首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecological restoration, using tolerant plant species and nutrient additions, is a low-cost option to decrease environmental risks associated with mine tailings. An attempt was previously made to establish such a vegetation cover on an abandoned tailings facility in Southern Ireland. Historically, the tailings site has been prone to dusting and is a potential source of contamination to the surrounding environment. The site was examined to determine the success of the previous restoration plan used to revegetate the site and to determine its suitability for further restoration. Three distinct floristic areas were identified (grassland, poor grassland and bare area) based on herbage compositions and elemental analysis. Surface and subsurface samples were taken to characterise tailings from within these areas of the tailings site. The pH of bare surface tailings (pH, 2.7) was significantly more acidic (p < 0.5) than in other areas. Additionally, negligible net neutralising potential resulted in the tailings being hostile to plant growth. Total metal concentrations in tailings were high (c. 10,000 mg kg?1 for Pb and up to 20,000 mg kg?1 for Zn). DTPA-extractable Zn and Pb were 16 and 11 % of the total amount, respectively. Metal content in grasses growing on some areas of the tailings were elevated and demonstrated the inability of the tailings to support sustainable plant growth. Due to the inherently hostile characteristics of these areas, future restoration work will employ capping with a barrier layer.  相似文献   

2.
The study was conducted to characterize mineralogical and elemental composition of mine tailings in order to evaluate the environmental hazards, and identify the metal accumulation potential of native plant species from São Domingos mine, one of the long-term activity mines of the Iberian Pyrite Belt dating back to pre-Roman times. The mine tailings including soils and different plant species from São Domingos were analyzed for determination of tailings characteristics and chemical element contents in tailings and plants. The large amounts of mining wastes are causing significant adverse environment impacts due to acid mine drainage production and mobilization of potentially toxic metals and metalloids in residential areas, agricultural fields, downstreams, and rivers. The typical mineralogical composition is as follows: quartz, micas, K-feldspar, olivine-group minerals, magnetite, goethite, hematite, jarosite, and sulfides. The mine tailings were highly contaminated by As, Ag, Cr, Hg, Sn, Sb, Fe, and Zn; and among them, As and Sb, main contaminants, attained the highest concentrations except Fe. Arsenic has exhibited very good correlations with Au, Fe, Sb, Se, and W; and Sb with As, Au, Fe, Se, Sn, and W in tailings. Among the all plant species, the higher concentrations of all the metals were noted in Erica andevalensis, Erica australis, Echium plantagium, and Lavandula luisierra. Considering the tolerant behavior and abundant growth, the plant species Erica australis, Erica andevalensis, Lavandula luisierra, Daphne gnidium, Rumex induratus, Ulex eriocladus, Juncus, and Genista hirsutus are of major importance for the rehabilitation and recovery of degraded São Domingos mining area.  相似文献   

3.
Acid mine drainage problems were experienced in a Pb–Zn mine operation at Lechang, in the northern part of Guangdong Province, People's Republic of China. Geochemical and acid generation evaluations were made on fresh tailings including tailings fine, tailings sand and high sulphide tailings, and oxidised tailings with the aim of providing information on mine rehabilitation. All fresh tailings had a pH higher than 7 while the oxidised tailings had a pH of 4.9 (range 1.6 to 7.4). Only samples with pH < 3 had an electrical conductivity (EC) > 4 dS m-1. Total S contents of all tailings samples were very high with the high sulphide fraction having a mean S content of 38%. All fresh tailings had a high acid neutralisation capacity (ANC) while half of the oxidised tailings had an ANC less than zero. The results from the acid–base account and the net acid generation test indicated that all fresh and oxidised tailings samples were acid-forming except for the sand fraction samples. All tailings samples contained high total concentrations of Cd, Cu, Fe, Pb and Zn but low concentrations of total nitrogen and phosphorus. The preliminary results demonstrated that the tailings were all acid-forming especially the high sulphide fraction which should be kept permanently unexposed under impermeable cap or water.  相似文献   

