首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 800 毫秒
1.
Rain forest fragmentation and the proliferation of successional trees   总被引:9,自引:0,他引:9  
The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. Over a 20-year period we monitored the density of 52 tree species in nine predominantly successional genera (Annona, Bellucia, Cecropia, Croton, Goupia, Jacaranda, Miconia, Pourouma, Vismia) in fragmented and continuous Amazonian forests. We also evaluated the relative importance of soil, topographic, forest dynamic, and landscape variables in explaining the abundance and species composition of successional trees. Data were collected within 66 permanent 1-ha plots within a large (approximately 1000 km2) experimental landscape, with forest fragments ranging from 1 to 100 ha in area. Prior to forest fragmentation, successional trees were uncommon, typically comprising 2-3% of all trees (> or =10 cm diameter at breast height [1.3 m above the ground surface]) in each plot. Following fragmentation, the density and basal area of successional trees increased rapidly. By 13-17 years after fragmentation, successional trees had tripled in abundance in fragment and edge plots and constituted more than a quarter of all trees in some plots. Fragment age had strong, positive effects on the density and basal area of successional trees, with no indication of a plateau in these variables, suggesting that successional species could become even more abundant in fragments over time. Nonetheless, the 52 species differed greatly in their responses to fragmentation and forest edges. Some disturbance-favoring pioneers (e.g., Cecropia sciadophylla, Vismia guianensis, V. amazonica, V. bemerguii, Miconia cf. crassinervia) increased by >1000% in density on edge plots, whereas over a third (19 of 52) of all species remained constant or declined in numbers. Species responses to fragmentation were effectively predicted by their median growth rate in nearby intact forest, suggesting that faster-growing species have a strong advantage in forest fragments. An ordination analysis revealed three main gradients in successional-species composition across our study area. Species gradients were most strongly influenced by the standlevel rate of tree mortality on each plot and by the number of nearby forest edges. Species-composition also varied significantly among different cattle ranches, which differed in their surrounding matrices and disturbance histories. These same variables were also the best predictors of total successional-tree abundance and species richness. Successional-tree assemblages in fragment interior plots (>150 m from edge), which are subjected to fragment area effects but not edge effects, did not differ significantly from those in intact forest, indicating that area effects per se had little influence on successional trees. Soils and topography also had little discernable effect on these species. Collectively, our results indicate that successional-tree species proliferate rapidly in fragmented Amazonian forests, largely as a result of chronically elevated tree mortality near forest edges and possibly an increased seed rain from successional plants growing in nearby degraded habitats. The proliferation of fast-growing successional trees and correlated decline of old-growth trees will have important effects on species composition, forest dynamics, carbon storage, and nutrient cycling in fragmented forests.  相似文献   

2.
Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant–myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant–myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant–myrmecophyte networks differ among dam‐induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant–myrmecophyte networks on islands. Ant–myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant–plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant–myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams in Amazonia, persistent edge effects and habitat fragmentation associated with dams had large negative effects on animal–plant mutualistic networks. Efectos de la Fragmentación del Paisaje Inducida por Presas sobre Redes Mutualistas Hormiga‐Planta Amazónicas  相似文献   

