首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radioactivity in some Tunisian thermo-mineral springs (11 hot mineral springs and one cold spring) has been determined for the first time in Tunisia using radiochemical separation procedures. The obtained results show that 238U activity concentrations vary between 1.5 and about 43 mBq/l. The measured activities of 234U and 226Ra range from 1.1 to about 82.2 mBq/l and 34-3,900 mBq/l. respectively. The radioactive disequilibria in these waters are in excess of concentration of 234U compared to that of 238U. The 226Ra/234U activity ratios are high and in the range of 9.0-691.0). U, Th and Ra activities are similar to those published for other non-polluted regions of the world. Radioactivity in the only cold mineral water from A?n Oktor is very low, and thus health hazards due to the consumption of this water are not expected.  相似文献   

2.
Unexpected high 228Ra concentrations, up to 2 Bq 1(-1), were found in waters of a coastal lagoon close to a monazite sand separation plant. Due to their use as process waters in this plant, the initial supposition was a contamination related to its operation. However, it was concluded that these abnormal radium concentrations had a natural origin, springs at the lagoon head area with high 228Ra and 226Ra concentrations. The strong relationship among radium and light rare-earth elements (LREEs), the observed 228Ra/226Ra activity ratio and the rare-earth element pattern in the spring waters suggested that monazite is the main source of nuclides for water, indicating the disturbance of monazite chemical stability by the combined effects of low pH and high salinity. Both factors combined allow relatively low mobility of thorium, but, on the other hand, a relatively high mobility of radium and LREEs.  相似文献   

3.
Radiochemical results (238U, 226Ra and 228Ra activities; 234U/238U, 228Ra/226Ra and 226Ra/238U activity ratios) are reported for 42 natural water samples collected from wells, hot mineral springs, rivers, tap water, lakes and irrigation water in 15 Moroccan locations. Results show that 238U activity varies between 4.5 and about 309 mBq l(-1) in wells, 0.6 and 8.5 mBq l(-1) in hot springs, 9.7 and 28 mBq l(-1) in rivers, 2.5 and 16 mBq l(-1) in tap waters and between 6 and 24 mBq l(-1) in lakes. The 234U/238U activity ratio varies in the range 0.87-3.35 in all analyzed water samples except for hot springs where it reaches values higher than 7. Unlike well water, mineral water samples present low 238U activities and high 234U/238U activity ratios and 226Ra activities. The highest activity of radium in mineral water is 150 times higher than the highest activity of 226 Ra found in well water. 226Ra/238U activity ratios are in the ranges 0.07-1.14 in wells, 0.04-0.38 in rivers, 0.04-2.48 in lakes, and 1.79-2115 in springs. The calculated equivalent doses to all the measured activities are inferior to the maximum contaminant levels recommended by the International Commission of Radioprotection and they do not present any risk for public health in Morocco.  相似文献   

4.
Hot mineral springs in Jordan are very attractive to people who seek physical healing but they are unaware of natural radioactive elements that may be contained in the hot mineral water. The activities of the natural radioactive isotopes were measured and the concentrations of the parents of their natural radioactive series were calculated. The measured radionuclides were 234Th, 226Ra, 214Pb, 214Bi, 228Ac, 228Th, 212Pb, 212Bi and 208Tl. In addition the activities of 235U and 40K were measured. The activities ranged from 0.14 to 34.8 Bq/l, while the concentrations of parent uranium and thorium isotopes ranged from 3.0 x 10(-3) to 0.59 mg/l. The results were compared with those for drinking water.  相似文献   

5.
More than 220 groundwater samples were analyzed for 228Ra, 226Ra, 222Rn, 210Pb, U(nat), Th(nat), pH, conductivity, fluoride and some additional elements determined by ICP-MS. Since samples from several Brazilian states were taken, involving areas with quite different geologies, no general trend was observed relating the chemical composition and the natural radionuclide content. On the other hand, 210Pb strongly depends on the water content of its progenitor, 222Rn. The values obtained during the present work were compared with those reported by Hainberger et al. [Hainberger, P.L., de Oliveira Paiva, I.R., Salles Andrade, H.A., Zundel, G., Cullen, T.L., 1974. Radioactivity in Brazilian mineral waters. Radiation Data and Reports, 483-488.], when more than 270 groundwater samples were analyzed, mainly, for 226Ra. Based on the results of both works, it was possible to build a database including the results of both works, generating a set with the radium content of circa 350 groundwater sources. It was demonstrated that 228Ra, 226Ra, 222Rn, 210Pb and U(nat) content in Brazilian groundwater follows a lognormal distribution and the obtained geometric mean were 0.045, 0.014, 57.7, 0.040 BqL(-1) and 1.2 microgL(-1), respectively.  相似文献   