4.
Urban expansion in areas of active and legacy mining imposes a sustainability challenge, especially in arid environments where cities compete for resources with agriculture and industry. The city of Copiapó, with 150,000 inhabitants in the Atacama Desert, reflects this challenge. More than 30 abandoned tailings from legacy mining are scattered throughout its urban and peri-urban area, which include an active copper smelter. Despite the public concern generated by the mining-related pollution, no geochemical information is currently available for Copiapó, particularly for metal concentration in environmental solid phases. A geochemical screening of soils (n = 42), street dusts (n = 71) and tailings (n = 68) was conducted in November 2014 and April 2015. Organic matter, pH and elemental composition measurements were taken. Notably, copper in soils (60–2120 mg/kg) and street dusts (110–10,200 mg/kg) consistently exceeded international guidelines for residential and industrial use, while a lower proportion of samples exceeded international guidelines for arsenic, zinc and lead. Metal enrichment occurred in residential, industrial and agricultural areas near tailings and the copper smelter. This first screening of metal contamination sets the basis for future risk assessments toward defining knowledge-based policies and urban planning. Challenges include developing: (1) adequate intervention guideline values; (2) appropriate geochemical background levels for key metals; (3) urban planning that considers contaminated areas; (4) cost-effective control strategies for abandoned tailings in water-scarce areas; and (5) scenarios and technologies for tailings reprocessing. Assessing urban geochemical risks is a critical endeavor for areas where extreme events triggered by climate change are likely, as the mud flooding that impacted Copiapó in late March 2015.  相似文献   

5.
A geochemical study of stream sediments near Rodalquilar (South-east Spain) was undertaken to investigate the impact of processing activities associated with nearby gold mining. Despite the semi-arid nature of the area, visual inspection of tailings indicates that considerable fluvial erosion occurs during rainfall events. Geochemical analysis demonstrates that Mo, Sb, Te, Bi and As are all found at elevated levels in stream sediments downstream of the tailings site. Elevated levels of Pb, Cu and Zn were also noted in stream sediments. Statistical analysis demonstrates that four factors control trace-element distribution. Factor 1 displays a strong association of Mo, Sb, Te and Bi and As and is attributed to the mine tailings. Factor 2 displays an association of Pb and Cu, and is most easily attributed to anthropogenic pollution. Factor 3 distinguishes Au and reflects the selective nature of ore-processing methods employed at the site. Factor 4 only highlights Zn, reflecting that it is derived from several, probably unrelated, sources.  相似文献   

6.
Poor soil fertility is often the biggest challenge to the establishment of vegetation in mine wastes deposits. We conducted field trials in the El Gorguel and El Lirio sites in SE Spain, two representative tailing ponds of similar properties except for pH, to understand the environmental and plant-relevant benefits of marble waste (MW) and pig slurry (PS) applications to mine tailings. Low pH (5.4) tailings (El Lirio) exhibit reduction of up to fourfold in bio-availability of metals as shown by the DTPA-Zn, Pb, water-soluble Zn, Pb and up to 3× for water-soluble Cd. Tailings in El Gorguel have high pH (7.4) and did not exhibit significant trends in the reductions of water-extractable Zn, Pb, Cd and Cu. Improvements to the edaphic (plant-relevant) properties of tailings after the amendments are not as sensitive to pH compared to the environmental characteristics. The two sites had increases in aggregate stability, organic matter (total N and organic C) although total N is higher in the El Gorguel (up to 212 μg N kg?1) than the El Lirio (up to 26 μg N kg?1). However, cation exchange capacities are similar in both sites at 15.2 cmol(+) kg?1. We conclude that the characteristics, especially pH, of tailing materials significantly influence the fate of metals but not improvements to plant-relevant properties such as cation exchange capacity and aggregate stability 1 year after the application of MW and PS amendments.  相似文献   

7.
The objective of this study was to investigate heavy metal contamination and geochemical characteristics of mine wastes, including tailings, from 38 abandoned mines classified as five mineralization types. Mine waste materials including tailings and soils were sampled from the mines and the physical and chemical characteristics of the samples were analyzed. The particle size of tailings was in the range of 10–100 μm. The pH of the waste covered a wide range, from 1.73 to 8.11, and was influenced by associated minerals and elevated levels of Cd, Cu, Pb, and Zn, extracted by a Korean Standard Method (digestion with 0.1 mol L−1 HCl), which were found in the wastes. Half of the samples contained heavy metals at levels above those stipulated by the Soil Environmental Conservation Act (SECA) in Korea. In addition, extremely high concentrations of the metals were also found in mine wastes extracted by aqua regia, especially those from mines associated with sulfide minerals. Thus, it can be expected that trace elements in mine wastes may be dispersed both downstream and downslope through water and wind. Eventually they may pose a potential health risk to residents in the vicinity of the mine. It is necessary to control mine wastes by using a proper method for their reclamation, such as neutralization of the mine wastes using a fine-grained limestone.  相似文献   

