(GB 3095-2012);PM_(2.5)中痕量重金属来源主要包括燃煤和交通等人为源,贡献率分别为58.38%和18.73%,所测重金属浓度顺序为CuZnPbCrAsNiCd,其中Cd、Cu的生态风险指数、Cr的非致癌和致癌暴露风险大于其它金属.冬季燃煤增加和大气扩散条件差是武乡县城大气PM_(2.5)浓度超标以及造成痕量重金属生态和健康风险增大的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号