首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The flow induced at the surface of a water body by a submerged heated horizontal turbulent jet was investigated experimentally with the aim of developing parameterizations for surface mean temperature/velocity fields. The jet nozzle diameter was fixed, the depth of the jet beneath the free surface was varied, and two jet Reynolds numbers (5020, 11300) were considered. The surface temperature was measured using a highly sensitive infrared camera, and the near-surface horizontal velocity field was measured using particle image velocimetry. The experimental results were explained using a model based on similarity solutions with variable turbulent viscosity. While classical Schlichting’s solution with constant turbulent viscosity predicts complete similarity for transverse velocity/temperature distributions only in a plane that coincides with the flow axis, the present solution predicts similarity in an arbitrary plane parallel to the flow axis, which was confirmed using data collected at the surface. Comparisons of present data with available previous results also showed general agreement.  相似文献   

2.
The stability, mixing and effect of downstream control on axisymmetric turbulent buoyant jets discharging vertically into shallow stagnant water is studied using 3D Reynolds-averaged Navier–Stokes equations (RANS) combined with a buoyancy-extended k –ε model. The steady axisymmetric turbulent flow, temperature (or tracer concentration) and turbulence fields are computed using the finite volume method on a high resolution grid. The numerical predictions demonstrate two generic flow patterns for different turbulent heated jet discharges and environmental parameters (i) a stable buoyant discharge with the mixed fluid leaving the vertical jet region in a surface warm water layer; and (ii) an unstable buoyant discharge with flow recirculation and re-entrainment of heated water. A stratified counterflow region always appears in the far-field for both stable and unstable buoyant discharges. Provided that the domain radius L exceeds about 6H, the near field interaction and hence discharge stability is governed chiefly by the jet momentum length scale to depth ratio lM/H, regardless of downstream control. The near field jet stability criterion is determined to be lM/H = 3.5. A radial internal hydraulic jump always exists beyond the surface impingement region, with a 3- to 6-fold increase in dilution across the jump compared with vertical buoyant jet mixing. The predicted stability category, velocity and temperature/concentration fields are well-supported by experiments of all previous investigators.  相似文献   

3.
Results are presented from a series of large-scale experiments investigating the internal and near-bed dynamics of bi-directional stratified flows with a net-barotropic component across a submerged, trapezoidal, sill obstruction. High-resolution velocity and density profiles are obtained in the vicinity of the obstruction to observe internal-flow dynamics under a range of parametric forcing conditions (i.e. variable saline and fresh water volume fluxes; density differences; sill obstruction submergence depths). Detailed synoptic velocity fields are measured across the sill crest using 2D particle image velocimetry, while the density structure of the two-layer exchange flows is measured using micro-conductivity probes at several sill locations. These measurements are designed to aid qualitative and quantitative interpretation of the internal-flow processes associated with the lower saline intrusion layer blockage conditions, and indicate that the primary mechanism for this blockage is mass exchange from the saline intrusion layer due to significant interfacial mixing and entrainment under dominant, net-barotropic, flow conditions in the upper freshwater layer. This interfacial mixing is quantified by considering both the isopycnal separation of vertically-sorted density profiles across the sill, as well as calculation of corresponding Thorpe overturning length scales. Analysis of the synoptic velocity fields and density profiles also indicates that the net exchange flow conditions remain subcritical (G < 1) across the sill for all parametric conditions tested. An analytical two-layer exchange flow model is then developed to include frictional and entrainment effects, both of which are needed to account for turbulent stresses and saline entrainment into the upper freshwater layer. The experimental results are used to validate two key model parameters: (1) the internal-flow head loss associated with boundary friction and interfacial shear; and (2) the mass exchange from the lower saline layer into the upper fresh layer due to entrainment.  相似文献   

4.
Exchange flow between open water and floating vegetation   总被引:1,自引:1,他引:0  
This study describes the exchange flow between a region with open water and a region with a partial-depth porous obstruction, which represents the thermally-driven exchange that occurs between open water and floating vegetation. The partial-depth porous obstruction represents the root layer, which does not penetrate to the bed. Initially, a vertical wall separates the two regions, with fluid of higher density in the obstructed region and fluid of lower density in the open region. This density difference represents the influence of differential solar heating due to shading by the vegetation. For a range of root density and root depths, the velocity distribution is measured in the lab using PIV. When the vertical wall is removed, the less dense water flows into the obstructed region at the surface. This surface flow bifurcates into two layers, one flowing directly through the root layer and one flowing beneath the root layer. A flow directed out of the vegetated region occurs at the bed. A model is developed that predicts the flow rates within each layer based on energy considerations. The experiments and model together suggest that at time- and length-scales relevant to the field, the flow structure for any root layer porosity approaches that of a fully blocked layer, for which the exchange flow occurs only beneath the root layer.  相似文献   