8.
Untreated abandoned mines may result in hazards to ecosystems due to dispersion of various toxic elements such as arsenic (As) and lead (Pb). Phytoremediation is an alternative of remediation for large scale mine dumps. Plant species were sampled from two abandoned gold (Au) mines in South Korea. Plant samples were digested following the guidelines of US EPA Method 3050 (US-EPA, 1996) and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Concentrations and bioaccumulation factors of plants are reported and out-performing species are summarized. Poplar trees (Populus davidiana) growing on the Myoungbong tailings were suggested to be a potential species for revegetation of large scale Au mine tailings. Arsenic accumulations of bracken ferns (Pteridium aquilinum) sampled from the Duckum tailings were far lower than those of the reported hyperaccumulators, but the possible chronic adverse effects on residents through daily diet are of concern.  相似文献   

9.
The mineralogical and chemical characteristics of As solid phases in arsenic-rich mine tailings from the Nakdong As–Bi mine in Korea was investigated. The tailings generated from the ore roasting process contained 4.36% of As whereas the concentration was up to 20.2% in some tailings from the cyanidation process for the Au extraction. Thin indurated layers and other secondary precipitates had formed at the surfaces of the tailings piles and the As contents of the hardened layers varied from 2.87 to 16.0%. Scorodite and iron arsenate (Fe3AsO7) were the primary As-bearing crystalline minerals. Others such as arsenolamprite, bernardite and titanium oxide arsenate were also found. The amorphous As–Fe phases often showed framboidal aggregates and gel type textures with desiccation cracks. Sequential extraction results also showed that 55.7–91.1% of the As in tailings were NH4-oxalate extractable As, further confirmed the predominance of amorphous As–Fe solid phases. When the tailings were equilibrated with de-ionized water, the solution exhibited extremely acidic conditions (pH 2.01–3.10) and high concentrations of dissolved As (up to 29.5 mg L−1), indicating high potentials for As to be released during rainfall events. The downstream water was affected by drainage from tailings and contained 12.7–522 μg L−1 of As. The amorphous As–Fe phases in tailings have not entirely been stabilized through the long term natural weathering processes. To remediate the environmental harms they had caused, anthropogenic interventions to stabilize or immobilize As in the tailings pile should be explored.  相似文献   

10.
A field survey of mercury pollution in environmental media and human hair samples obtained from residents living in the area surrounding the Chatian mercury mine (CMM) of southwestern China was conducted to evaluate the health risks of mercury to local residents. The results showed that mine waste, and tailings in particular, contained high levels of mercury and that the maximum mercury concentration was 88.50 μg g?1. Elevated mercury levels were also found in local surface water, paddy soil, and paddy grain, which may cause severe health problems. The mercury concentration of hair samples from the inhabitants of the CMM exceeded 1.0 μg g?1, which is the limit recommended by the US EPA. Mercury concentrations in paddy soil were positively correlated with mercury concentrations in paddy roots, stalks, and paddy grains, which suggested that paddy soil was the major source of mercury in paddy plant tissue. The average daily dose (ADD) of mercury for local adults and preschool children via oral exposure reached 0.241 and 0.624 μg kg?1 body weight per day, respectively, which is approaching or exceeds the provisional tolerable daily intake. Among the three oral exposure routes, the greatest contributor to the ADD of mercury was the ingestion of rice grain. Open-stacked mine tailings have resulted in heavy mercury contamination in the surrounding soil, and the depth of appreciable soil mercury concentrations exceeded 100 cm.  相似文献   