6.
Ground and river waters of the upper Rhine valley (Alsace, France) were investigated for chemical composition of the major elements, Sr isotopes and radionuclides from the U and Th series. In particular, the isotope ratios and concentrations of Ra and Sr were used as geochemical tracers to distinguish between different types of water and their interactions. The bulk chemical analyses suggest that the surface waters in the Rhine valley can be described as mixtures between Ca-Na-HCO3-rich ground water and less mineralized slightly acidic river waters which have migrated through crystalline (mainly granitic) basement rocks of the Vosges mountains. Mixing of these waters yields positive correlation between bulk Sr, U, Ca and HCO3, indicating that carbonate-rich sediments are the main source of U and (non-radiogenic) Sr in the Rhine valley aquifers. The combination of the Ra and Sr isotope systems (228Ra/226Ra, 87Sr/86Sr) shows, however, that probably three sources contribute to the surface river waters in the upper Rhine valley, i.e. (i) a highly radiogenic crystalline component, (ii) a ground water source and, (iii) a third component from infiltrating Rhine water along the flow path of the parallel running river Ill in the northerly direction. The Sr and Ra isotope systems were also used to calculate small-scale mixing fractions of tributaries along the flow path of the Ill. Mixing ratios of non-pure end-member waters were determined using three isotope diagrams (i.e. 224Ra/226Ra vs. 228Ra/226Ra) and the results obtained with the Ra isotope system were found to be consistent with the data using Sr isotope relationships (i.e. 87Sr/86Sr vs. 1/Sr).  相似文献   

7.
The naturally occurring radionuclide 226Ra (t1/2 = 1600 years) was used as a tracer to determine ground water input to Point Judith, Potter, Green Hill and Ninigret ponds in southern Rhode Island. Measurements of 226Ra activity were made in samples collected from salt ponds, pore waters, sediments, and local ground water wells during June-August, 1997. These results were combined with a simple box model to derive ground water input fluxes of 0.1-0.3 cm3 cm-2 d-1 (2-5 x 10(7) L d-1), which are comparable to previous estimates of ground water input to these ponds.  相似文献   

8.
Concentration of 226Ra in Hungarian bottled mineral water   总被引:1,自引:0,他引:1  
Concentration of the radionuclide 226Ra was determined in almost every type of bottled mineral water commercially available in Hungary. Determination of the radon coming from the radium dissolved in the water was used for activity measurement. As the results show, the 226Ra concentrations exceed the level of 100 mBq l(-1) in six cases out of the 28 types of mineral water investigated. In one case 3 Bq l(-1) was measured, which provides 0.3 mSv year(-1) committed effective dose for adults in the case of a consumption rate of 1 l day(-1). In soft drinks produced from mineral water a concentration of 2.6 Bq l(-1) was determined, which means 1.4 mSv year(-1) effective dose in the age group 12-17 years in the case of permanent daily drinking of 1 l of these beverages.  相似文献   

9.
Due to the importance of bottled mineral water in human diet with special regard to children in lactation period, a monitoring of natural radioactivity in some bottled mineral waters produced in Italy was performed. Gross alpha and beta activities and (226)Ra, (238)U, (234)U, and (210)Po concentrations were measured. Gross alpha and beta activities were determined by standards ISO 9696 and ISO 9697; for (226)Ra determination liquid scintillation was used. The (238)U and (234)U concentrations were determined by alpha spectrometry after their separation from matrix by extraction chromatography and electroplating. (210)Po was measured by alpha spectrometry. The results revealed that the concentrations (mBqL(-1)) of (226)Ra, (238)U, (234)U, and (210)Po ranged from <10.00 to 52.50, from <0.17 to 89.00, from <0.17 to 79.00, and from <0.04 to 21.01, respectively. Uranium and radium concentrations do not reach the relevant recommended derived activity concentration (DWC). For polonium concentration, none of the samples reaches the relevant DWC in the case of adults and children, but one sample exceeds this value for infants. The dose contribution for different classes of age was calculated using the dose coefficient factors reported by EC Directive 96/29 EURATOM and certain annual intake. For children and adult age class, the calculated doses are quite similar and lower than 0.1mSvy(-1); for infants (<1y) in three cases the calculated dose ranges from 0.11 to 0.17mSvy(-1).  相似文献   