5.
The hydrodynamics of flows through a finite length semi-rigid vegetation patch (VP) were investigated experimentally and numerically. Detailed measurements have been carried out to determine the spatial variation of velocity and turbulence profiles within the VP. The measurement results show that an intrusion region exists in which the peak Reynolds stress remains near the bed. The velocity profile is invariant within the downstream part of the VP while the Reynolds stress profile requires a longer distance to attain the spatially invariant state. Higher vegetation density leads to a shorter adjustment length of the transition region, and a higher turbulence level within the VP. The vegetation density used in the present study permits the passing through of water and causes the peak Reynolds stress and turbulence kinetic energy each the maximum at the downstream end of the patch. A 3D Reynolds-averaged Navier–Stokes model incorporating the Spalart–Allmaras turbulence closure was employed subsequently to replicate the flow development within the VP. The model reproduced transitional flow characteristics well and the results are in good agreement with the experimental data. Additional numerical experiments show that the adjustment length can be scaled by the water depth, mean velocity and maximum shear stress. Empirical equations of the adjustment lengths for mean velocity and Reynolds stress were derived with coefficients quantified from the numerical simulation results.  相似文献   

6.

Motivated by shallow ocean waves propagating over coral reefs, we investigate the drift velocities due to surface wave motion in an effectively inviscid fluid that overlies a saturated porous bed of finite depth. Previous work in this area either neglects the large-scale flow between layers (Phillips in Flow and reactions in permeable rocks, Cambridge University Press, Cambridge, 1991) or only considers the drift above the porous layer (Monismith in Ann Rev Fluid Mech 39:37–55, 2007). Overcoming these limitations, we propose a model where flow is described by a velocity potential above the porous layer and by Darcy’s law in the porous bed, with derived matching conditions at the interface between the two layers. Both a horizontal and a novel vertical drift effect arise from the damping of the porous bed, which requires the use of a complex wavenumber k. This is in contrast to the purely horizontal second-order drift first derived by Stokes (Trans Camb Philos Soc 8:441–455, 1847) when working with solely a pure fluid layer. Our work provides a physical model for coral reefs in shallow seas, where fluid drift both above and within the reef is vitally important for maintaining a healthy reef ecosystem (Koehl et al. In: Proceedings of the 8th International Coral Reef Symposium, vol 2, pp 1087–1092, 1997; Monismith in Ann Rev Fluid Mech 39:37–55, 2007). We compare our model with field measurements by Koehl and Hadfield (J Mar Syst 49:75–88, 2004) and also explain the vertical drift effects as documented by Koehl et al. (Mar Ecol Prog Ser 335:1–18, 2007), who measured the exchange between a coral reef layer and the (relatively shallow) sea above.

  相似文献   

7.
The vertical diffusional mass (solute) transfer through a suspended sediment layer, e.g. at the bottom of a lake, reservoir or estuary, by the propagation of velocity fluctuations from above was investigated. The attenuation of the velocity fluctuations in the suspension layer and the associated effect on solute transfer through the suspension layer was simulated. To represent large eddies traveling downstream in water over a high-concentration suspended sediment layer, a streamwise velocity fluctuation moving in downstream direction was imposed along the upper boundary of the suspension layer. Velocity fluctuations and downstream velocity were normalized by the shearvelocity (U*) at the top of the suspension layer. Streamwise and vertical velocity components inside the suspension layer, were obtained from the 2-D continuity and the Navier–Stokes equations. The persistence of turbulence with depth—as it penetrates from the overlying water into the suspension layer—was found to depend on its amplitude, its period, and on the apparent viscosity of the suspension. The turbulence was found to propagate efficiently into the suspension layer when its frequency is low, and the apparent viscosity of the suspension is high. Effects on vertical mass transfer were parameterized by penetration depth and effective diffusion coefficient, and related to apparent viscosity of the suspension, Schmidt number and shear velocity on top of the suspension layer. The enhancement of turbulence penetration by viscosity is similar to the flow near an oscillating flat plate (Stokes’ second problem), but is opposite to turbulence penetration into a stationary porous and permeable sediment bed. The information is applicable to water quality modeling mear the sediment/water interface of lakes, river impoundments and estuaries.  相似文献   