3.
Clearance and perturbation of Amazonian forests are one of the greatest threats to tropical biodiversity conservation of our times. A better understanding of how soil communities respond to Amazonian deforestation is crucially needed to inform policy interventions that effectively protect biodiversity and the essential ecosystem services it provides. We assessed the impact of deforestation and ecosystem conversion to arable land on Amazonian soil biodiversity through a meta-analysis. We analyzed 274 pairwise comparisons of soil biodiversity in Amazonian primary forests and sites under different stages of deforestation and land-use conversion: disturbed (wildfire and selective logging) and slash-and-burnt forests, pastures, and cropping systems. Overall, 60% and 51% of responses of soil macrofauna and microbial community attributes (i.e., abundance, biomass, richness, and diversity indexes) to deforestation were negative, respectively. We found few studies on mesofauna (e.g., microarthropods) and microfauna (e.g., protozoa and nematodes), so those groups could not be analyzed. Macrofauna abundance and biomass were more vulnerable to the displacement of forests by pastures than by agricultural fields, whereas microbes showed the opposite pattern. Effects of Amazonian deforestation on macrofauna were more detrimental at sites with mean annual precipitation >1900 mm, and higher losses of microbes occurred in highly acidic soils (pH < 4.5). Limited geographic coverage, omission of meso- and microfauna, and low taxonomic resolution were main factors impairing generalizations from the data set. Few studies assessed the impacts of within-forest disturbance (wildfires and selective logging) on soil species in Amazonia, where logging operations rapidly expand across public lands and more frequent severe dry seasons are increasing the prevalence of wildfires.  相似文献   

4.
Abstract:  Brazilian Amazonia faces one of the greatest threats and opportunities for tropical biodiversity conservation of our times. I consider several large-scale issues in biodiversity conservation planning (e.g., resource extraction, large areas needed for top predators, species migration, fire, and carbon sequestration) in light of our severely deficient understanding of basinwide patterns of species distribution and little-known Amazonian biota. The long-term persistence of this biota is best served by strictly protected and sustainable development forest reserves that are both embedded in a benign forest matrix and sufficiently large to support a full complement of species and landscape-scale ecological processes. Given rapidly accelerating trends in agricultural frontier expansion into previously unclaimed public lands, protection and controlled development of forests is urgent.  相似文献   

5.
Abstract:  Little is known about how the surrounding modified matrix affects tree recruitment in fragmented forests. We contrasted effects of two different matrix types, Vismia - and Cecropia -dominated regrowth, on recruitment of pioneer tree species in forest fragments in central Amazonia. Our analyses were based on 22, 1-ha plots in seven experimental forest fragments ranging in size from 1 to 100 ha. By 13 to 17 years after fragmentation, the population density of pioneer trees was significantly higher in plots surrounded by Vismia regrowth than in plots surrounded by Cecropia regrowth, and the species composition and dominance of pioneers differed markedly between the two matrix types. Cecropia sciadophylla was the most abundant pioneer in fragments surrounded by Cecropia regrowth (constituting nearly 50% of all pioneer trees), whereas densities of species in Vismia -surrounded fragments were distributed more evenly. Thus the surrounding matrix had a strong influence on patterns of tree recruitment in Amazonian forest fragments.  相似文献   

6.
Edge Effects on the Understory Bird Community in a Logged Forest in Uganda   总被引:3,自引:0,他引:3  
Abstract: Understanding how the fauna of logged tropical rainforests responds to fragmentation and the creation of edges is vital to ensure conservation of biodiversity. We studied the composition of the understory bird community from the edge of a 15-ha clearing toward the interior of the forest in a part of Budongo Forest Reserve, Uganda, that was selectively logged about 45 years ago. Mist netting was conducted along five transects from the edge and 500 m into the interior. The total number of individuals captured did not change with distance from the edge, but there was a significant increase in the number of species. We sampled fewer, but more common species near the edge, whereas the interior of the forest had more, and less common species. Guild composition also changed with distance from the edge. Frugivore-insectivores and nectarivores were most common close to the edge. Among insectivores, ground foragers, bark-gleaners, and leaf-gleaners were most common in the interior of the forest, whereas sallying insectivores favored the edge. Graminivores were unaffected by the edge. Analysis of common species showed that Ispidina picta , Andropadus curvirostris , A. latirostris , Camaroptera brachyura , Terpsiphone rufiventer , and Nectarinia olivacea were associated with the edge, but no species showed significant avoidance of the edge. This finding may be explained by the generally low sample sizes of interior species. Our results show that even bird communities in logged forests respond to edges. Estimates of edge effects suggested that changes in bird densities may have occurred several hundred meters from the edge. In conclusion, logged forests provide habitat for bird species avoiding forest edges, and this should be considered in the management of such forests for conservation.  相似文献   