10.
Concentrations of Ra in liquid and solid wastes generated from 15 softeners treating domestic well waters from New Jersey Coastal Plain aquifers (where combined Ra ((226)Ra plus (228)Ra) concentrations commonly exceed 0.185 Bq L(-1)) were determined. Softeners, when maintained, reduced combined Ra about 10-fold (<0.024 Bq L(-1)). Combined Ra exceeded 0.185 Bq L(-1) at 1 non-maintained system. Combined Ra was enriched in regeneration brine waste (maximum, 81.2 Bq L(-1)), but concentrations in septic-tank effluents receiving brine waste were less than in the untreated ground waters. The maximum combined Ra concentration in aquifer sands (40.7 Bq kg(-1) dry weight) was less than that in sludge from the septic tanks (range, 84-363 Bq kg(-1)), indicating Ra accumulation in sludge from effluent. The combined Ra concentration in sludge from the homeowners' septic systems falls within the range reported for sludge samples from publicly owned treatment works within the region.  相似文献   

11.
Background radioactivity is elevated in many agricultural drainage ponds and also constructed wetland ponds in the Kankakee watershed. During 1995-1999, gross-alpha and -beta activities were measured up to 455 and 1650 mBq L-1, respectively. 226Ra and 228Ra averaged 139 and 192 mBq L-1 in controlled drainage ponds compared to 53 and 58 mBq L-1 for 226Ra and 228Ra, respectively, in native wetland ponds. Analyses of applied ammonium phosphate fertilizers near both native and controlled ponds indicate comparable 226Ra/228Ra and 228Ra/232Th activity ratios with only the surface waters in the controlled ponds. For example, 226Ra/228Ra activity ratios in controlled ponds ranged from 0.791 to 0.91 and group with a local fertilizer batch containing FL phosphate compounds with 226Ra/228Ra activity ratios of 0.831-1.04. Local soils of the Kankakee watershed have 226Ra/228Ra activity ratios of 0.541-0.70. Calculated Ra fluxes of waters, in drainage ditches associated with these controlled ponds, for 226Ra ranged from 0.77 to 9.00 mBq cm-2 d-1 and for 228Ra ranged from 1.22 to 8.43 mBq cm-2 d-1. Ra activity gradients were measured beneath these controlled ponds both in agricultural landscapes and in constructed wetlands, all being associated with drainage ditches. Ra had infiltrated to the local water table but was below regulatory maximum contaminant limits. Still, measurable Ra activity was measured downgradient of even the constructed wetlands in the Kankakee watershed, suggesting that the attenuation of Ra was low. However, no Ra excess was observed in the riparian zone or the Kankakee River downgradient of the native wetland ponds.  相似文献   

12.
Freshwater mussels, Velesunio angasi, along Magela Creek in Australia’s Northern Territory were examined to study radionuclide activities in mussel flesh and to investigate whether the Ranger Uranium mine is contributing to the radium loads in mussels downstream of the mine. Radium loads in mussels of the same age were highest in Bowerbird Billabong, located 20 km upstream of the mine site. Variations in the ratio of [Ra]:[Ca] in filtered water at the sampling sites accounted for the variations found in mussel radium loads with natural increases in calcium (Ca) in surface waters in a downstream gradient along the Magela Creek catchment gradually reducing radium uptake in mussels. At Mudginberri Billabong, 12 km downstream of the mine, concentration factors for radium have not significantly changed over the past 25 years since the mine commenced operations and this, coupled with a gradual decrease of the 228Ra/226Ra activity ratios observed along the catchment, indicates that the 226Ra accumulated in mussels is of natural rather than mine origin. The 228Th/228Ra ratio has been used to model radium uptake and a radium biological half-life in mussels of approximately 13 years has been determined. The long biological half-life and the low Ca concentrations in the water account for the high radium concentration factor of 30,000-60,000 measured in mussels from the Magela Creek catchment.  相似文献   