8.
The focus of this paper is on the dynamics of a dense current flowing along the continental slope, and the frictionally induced downward motion it experiences. In particular, the movement of the lateral boundaries where the isopycnals meet the bottom are considered. The current is taken to be wide compared to the Rossby radius, which is in accordance with observations and makes the dynamics quasigeostrophic. The time development of the plume thickness is studied, using three different parameterisations for the bottom friction.Independently of the choice of parameterisation, the following results are obtained: In the central part of the plume friction acts as a diffusive process to minimise the curvature of the upper surface of the plume. At the upper edge the plume quickly approaches a state with small slope, i.e. small geostrophic velocity and small frictionally induced downward flow. At the lower edge a tongue of dense water shoots out creating a widening layer. The thickness of the migrating layer is approximately equal to the boundary layer depth and its downward speed is comparable to the along-slope geostrophic velocity. The downslope end of the migrating layer may form a steep front which requires some precautions in the numerical procedure.  相似文献   

9.
Gravity driven flows on inclines can be caused by cold, saline or turbid inflows into water bodies. Another example are cold downslope winds, which are caused by cooling of the atmosphere at the lower boundary. In a well-known contribution, Ellison and Turner (ET) investigated such flows by making use of earlier work on free shear flows by Morton, Taylor and Turner (MTT). Their entrainment relation is compared here with a spread relation based on a diffusion model for jets by Prandtl. This diffusion approach is suitable for forced plumes on an incline, but only when the channel topography is uniform, and the flow remains supercritical. A second aspect considered here is that the structure of ET’s entrainment relation, and their shallow water equations, agrees with the one for open channel flows, but their depth and velocity scales are those for free shear flows, and derived from the velocity field. Conversely, the depth of an open channel flow is the vertical extent of the excess mass of the liquid phase, and the average velocity is the (known) discharge divided by the depth. As an alternative to ET’s parameterization, two sets of flow scales similar to those of open channel flows are outlined for gravity currents in unstratified environments. The common feature of the two sets is that the velocity scale is derived by dividing the buoyancy flux by the excess pressure at the bottom. The difference between them is the way the volume flux is accounted for, which—unlike in open channel flows—generally increases in the streamwise direction. The relations between the three sets of scales are established here for gravity currents by allowing for a constant co-flow in the upper layer. The actual ratios of the three width, velocity, and buoyancy scales are evaluated from available experimental data on gravity currents, and from field data on katabatic winds. A corresponding study for free shear flows is referred to. Finally, a comparison of mass-based scales with a number of other flow scales is carried out for available data on a two-layer flow over an obstacle. Mass-based flow scales can also be used for other types of flows, such as self-aerated flows on spillways, water jets in air, or bubble plumes.  相似文献   

10.
The combination of current velocity and water depth influences stream flow conditions, and fish activities prefer particular flow conditions. This study develops a novel optimal flow classification method for identifying types of stream flow based on the current velocity and the water depth using a genetic algorithm. It is applied to the Datuan stream in northern Taiwan. Fish were sampled and their habitat investigated at the study site during the spring, summer, fall and winter of 2008-2009. The current velocity, water depth and maps of the presence probability of fish were estimated by ordinary and indicator kriging. The optimal classification results were compared with the classification results obtained using the Froude number and empirical methods. The flow classification results demonstrate that the proposed optimal flow classification method that considers depth-velocity and optimally identified criteria for classifying flow types, yields a current velocity and water depth of 0.32 (m/s) and 0.29 (m), respectively, and classifies the flow conditions in the study area as pool, run, riffle and slack. The variography results of the current velocity and the water depth data reveal that seasonal flows are not spatially stationary among seasons in the study area. Kriging methods and a two-dimensional hydrodynamic model (River 2D) with empirical and optimal flow classification methods are more effective than the Froude number method in classifying flow conditions in the study area. The flow condition classifications and probability maps were generated by River 2D, ordinary kriging and indicator kriging, to quantify the flow conditions preferred by Sicyopterus japonicus in the study area. However, the proposed optimal classification method with kriging and River 2D is an effective alternative method for mapping flow conditions and determining the relationship between flow and the presence probability of target fish in support of stream restoration.  相似文献   

11.
Laboratory experiments are conducted to quantify the mean flow structure and turbulence properties downstream of a spanwise suspended linear array in a uniform ambient water flow using Particle Tracking Velocimetry. Eighteen experimental scenarios, with four depth ratios (array depth to water column depth) of 0.35, 0.52, 0.78, and 0.95 and bulk Reynolds number (length scale is the array depth) from 11,600 to 68,170, are investigated. Three sub-layers form downstream of the array: (1) an internal wake zone, where the time-averaged velocity decreases with increasing distance downstream, (2) a shear layer which increases in vertical extent with increasing distance downstream of the array, and the rate of the increase is independent of the bulk Reynolds number or the depth ratio, and (3) an external wake layer with enhanced velocity under the array. The location of the shear layer is dependent on the depth ratio. The spatially averaged and normalized TKE of the wake has a short production region, followed by a decay region which is comparable to grid turbulence decay and is dependent on the depth ratio. The results suggest that the shear layer increases the transfer of horizontal momentum into the internal wake zone from the fluid outside of the array and that the turbulence in the internal wake zone can be modeled similarly to that of grid turbulence.  相似文献   