7.
Hale CM  Frelich LE  Reich PB 《Ecology》2006,87(7):1637-1649
European earthworms are colonizing earthworm-free northern hardwood forests across North America. Leading edges of earthworm invasion provide an opportunity to investigate the response of understory plant communities to earthworm invasion and whether the species composition of the earthworm community influences that response. Four sugar maple-dominated forest sites with active earthworm invasions were identified in the Chippewa National Forest in north central Minnesota, USA. In each site, we established a 30 x 150 m sample grid that spanned a visible leading edge of earthworm invasion and sampled earthworm populations and understory vegetation over four years. Across leading edges of earthworm invasion, increasing total earthworm biomass was associated with decreasing diversity and abundance of herbaceous plants in two of four study sites, and the abundance and density of tree seedlings decreased in three of four study sites. Sample points with the most diverse earthworm species assemblage, independent of biomass, had the lowest plant diversity. Changes in understory plant community composition were most affected by increasing biomass of the earthworm species Lumbricus rubellus. Where L. rubellus was absent there was a diverse community of native herbaceous plants, but where L. rubellus biomass reached its maximum, the herbaceous-plant community was dominated by Carex pensylvanica and Arisaema triphyllum and, in some cases, was completely absent. Evidence from these forest sites suggests that earthworm invasion can lead to dramatic changes in the understory community and that the nature of these changes is influenced by the species composition of the invading earthworm community.  相似文献   

8.
Recovery of Faunal Communities During Tropical Forest Regeneration   总被引:14,自引:0,他引:14  
Abstract:  As mature tropical forests are cleared, secondary forests may play an important role in the conservation of animal species, depending on how fast animal communities recover during forest regeneration. I reviewed published studies on the recovery of animal species richness and composition during tropical forest regeneration. In 38 of the 39 data sets I examined, conversion of forest to agriculture or pasture substantially reduced species richness. Given suitable conditions for forest recovery, the species richness of the animal taxa considered can be predicted to resemble that of mature forests roughly 20–40 years after land abandonment. At least for ants and birds, however, recovery of species composition appears to take substantially longer than recovery of species richness. Because species richness for many taxa appears to recover relatively rapidly in secondary forests, conservation of secondary forests may be an effective investment in future diversity. The slower recovery of species composition indicates, however, that some species will require stands of mature forest to persist.  相似文献   

9.
Compared with forest interiors, forest edges typically have a different plant species composition and community structure, a phenomenon known as "edge effect." Edge effects make the functional interior area of a forest smaller than its actual area. The objective of this study was to estimate how far the effects of agriculturally maintained edges penetrate the mixed hardwood forests of the Roanoke River Basin, North Carolina. I determined percentage cover for all vascular plant species in 10-by-100-meter belt transects on north-facing or south-facing edges of four relatively undisturbed forests. Changes in the percentage cover of individual species, the relative cover of exotic species, and species richness all indicated that edge effects penetrate deeper on south-facing edges (to 60 meters) than on north-facing edges (to 20 meters). Analyses of species responses to the edge showed a number of species to be edge oriented, but no species was found to be interior oriented. The results of multivariate analyses (ordination and cluster analysis) suggested that edge effects could be detected to 50 meters on south-facing edges and 10–30 meters on north-facing edges. These results allow us to better understand the difference between a forest's actual area and its functional interior area.  相似文献   