13.
Natural radionuclides in bottled water in Austria   总被引:2,自引:0,他引:2  
Concentration levels of 226Ra, 222Rn and 210Pb were analyzed in domestic bottled waters commercially available in Austria. Concentrations up to 0.23 Bq/l, with a geometric mean of 0.041 Bq/l were found for 226Ra. Concentrations for 222Rn ranged from <0.12-18 Bq/l, the geometric mean being 0.54 Bq/l. Lead-210 was analyzed in selected samples, the concentrations ranging from <2 to 34 mBq/l, with a geometric mean of 4.7 mBq/l. Ingestion doses resulting from consumption of these waters were calculated for the geometric mean and the maximum concentrations of the three radionuclides. The effective dose equivalents for different age groups of the population due to the intake of 226Ra range from 0.001 to 0.22 mSv/y and of 210Pb from 0.0003 to 0.05 mSv/y. Ingestion doses from 222Rn are low compared to those from 226Ra and 210Pb, ranging from 0.0001 to 0.011 mSv/y for adults and children, respectively. The doses are compared to the total ingestion dose from dietary intake of natural radionuclides on an annual basis.  相似文献   

14.
Long-lived artificial radionuclides (137Cs, 90Sr) were studied in a Eucalyptus plantation located in the south-west of Spain. Radionuclide concentrations were determined in different types of samples corresponding to specific forest components (soil, trees, herbs and litter). Depth profile distributions were obtained in two selected core soils. Two layers were separately measured in three other cores. The concentration factor, defined as the ratio between the mean activity concentration in a component and the mean activity concentration in the soil, was calculated for each component. The biomass of different components was estimated in order to evaluate the total density concentration (Bq/ha) of the artificial radionuclides (137Cs, 90Sr) in the Eucalyptus plantation. The transfer of the radionuclides between the different forest components can be inferred from the results. Additionally, other naturally occurring radionuclides (40K, 226Ra, 228Ra, 228Ac) were determined for comparison. Transport of radionuclides from forest to a nearby pulp mill is also discussed.  相似文献   

15.
The distribution and correlation of six natural nuclides in the West Macedonia Lignite Center, Northern Greece were studied. Fifty-five samples of lignite, aged from 1.8 to 5 million years, and corresponding steriles, beds of marls, clays and sands alternating with the lignite, were collected perpendicular to the mine benches and measured spectroscopically. The mean concentrations of (238)U and (226)Ra in lignites were found to be higher than that in steriles since these nuclides are associated with the organic material of lignite, whereas (238)U/(226)Ra equilibrium was not observed in either lignites or steriles. Finally, the ratio (226)Ra/(228)Ra in lignites was approximately double of that in steriles, confirming the affinity of the (238)U series with the coal matrix in contrast to the (232)Th series. No correlation was found between radionuclide concentrations and the depth of the sample, nor with the ash content of lignite.  相似文献   

16.
The activity concentrations of natural uranium isotopes (238U and 234U), thorium isotopes (232Th, 230Th and 225Th) and 226Ra were studied in soil and vegetation samples from a disused uranium mine located in the Extremadura region in the south-west of Spain. The results allowed us to characterize radiologically the area close to the installation and one affected zone was clearly manifest as being dependent on the direction of the surface water flow from the mine. The activity concentration mean values (Bq/kg) in this zone were: 10,924, 10,900, 10,075 and 5,289 for 238U, 234U, 230Th and 226Ra, respectively, in soil samples and 1,050, 1,060, 768 and 1,141 for the same radionuclides in plant samples. In an unaffected zone, the activity concentration mean values (Bq/kg) were: 184, 190, 234 and 7251 for 235U, 234U, 230Th and 226Ra, respectively, in soil samples and 28. 29, 31 and 80 in plant samples. The activity concentrations obtained for 232Th and 228Th showed that the influence of the mine was only important for the uranium series radionuclides. The relative radionuclide mobilities were determined from the activity ratios. Correlations between radionuclide activity concentrations and stable element concentrations in the soil samples helped to understand the possible distribution paths for the natural radionuclides.  相似文献   