12.
Thermal-driven flow is generated due to topographic or vegetation-shading effects. Asymptotic solutions by assuming a small bottom slope are derived to discuss effects of rooted emergent vegetation and interactions between emergent vegetation and sloping topography on thermal-driven flow during diurnal heating and cooling cycles. The results show that the zero-order horizontal velocity is significantly reduced by vegetative drag, and the time lag between the change of horizontal velocity and the reversal of pressure gradient is also shortened. The solutions reveal that the viscous effect is dominant in very shallow water, and the drag force becomes important as the water depth increases. The inertial term is only important at the very beginning stage of flow initiation. Different vegetation distributions can significantly change the temperature fields that then affect patterns of thermal-driven circulation and exchange flowrates. For the case of tall vegetation growth in shallow water, and when the deep water side is open, the effects of vegetation shading may interfere with the topographic effects and dramatically alter the flow patterns. The blockage of solar radiation due to vegetation shading can determine the patterns and magnitude of thermal-driven flow. By means of the derived asymptotic horizontal velocity, exchange flow rates can be estimated, which are in good agreement with previous studies. The limitation and valid ranges of asymptotic solutions are finally discussed.  相似文献   

13.
In an open channel, a change from a supercritical to subcritical flow is a strong dissipative process called a hydraulic jump. Herein some new measurements of free-surface fluctuations of the impingement perimeter and integral turbulent time and length scales in the roller are presented with a focus on turbulence in hydraulic jumps with a marked roller. The observations highlighted the fluctuating nature of the impingement perimeter in terms of both longitudinal and transverse locations. The results showed further the close link between the production and detachment of large eddies in jump shear layer, and the longitudinal fluctuations of the jump toe. They highlighted the importance of the impingement perimeter as the origin of the developing shear layer and a source of vorticity. The air–water flow measurements emphasised the intense flow aeration. The turbulent velocity distributions presented a shape similar to a wall jet solution with a marked shear layer downstream of the impingement point. The integral turbulent length scale distributions exhibited a monotonic increase with increasing vertical elevation within 0.2 < Lz/d1 < 0.8 in the shear layer, where Lz is the integral turbulent length scale and d1 the inflow depth, while the integral turbulent time scales were about two orders of magnitude smaller than the period of impingement position longitudinal oscillations.  相似文献   

14.
15.
为了研究氮化肥施入农田对地表水和地下水的影响 ,在一种特殊的大型人工模拟土层和地下水装置中进行试验。研究结果表明 :即使尿素和生物矿质复混肥以中、低施肥量施入水田 ,也会造成地表淹水、耕层土壤和不同深度土层溶液有较高含量的有机 N和 N H3- N,并对地下水补给状况极差的地下水有明显的污染 ;水田中 N O- 3 - N很难长期存在 ,其污染程度可忽略不计  相似文献   

16.
An experimental program was conducted to investigate vertical oil dispersion of surface oil spills under non-breaking regular waves. The variation in oil concentration caused by oil dispersion in a water column was studied to determine the vertical oil dispersion profile. The experiments were performed using different waves characteristics for different volumes of oil spill to evaluate the variation in oil concentration at three depths at two sampling stations. The correlations between oil concentration and the main parameters of wave characteristics, oil spill volume, sampling depth, and distance of sampling stations to spill location were assessed. The results revealed that the trend of variation in oil concentration versus wave steepness is linear. The results obtained from experimental measurements indicated that the oil concentrations at mid-depth were 44–77 % and the concentrations near the flume bed were 12–33 % of the concentration near the water surface.  相似文献   