10.
Abstract:  Plantation forests and second-growth forests are becoming dominant components of many tropical forest landscapes. Yet there is little information available concerning the consequences of different forestry options for biodiversity conservation in the tropics. We sampled the leaf-litter herpetofauna of primary, secondary, and Eucalyptus plantation forests in the Jari River area of northeastern Brazilian Amazonia. We used four complementary sampling techniques, combined samples from 2 consecutive years, and collected 1739 leaf-litter amphibians (23 species) and 1937 lizards (30 species). We analyzed the data for differences among forest types regarding patterns of alpha and beta diversity, species-abundance distributions, and community structure. Primary rainforest harbored significantly more species, but supported a similar abundance of amphibians and lizards compared with adjacent areas of second-growth forest or plantations. Plantation forests were dominated by wide-ranging habitat generalists. Secondary forest faunas contained a number of species characteristic of primary forest habitat. Amphibian communities in secondary forests and Eucalyptus plantations formed a nested subset of primary forest species, whereas the species composition of the lizard community in plantations was distinct, and was dominated by open-area species. Although plantation forests are relatively impoverished, naturally regenerating forests can help mitigate some negative effects of deforestation for herpetofauna. Nevertheless, secondary forest does not provide a substitute for primary forest, and in the absence of further evidence from older successional stands, we caution against the optimistic claim that natural forest regeneration in abandoned lands will provide refuge for the many species that are currently threatened by deforestation .  相似文献   

11.
Megadams are among the key modern drivers of habitat and biodiversity loss in emerging economies. The Balbina Hydroelectric Dam of Central Brazilian Amazonia inundated 312,900 ha of primary forests and created approximately 3500 variable-sized islands that still harbor vertebrate populations after nearly 3 decades after isolation. We estimated the species richness, abundance, biomass, composition, and group size of medium- to large-bodied forest vertebrates in response to patch, landscape, and habitat-quality metrics across 37 islands and 3 continuous forest sites throughout the Balbina archipelago. We conducted 1168 km of diurnal censuses and had 12,420 camera-trapping days along 81 transects with 207 camera stations. We determined the number of individuals (or groups) detected per 10 km walked and the number of independent photographs per 10 camera-trapping days, respectively, for each species. We recorded 34 species, and patch area was the most significant predictor of vertebrate population relative abundance and aggregate biomass. The maximum group size of several group-living species was consistently larger on large islands and in continuous patches than on small islands. Most vertebrate populations were extirpated after inundation. Remaining populations are unlikely to survive further ecological disruptions. If all vertebrate species were once widely distributed before inundation, we estimated that approximately 75% of all individual vertebrates were lost from all 3546 islands and 7.4% of the animals in all persisting insular populations are highly likely to be extirpated. Our results demonstrate that population abundance estimates should be factored into predictions of community disassembly on small islands to robustly predict biodiversity outcomes. Given the rapidly escalating hydropower infrastructure projects in developing counties, we suggest that faunal abundance and biomass estimates be considered in environmental impact assessments and large strictly protected reserves be established to minimize detrimental effects of dams on biodiversity. Conserving large tracts of continuous forests represents the most critical conservation measure to ensure that animal populations can persist at natural densities in Amazonian forests.  相似文献   

12.
We present new distibutional data for squamate reptiles (amphisbaenians, lizards, and snakes) from several Neotropical sites and estimate species (alpha) diversity at each site. Species compositions at all localities were used to estimate similarity in species richness within and between each of the major regions sampled: Central American lowland forests, Amazonia, and South American dryland forests. We used these estimates to derive maps summarizing overall regional patterns (beta diversity) of squamate richness. Both groups clearly reveal distinct faunal divisions among the three regions. Within Amazonia, lizards and snakes show a clear division in species composition between a "western edge" cluster of sites adjacent to eastern Andean slopes and all other localities in the central and eastern regions. Within this east-central block of sites, a further division is evident between localities north and south of the main Amazon River channel. These general regions of squamate similarity were qualitatively assessed in Brazil's portion of Amazonia within the context of the distribution of all state, federal, and Indian lands that are in principle afforded some level of protection and therefore offer potential for biodiversity conservation. We assess the potential for biodiversity conservation relative to the size of reserves needed to sustain populations of 500 individuals of the three largest species of snakes and to the distribution of potential conservation areas relative to the regional patterns of diversity identified by the statistical analysis. We conclude that the sizes and distributions of reserves are adequate to sustain viable populations of squamates if these areas can be counted on to play a major role in biodiversity conservation.  相似文献   