11.
Panasqueira mine is a tin–tungsten mineralization hosted by metasediments with quartz veins rich in ferberite. The mineralization also comprises wolframite, cassiterite, chalcopyrite, several sulfides, carbonates and silver sulfosalts. The mining and beneficiation processes produce arsenic-rich mine wastes laid up in huge tailings (Barroca Grande and Rio tailings). The contents of As, Cd, Cr, Cu, Pb and Zn were estimated in rhizosphere soils, irrigation waters, road dusts and in potatoes, cabbages, lettuces and beans, collected on local gardens of four neighborhood Panasqueira mine villages: S. Francisco de Assis (SFA) and Barroca suffering the influence of tailings; Unhais-o-Velho and Casegas considered as non-polluted areas. The mean concentrations of metals in rhizosphere soils and vegetables exceed the reference guidelines values and seem to be linked to the sulfides. The rhizosphere ecological risks were ranked in the order of Cd > As > Cu > Pb > Zn > Cr and SFA > Barroca > Casegas > Unhais-o-Velho. Metal concentrations, in vegetables, were found in the order of lettuce > cabbage > potatoes and SFA > Barroca > Casegas > Unhais-o-Velho. For cabbages and lettuces, the tendency of contamination is roots > leaves and for potatoes is roots > leaves > tubers. The risk for residents, due to ingesting of metals/metalloid, by consuming vegetables grown around the sampling area, was calculated and the result indicates that the inhabitants of these villages are probably exposed to some potential health risks through the intake of heavy metals and metalloids via consuming their vegetables.  相似文献   

12.
Environmental geochemical and health studies were carried out in urban areas of Villa de la Paz, S.L.P. (Mexico), where mining activities have been developed for more of 200 years, leading to the pollution of surface soil by arsenic and heavy metals (Pb, Cd, Cu, Zn). The analysis of urban soils to determine total and bioaccessibility concentrations of As and Pb, demonstrated a combined contribution of the natural and anthropogenic concentrations in the site, at levels higher than the environmental guideline values that provoke a human health risk. Contour soil mapping confirmed that historical mine waste deposits without environmental control measures, are the main source of pollution soil by As and Pb in the site. Exposure (Pb in blood and As in urine) and effect (micronucleated exfoliated cells assay) biological monitoring were then carried out in the childhood population of the site and in a control site. The exposure biological monitoring demonstrated that at least 20–30 % of children presented Pb and As exposure values higher than the national and international maximum intervention values. The effect biomonitoring by MEC assay confirmed that there is a genotoxic damage in local childhood population that could be associated with the arsenic exposure in the site.  相似文献   

13.
The removal of heavy metals and neutralisation of acidity in mine waste waters by algae and bacteria are reviewed. Algal growths in artificial meander systems have been shown to remove significant quantities of heavy metals and fine particulates from mine waste waters. Bacterial systems for the oxidation of ferrous iron and the reduction of sulphate leading to neutralisation of acidity are described. The use of bacterial extracellular polymers in the removal of heavy metals from solution is discussed with reference to its application to acid mine waters. It is concluded that a combination of bacterial and algal systems with process optimisation, including nutrient amendment, may provide suitable treatment for mine waste waters. Metal-resistant bacteria may also be important in reclamation, where it is possible that they can confer some degree of tolerance on the plants used to revegetate metal-contaminated tailings dumps.  相似文献   

14.
In the Panasqueira mine area of central Portugal, some environmental media show higher metal(loid) concentrations when compared with the local geochemical background and the values proposed in the literature for these environmental media. In order to evaluate the effect of the external contamination on selected indexes of internal dose, As, Cd, Cu, Cr, Fe, Hg, Mg, Mn, Mo, Ni, Pb, S, Se, Si, and Zn were quantified by inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry in blood, urine, hair and nail samples from individuals environmentally (N = 41) and occupationally exposed (N = 41). A matched control group (N = 40) was also studied, and data from the three groups were compared. Results obtained agreed with those reported by environmental studies performed in this area, pointing to populations living nearby and working in the mine being exposed to metal(loid)s originated from mining activities. Arsenic was the element with the highest increase in exposed populations. The concentration of other elements such as Cr, Mg, Mn, Mo, Ni, Pb, S, Se, and Zn was also increased, although at a lesser extent, specifically in the individuals environmentally exposed and in females. These findings confirm the need for competent authorities to act as soon as possible in this area and implement strategies aimed to protect exposed populations and the entire ecosystem.  相似文献   