17.
Ten samples of Austrian mineral water were investigated with regard to the natural radionuclides (228)Ra, (226)Ra, (210)Pb, (210)Po, (238)U and (234)U. The radium isotopes as well as (210)Pb were measured by liquid scintillation counting (LSC) after separation on a membrane loaded with element-selective particles (Empore Radium Disks) and (210)Po was determined by alpha-spectroscopy after spontaneous deposition onto a copper planchette. Uranium was determined by ICP-MS as well as by alpha-spectroscopy after ion separation and microprecipitation with NdF(3). From the measured activity concentrations the committed effective doses for adults and babies were calculated and compared to the total indicative dose of 0.1 mSv/a given in the EC Drinking Water Directive as a maximum dose. The dominant portion of the committed effective dose was due to the radium isotopes; the dose from (228)Ra in most samples clearly exceeded the dose from (226)Ra.  相似文献   

18.
The present study was conducted to characterize the Technically Enhanced Naturally Occurring Radioactive Materials (TE-NORM) waste generated from oil and gas production. The waste was characterized by means of dry screening solid fractionation, X-ray analysis (XRF and XRD) and gamma-ray spectrometry. Sediment of the TE-NORM waste was fractionated into ten fractions with particle sizes varying from less than 100 microm to more than 3 mm. The results showed that the TE-NORM waste contains mainly radionuclides of the 238U, 235U and 232Th series. The mean activity concentrations of 226Ra (of U-series), 228Ra (of Th-series) and 40K in the waste samples before fractionation (i.e. 3 mm) were found to amount to 68.9, 24 and 1.3 Bq/g (dry weight), respectively. After dry fractionation, the activity concentrations were widely distributed and enriched in certain fractions. This represented a 1.48 and 1.82-fold enrichment of 226Ra and 228Ra, respectively, in fraction F8 (2.0-2.5 mm) over those in bulk TE-NORM waste samples. The activity ratios of 238U/226Ra, 210Pb/226Ra, 223Ra/226Ra and 228Ra/224Ra were calculated and evaluated. Activity of the most hazardous radionuclide 226Ra was found to be higher than the exemption levels established by IAEA [International Atomic Energy Agency, 1994. International Basic Safety Standards for the Protection against Ionizing Radiation and for the Safety of Radiation Sources. GOV/2715/94, Vienna]. The radium equivalent activity (Ra-eq), radon (222Rn) emanation coefficient (EC) and absorbed dose rate (Dgammar) were estimated and these are further discussed.  相似文献   

19.
A study is presented on the distribution and mobilization of the natural U isotopes (238U and 234U), 230Th, and 226Ra in the sediments of a small river crossing an uranium mineralized zone where a disused uranium mine is located. Due to the preferential directions for surface run-off waters and to the mine's situation, one sampling point along the river bed was identified as a point of accumulation of radionuclides. The average values of the activity concentrations (Bq/kg) in this sediment sample were 5,025, 5,055, 5,915 and 1,694 for 238U, 234U, 230Th and 226Ra, respectively, while the respective average values of the activity concentrations (Bq/kg) for the sediment sample considered to give the background level were 125, 124, 131 and 370. Isotopic ratios between the descendants of 238U served to clarify some paths of distribution, involving the soils nearest to the sampling points and the location of these points with respect to the disused mine. The differences in behaviour found between the uranium, thorium and radium isotopes were associated to the mobility of these radionuclides in the fluvial system studied. Correlations between the radionuclide activity concentration ratios and stable element concentrations in the sediment samples were also investigated.  相似文献   

20.
Radium isotopes in 23 Na-Cl type groundwater sampled mainly from deep wells in Niigata Prefecture, which is the site of the largest oil- and gas-fields in Japan, were measured along with U isotopes, chemical components and hydrogen and oxygen isotope ratios to elucidate the distribution and behavior of Ra in a brackish environment underground. Also analyzed were U and Th isotopes in 38 rock samples collected from outcrops at 17 locations. Ra-226 concentrations (8.86-1637 mBq kg−1) of groundwater samples roughly correlated with total dissolved solid (TDS) concentrations and other alkaline earth contents. Their 228Ra/226Ra activity ratios (0.32-5.2) were similar to or higher than the 232Th/238U activity ratios (0.6-1.7) in the rocks. The most likely transport mechanism of Ra isotopes into groundwater was due to their α-recoil from the solid phase, probably from the water-rock interface where Th isotopes had accumulated, and adsorption/desorption reaction based on the increase in 226Ra contents with TDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号