13.
Abstract: Despite many studies on fragmentation of tropical forests, the extent to which plant and animal communities are altered in small, isolated forest fragments remains obscure if not controversial. We examined the hypothesis that fragmentation alters the relative abundance of tree species with different vegetative and reproductive traits. In a fragmented landscape (670 km2) of the Atlantic Forest of northeastern Brazil, we categorized 4056 trees of 182 species by leafing pattern, reproductive phenology, and morphology of seeds and fruit. We calculated relative abundance of traits in 50 1‐ha plots in three types of forest configurations: forest edges, small forest fragments (3.4–83.6 ha), and interior of the largest forest fragment (3500 ha, old growth). Although evergreen species were the most abundant across all configurations, forest edges and small fragments had more deciduous and semideciduous species than interior forest. Edges lacked supra‐annual flowering and fruiting species and had more species and stems with drupes and small seeds than small forest fragments and forest interior areas. In an ordination of species similarity and life‐history traits, the three types of configurations formed clearly segregated clusters. Furthermore, the differences in the taxonomic and functional (i.e., trait‐based) composition of tree assemblages we documented were driven primarily by the higher abundance of pioneer species in the forest edge and small forest fragments. Our work provides strong evidence that long‐term transitions in phenology and seed and fruit morphology of tree functional groups are occurring in fragmented tropical forests. Our results also suggest that edge‐induced shifts in tree assemblages of tropical forests can be larger than previously documented.  相似文献   

14.
Intensification of food production in tropical landscapes in the absence of land‐use planning can pose a major threat to biological diversity. Decisions on whether to spatially integrate or segregate lands for production and conservation depend in part on the functional relations between biological diversity and agricultural productivity. We measured diversity, density, and species composition of birds along a gradient of production intensification on an agricultural frontier of the Argentine Chaco, where dry tropical forests are cleared for cattle production. Bird species diversity in intact forests was higher than in any type of cattle‐production system. Bird species richness decreased nonlinearly as cattle yield increased. Intermediate‐intensity silvopastoral systems, those in which forest understory is selectively cleared to grow pastures of non‐native plants beneath the tree canopy, produced 80% of the mean cattle yield obtained in pastures on cleared areas and were occupied by 70–90% of the number of bird species present in the nearest forest fragments. Densities of >50% of bird species were significantly lower in open pastures than in silvopastoral systems. Therefore, intermediate‐intensity silvopastoral systems may have the greatest potential to sustain cattle yield and conserve a large percentage of bird species. However, compared with low‐intensity production systems, in which forest structure and extent were intact, intermediate‐intensity silvopastoral systems supported significantly fewer forest‐restricted bird species and fewer frugivorous birds. These data suggest that the integration of production and conservation through intermediate‐intensity silvopastoral systems combined with the protection of forest fragments may be required to maintain cattle yield, bird diversity, and conservation of forest‐restricted species in this agricultural frontier. Compromisos entre la Producción de Ganado y la Conservación de Aves en una Frontera Agrícola del Gran Chaco de Argentina  相似文献   

15.
Smallholder agriculture is the main driver of deforestation in the western Amazon, where terrestrial biodiversity reaches its global maximum. Understanding the biodiversity value of the resulting mosaics of cultivated and secondary forest is therefore crucial for conservation planning. However, Amazonian communities are organized across multiple forest types that support distinct species assemblages, and little is known about smallholder impacts across the range of forest types that are essential for sustaining biodiversity. We addressed this issue with a large-scale field inventory of birds (point counts) and trees (transects) in primary forest and smallholder agriculture in northern Peru across 3 forest types that are key for Amazonian biodiversity. For birds smallholder agriculture supported species richness comparable to primary forest within each forest type, but biotic homogenization across forest types resulted in substantial losses of biodiversity overall. These overall losses are invisible to studies that focus solely on upland (terra firma) forest. For trees biodiversity losses in upland forests dominated the signal across all habitats combined and homogenization across habitats did not exacerbate biodiversity loss. Proximity to forest strongly predicted the persistence of forest-associated bird and tree species in the smallholder mosaic, and because intact forest is ubiquitous in our study area, our results probably represent a best-case scenario for biodiversity in Amazonian agriculture. Land-use planning inside and outside protected areas should recognize that tropical smallholder agriculture has pervasive biodiversity impacts that are not apparent in typical studies that cover a single forest type. The full range of forest types must be surveyed to accurately assess biodiversity losses, and primary forests must be protected to prevent landscape-scale biodiversity loss.  相似文献   