15.
Natural organic acids may play an important role in influencing the mobility of toxic contaminants in the environment. The mobilization of arsenic (As) and heavy metals from an oxidized Pb–Zn mine tailings sample in the presence of three low-molecular-weight organic acids, aspartic acid, cysteine, and succinic acid, was investigated at a mass ratio of 10 mg organic additive/g mine tailings in this study. The effect of pH was also evaluated. The mine tailings sample, containing elevated levels of As (2,180 mg/kg), copper (Cu, 1,100 mg/kg), lead (Pb, 12,860 mg/kg), and zinc (Zn, 5,075 mg/kg), was collected from Bathurst, New Brunswick, Canada. It was found that the organic additives inhibited As and heavy metal mobilization under acidic conditions (at pH 3 or 5), but enhanced it under neutral to alkaline conditions (at pH above 7) through forming aqueous organic complexes. At pH 11, As, Cu, Pb, and Zn were mobilized mostly by the organic additives, 45, 46, 1,660, and 128 mg/kg by aspartic acid, 31, 28, 1,040, and 112 mg/kg by succinic acid, and 53, 38, 2,020, and 150 mg/kg by cysteine, respectively, whereas those by distilled water were 6, 16, 260, and 52 mg/kg, respectively. It was also found that the mobilization of As and the heavy metals was closely correlated, and both were closely correlated to Fe mobilization. Arsenic mobilization by the three LMWOAs was found to be consistent with the order of the stability of Fe–, Cu–, Pb–, and Zn–organic ligand complexes. The organic acids might be used potentially in the natural attenuation and remediation of As and heavy metal–contaminated sites.  相似文献   

16.
In Korea, the heavy metal pollution from about 1,000 abandoned mines has been a serious environmental issue. Especially, the surface waters, groundwaters, and soils around mines have been contaminated by heavy metals originating from acid mine drainage (AMD) and mine tailings. So far, AMD was considered as a waste stream to be treated to prevent environmental pollutions; however, the stream contains mainly Fe and Al and valuable metals such as Ni, Zn, and Cu. In this study, Visual MINTEQ simulation was carried out to investigate the speciation of heavy metals as functions of pH and neutralizing agents. Based on the simulation, selective pH values were determined to form hydroxide or carbonate precipitates of Cu, Zn, and Ni. Experiments based on the simulation results show that the recovery yield of Zn and Cu were 91 and 94 %, respectively, in a binary mixture of Cu and Zn, while 95 % of Cu and 94 % of Ni were recovered in a binary mixture of Cu and Ni. However, the recovery yield and purity of Zn and Ni were very low because of similar characteristics of Zn and Ni. Therefore, the mixture of Cu and Zn or Cu and Ni could be recovered by selective precipitation via pH adjustment; however, it is impossible to recover selectively Zn and Ni in the mixture of them.  相似文献   

17.

Bedrock groundwaters in Geumsan County, Korea, were surveyed to investigate the distribution and geochemical behaviors of arsenic and fluoride, mobilized through geogenic processes. The concentrations were enriched up to 113 μg/L for arsenic and 7.54 mg/L for fluoride, and 16% of 150 samples exceeded World Health Organization drinking water guidelines for each element. Simple Ca-HCO3 groundwater types and positive correlations with pH, Ca, SO4, and HCO3 were characteristics of high (>10 μg/L) As groundwaters. The oxidation reaction of sulfide minerals in metasedimentary rocks and locally mineralized zones seems to be ultimately responsible for the existence of arsenic in groundwater. Desorption process under high pH conditions may also control the arsenic mobility in the study area. High (>1.5 mg/L) F groundwaters were found in the Na-HCO3 type and with greater depth. Fluoride seemed to be enriched by deep groundwater interaction with granitic rocks, and continuous supply to shallow Ca-HCO3-type groundwater kept the concentration high. In the study area, drinking water management should include periodic As and F monitoring in groundwater.