17.
Due to the lack of data on hydraulic-jump dynamics in very large channels, the present paper describes the main characteristics of the velocity field and turbulence in a large rectangular channel with a width of 4 m. Although a hydraulic jump is always treated as a wave that is transversal to the channel wall, in the case of this study it has a trapezoidal front shape, first starting from a point at the sidewalls and then developing downstream in an oblique manner, finally giving rise to a trapezoidal shape. The oblique wave front may be regarded as a lateral shockwave that arises from a perturbation at a certain point of the lateral wall and travels obliquely toward the centreline of the channel. The experimental work was carried out at the Coastal Engineering Laboratory of the Water Engineering and Chemistry Department of the Technical University of Bari (Italy). In addition to the hydraulic jump formation, a large recirculating flow zone starts to develop from the separating point of the lateral shock wave and a separate boundary layer occurs. Intensive measurements of the streamwise and spanwise flow velocity components along one-half width of the channel were taken using a bidimensional Acoustic Doppler Velocimeter (ADV). The water surface elevation was obtained by means of an ultrasonic profiler. Velocity vectors, transversal velocity profiles, turbulence intensities and Reynolds shear stresses were all investigated. The experimental results of the separated boundary layer were compared with numerical predictions and related work presented in literature and showed good agreement. The transversal velocity profiles indicated the presence of adverse pressure gradient zones and the law of the wall appears to govern the region around the separated boundary layer.  相似文献   

18.
Hydraulic jumps have complex flow structures, characterised by strong turbulence and large air contents. It is difficult to numerically predict the flows. It is necessary to bolster the existing computer models to emphasise the gas phase in hydraulic jumps, and avoid the pitfall of treating the phenomenon as a single-phase water flow. This paper aims to improve predictions of hydraulic jumps as bubbly two-phase flow. We allow for airflow above the free surface and air mass entrained across it. We use the Reynolds-averaged Navier–Stokes equations to describe fluid motion, the volume of fluid method to track the interface, and the k–ε model for turbulence closure. A shear layer is shown to form between the bottom jet flow and the upper recirculation flow. The key to success in predicting the jet flow lies in formulating appropriate bottom boundary conditions. The majority of entrained air bubbles are advected downstream through the shear layer. Predictions of the recirculation region’s length and air volume fraction within the layer are validated by available measurements. The predictions show a linear growth of the shear layer. There is strong turbulence at the impingement, and the bulk of the turbulence kinetic energy is advected to the recirculation region via the shear layer. The predicted bottom-shear-stress distribution, with a peak value upstream of the toe of the jump and a decaying trend downstream, is realistic. This paper reveals a significant transient bottom shear stress associated with temporal fluctuations of mainly flow velocity in the jump. The prediction method discussed is useful for modelling hydraulic jumps and advancing the understanding of the complex flow phenomenon.  相似文献   

19.
The atmospheric boundary layer adjustment at the abrupt transition from a canopy (forest) to a flat surface (land or water) is investigated in a wind tunnel experiment. Detailed measurements examining the effect of canopy turbulence on flow separation, reduced surface shear stress and wake recovery are compared to data for the classical case of a solid backward-facing step. Results provide new insights into the interpretation for flux estimation by eddy-covariance and flux gradient methods and for the assessment of surface boundary conditions in turbulence models of the atmospheric boundary layer in complex landscapes and over water bodies affected by canopy wakes. The wind tunnel results indicate that the wake of a forest canopy strongly affects surface momentum flux within a distance of 35–100 times the step or canopy height, and mean turbulence quantities require distances of at least 100 times the canopy height to adjust to the new surface. The near-surface mixing length in the wake exhibits characteristic length scales of canopy flows at the canopy edge, of the flow separation in the near wake and adjusts to surface layer scaling in the far wake. Components of the momentum budget are examined individually to determine the impact of the canopy wake. The results demonstrate why a constant flux layer does not form until far downwind in the wake. An empirical model for surface shear stress distribution from a forest canopy to a clearing or lake is proposed.  相似文献   

20.
This contribution presents particle image velocimetry measurements for an open channel stationary uniform and fully developed flow of water over a horizontal flat bed of uniform glass beads in presence of a staggered array of vertical cylindrical stems. The main objective was to explore and quantify the influence of the stems-to-flow relative submergence, h v /h, over the mean flow and local turbulence intensities. A comparison with measurements for the non-vegetated flow over the same granular bed is presented. Results indicate a remarkable influence of h v /h over the whole flow field. The time-average mean flow presents a strong spatial variation in the layer of the flow occupied by the stems. The local velocity fluctuations are strongly affected by the presence of the stems, with regions in between the stems where they reach peaks that are several times larger than those encountered in the flow in absence of vegetation. The turbulence intensity profiles are noticeably different when compared to those measured in the non-vegetated flow conditions. From previous works it was possible to derive an equation for the mean velocity, U v , of the flow through the vegetated layer of height h v . The prediction of this equation is in good agreement with the uniform value for the double-average longitudinal velocity profile in this layer. A final brief discussion about the possible impact of these vegetated-flow features on the sediment transport is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号