16.
Abstract: Subsistence game hunting has profound negative effects on the species diversity, standing biomass, and size structure of vertebrate assemblages in Amazonian forests that otherwise remain largely undisturbed. These effects are likely to be considerably aggravated by forest fragmentation because fragments are more accessible to hunters, allow no (or very low rates of  ) recolonization from nonharvested source populations, and may provide a lower-quality resource base for the frugivore-granivore vertebrate fauna. I examined the likelihood of midsized to large-bodied bird and mammal populations persisting in Amazonian forest fragments of variable sizes whenever they continue to be harvested by subsistence hunters in the aftermath of isolation. I used data from a comprehensive compilation of game-harvest studies throughout Neotropical forests to estimate the degree to which different species and populations have been overharvested and then calculated the range of minimum forest areas required to maintain a sustainable harvest. The size distribution of 5564 Amazonian forest fragments—estimated from Landsat images of six regions of southern and eastern Brazilian Amazonia—clearly shows that these are predominantly small and rarely exceed 10 ha, suggesting that persistent overhunting is likely to drive most midsized to large vertebrate populations to local extinction in fragmented forest landscapes. Although experimental studies on this negative synergism remain largely unavailable, the prospect that increasingly fragmented Neotropical forest regions can retain their full assemblages of avian and mammalian species is unlikely.  相似文献   

17.
Abstract: Subsistence hunting affects vast tracts of tropical wilderness that otherwise remain structurally unaltered, yet distinguishing hunted from nonhunted tropical forests presents a difficult problem because this diffuse form of resource extraction leaves few visible signs of its occurrence. I used a standardized series of line-transect censuses conducted over a 10-year period to examine the effects of subsistence game harvest on the structure of vertebrate communities in 25 Amazonian forest sites subjected to varying levels of hunting pressure. Crude vertebrate biomass, which was highly correlated with hunting pressure, gradually declined from nearly 1200 kg km−2 at nonhunted sites to less than 200 kg km−2 at heavily hunted sites. Hunting had a negative effect on the total biomass and relative abundance of vertebrate species in different size classes at these forest sites, but it did not affect their overall density. In particular, persistent hunting markedly reduced the density of large-bodied game species (>5 kg), which contributed a large proportion of the overall community biomass at nonhunted sites (65–78%) and lightly hunted sites (55–71%). Nutrient-rich floodplain forests contained a consistently greater game biomass than nutrient-poor unflooded forests, once I controlled for the effects of hunting pressure. Conservative estimates of game yields indicate that as many as 23.5 million game vertebrates, equivalent to 89,224 tons of bushmeat with a market value of US$190.7 million, are consumed each year by the rural population of Brazilian Amazonia, which illustrates the enormous socioeconomic value of game resources in the region. My cross-site comparison documents the staggering effect of subsistence hunters on tropical forest vertebrate communities and highlights the importance of considering forest types and forest productivity in game management programs.  相似文献   