  相似文献   

18.
The economic benefits of mining industry have often overshadowed the serious challenges posed to the environments through huge volume of tailings generated and disposed in tailings dumps. Some of these challenges include the surface and groundwater contamination, dust, and inability to utilize the land for developmental purposes. The abandoned copper mine tailings in Musina (Limpopo province, South Africa) was investigated for particle size distribution, mineralogy, physicochemical properties using arrays of granulometric, X-ray diffraction, and X-ray fluorescence analyses. A modified Community Bureau of Reference (BCR) sequential chemical extraction method followed by inductively coupled plasma mass spectrometry/atomic emission spectrometry (ICP-MS/AES) technique was employed to assess bioavailability of metals. Principal component analysis was performed on the sequential extraction data to reveal different loadings and mobilities of metals in samples collected at various depths. The pH ranged between 7.5 and 8.5 (average?≈?8.0) indicating alkaline medium. Samples composed mostly of poorly grated sands (i.e. 50% fine sand) with an average permeability of about 387.6 m/s. Samples have SiO2/Al2O3 and Na2O/(Al2O3?+?SiO2) ratios and low plastic index (i.e. PI?≈?2.79) suggesting non-plastic and very low dry strength. Major minerals were comprised of quartz, epidote, and chlorite while the order of relative abundance of minerals in minor quantities is plagioclase?>?muscovite?>?hornblende?>?calcite?>?haematite. The largest percentage of elements such as As, Cd and Cr was strongly bound to less extractable fractions. Results showed high concentration and easily extractable Cu in the Musina Copper Mine tailings, which indicates bioavailability and poses environmental risk and potential health risk of human exposure. Principal component analysis revealed Fe-oxide/hydroxides, carbonate and clay components, and copper ore process are controlling the elements distribution.  相似文献   

19.
This study focused on the evaluation of leaching behaviours for arsenic and heavy metals (Cd, Cu, Ni, Pb and Zn) in soils and tailings contaminated by mining activities. Ten representative mine soils were taken at four representative metal mines in Korea. To evaluate the leaching characteristics of the samples, eight extraction methods were adapted namely 0.1 M HCl, 0.5 M HCl, 1.0 M HCl, 3.0 M HCl, Korean Standard Leaching Procedure for waste materials (KSLP), Synthetic Precipitation Leaching Procedure (SPLP), Toxicity Characteristic Leaching Procedure (TCLP) and aqua regia extraction (AR) methods. In order to compare element concentrations as extraction methods, relative extraction ratios (RERs, %), defined as element concentration extracted by the individual leaching method divided by that extracted by aqua regia based on USEPA method 3050B, were calculated. Although the RER values can vary upon sample types and elements, they increase with increasing ionic strength of each extracting solution. Thus, the RER for arsenic and heavy metals in the samples increased in the order of KSLP < SPLP < TCLP < 0.1 M HCl < 0.5 M HCl < 1.0 M HCl < 3.0 M HCl. In the same extraction method, the RER values for Cd and Zn were relatively higher than those for As, Cu, Ni and Pb. This may be due to differences in geochemical behaviour of each element, namely high solubility of Cd and Zn and low solubility of As, Cu, Ni and Pb in surface environment. Thus, the extraction results can give important information on the degree and extent of arsenic and heavy metal dispersion in the surface environment.  相似文献   

20.
Lead (Pb) has gained much attention since the 1970s because of its potential and cumulative toxicity. As one of the most hazardous elements in coals, Pb can be released into the environment during coal mining, processing, and utilization. This study presents a synthesis on the abundance, distribution, modes of occurrence, and environmental impacts of Pb in Chinese coals. Using the expected coal reserves as the weighting factor and based on the previously published Pb content in 4,304 coal samples (including results obtained in our laboratory) from main coalfields or coal mines in China, the weighted mean Pb content in Chinese coals is 13.0 μg/g, which is higher than that of the American coals (11 μg/g) and average world coals (7.8 μg/g). With respect to regional distribution of Pb in Chinese coals, Pb content can be arbitrarily divided into three groups (<20, 20–40, >40 μg/g). Following this classification, coals from Tibet have the highest average Pb content (128.94 μg/g). The abundance of Pb in coals varies with coal-forming periods and coal ranks, with the late Triassic and higher rank coals having the highest Pb content, which could be ascribed to regional geochemical differences and later geological evolution as well as magma hydrothermal activities. The enrichment of Pb in coals is influenced by several geological factors, including coal-forming plants, source rocks, hydrothermal fluid, and depositional environment. Pb, dominantly associates with sulfide minerals, especially galena in coals. During coal combustion or pyrolysis, Pb is partly emitted into the atmosphere and partly partitioned to solid residues. Accumulation of Pb from coal utilization in human body could lead to a range of health problems and increase the risk of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号