18.
Temperature influences carbon accumulation in moist tropical forests   总被引:2,自引:0,他引:2  
Evergreen broad-leaved tropical forests can have high rates of productivity and large accumulations of carbon in plant biomass and soils. They can therefore play an important role in the global carbon cycle, influencing atmospheric CO2 concentrations if climate warms. We applied meta-analyses to published data to evaluate the apparent effects of temperature on carbon fluxes and storages in mature, moist tropical evergreen forest ecosystems. Among forests, litter production, tree growth, and belowground carbon allocation all increased significantly with site mean annual temperature (MAT); total net primary productivity (NPP) increased by an estimated 0.2-0.7 Mg C x ha(-1) x yr(-1) x degrees C(-1). Temperature had no discernible effect on the turnover rate of aboveground forest biomass, which averaged 0.014 yr(-1) among sites. Consistent with these findings, forest biomass increased with site MAT at a rate of 5-13 Mg C x ha(-1) x degrees C(-1). Despite greater productivity in warmer forests, soil organic matter accumulations decreased with site MAT, with a slope of -8 Mg C x ha(-1) x degrees C(-1), indicating that decomposition rates of soil organic matter increased with MAT faster than did rates of NPP. Turnover rates of surface litter also increased with temperature among forests. We found no detectable effect of temperature on total carbon storage among moist-tropical evergreen forests, but rather a shift in ecosystem structure, from low-biomass forests with relatively large accumulations of detritus in cooler sites, to large-biomass forests with relatively smaller detrital stocks in warmer locations. These results imply that, in a warmer climate, conservation of forest biomass will be critical to the maintenance of carbon stocks in moist tropical forests.  相似文献   

19.
Abstract: The Amazon basin is experiencing rapid forest loss and fragmentation. Fragmented forests are more prone than intact forests to periodic damage from El Niño–Southern Oscillation ( ENSO) droughts, which cause elevated tree mortality, increased litterfall, shifts in plant phenology, and other ecological changes, especially near forest edges. Moreover, positive feedbacks among forest loss, fragmentation, fire, and regional climate change appear increasingly likely. Deforestation reduces plant evapotranspiration, which in turn constrains regional rainfall, increasing the vulnerability of forests to fire. Forest fragments are especially vulnerable because they have dry, fire-prone edges, are logged frequently, and often are adjoined by cattle pastures, which are burned regularly. The net result is that there may be a critical "deforestation threshold" above which Amazonian rainforests can no longer be sustained, particularly in relatively seasonal areas of the basin. Global warming could exacerbate this problem if it promotes drier climates or stronger ENSO droughts. Synergisms among many simultaneous environmental changes are posing unprecedented threats to Amazonian forests.  相似文献   

20.
Abstract: Epiphytes are diverse and important elements of tropical forests, but as canopy‐dwelling organisms, they are highly vulnerable to deforestation. To assess the effect of deforestation on epiphyte diversity and the potential for epiphyte conservation in anthropogenically transformed habitats, we surveyed the epiphytic vegetation of an Ecuadorian cloud forest reserve and its surroundings. Our study was located on the western slopes of the Andes, a global center of biodiversity. We sampled vascular epiphytes of 110 study plots in a continuous primary forest; 14 primary forest fragments; isolated remnant trees in young, middle‐aged, and old pastures; and young and old secondary forests. It is the first study to include all relevant types of habitat transformation at a single study site and to compare epiphyte diversity at different temporal stages of fragmentation. Epiphyte diversity was highest in continuous primary forest, followed by forest fragments and isolated remnant trees, and lowest in young secondary forests. Spatial parameters of habitat transformation, such as fragment area, distance to the continuous primary forest, or distance to the forest edge from inside the forest, had no significant effect on epiphyte diversity. Hence, the influence of dispersal limitations appeared to be negligible or appeared to operate only over very short distances, whereas microclimatic edge effects acted only in the case of completely isolated trees, but not in larger forest fragments. Epiphyte diversity increased considerably with age of secondary forests, but species assemblages on isolated remnant trees were impoverished distinctly with time since isolation. Thus, isolated trees may serve for recolonization of secondary forests, but only for a relatively short time. We therefore suggest that the conservation of even small patches of primary forest within agricultural landscape matrices is essential for the long‐term maintenance of the high epiphyte diversity in tropical cloud forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号