首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L?1) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol–gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L?1). The influence of OH·, O2 ·?, and h + on the BPA degradation were evaluated. The radicals OH· and O2 ·? were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L?1. According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7?×?10?2 mg cm?2. The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.  相似文献   

2.
This paper reports, for the first time, the concentrations of selected phthalates in drinking water consumed in Portugal. The use of bottled water in Portugal has increased in recent years. The main material for bottles is polyethylene terephthalate (PET). Its plasticizer components can contaminate water by leaching, and several scientific studies have evidenced potential health risks of phthalates to humans of all ages. With water being one of the most essential elements to human health and because it is consumed by ingestion, the evaluation of drinking water quality, with respect to phthalate contents, is important. This study tested seven commercial brands of bottled water consumed in Portugal, six PET and one glass (the most consumed) bottled water. Furthermore, tap water from Lisbon and three small neighbor cities was analyzed. Phthalates (di-n-butyl phthalate ester (DnBP), bis(2-ethylhexyl) phthalate ester (DEHP), and di-i-butyl phthalate ester (DIBP)) in water samples were quantified (PET and glass) by means of direct immersion solid-phase microextraction and ionic liquid gas chromatography associated with flame ionization detection or mass spectrometry due to their high boiling points and water solubility. The method utilized in this study showed a linear range for target phthalates between 0.02 and 6.5 μg L?1, good precision and low limits of detection that were between 0.01 and 0.06 μg L?1, and quantitation between 0.04 and 0.19 μg L?1. Only three phthalates were detected in Portuguese drinking waters: dibutyl (DnBP), diisobutyl (DIBP), and di(ethylhexyl) phthalate (DEHP). Concentrations ranged between 0.06 and 6.5 μg L?1 for DnBP, between 0.02 and 0.16 μg L?1 for DEHP, and between 0.1 and 1.89 μg L?1 for DIBP. The concentration of DEHP was found to be up to five times higher in PET than in glass bottled water. Surprisingly, all the three phthalates were detected in glass bottled water with the amount of DnBP being higher (6.5 μg L?1) than in PET bottled water. These concentrations do not represent direct risk to human health. Regarding potable tap water, only DIBP and DEHP were detected. Two of the cities showed concentration of all three phthalates in their water below the limits of detection of the method. All the samples showed phthalate concentrations below 6 μg L?1, the maximum admissible concentration in water established by the US Environmental Protection Agency. The concentrations measured in Portuguese bottled waters do not represent any risk for adult's health.  相似文献   

3.
Sanitary landfill leachates are a complex mixture of high-strength organic and inorganic persistent contaminants, which constitute a serious environmental problem. In this study, trace contaminants present in leachates were investigated by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector before and after a pre-oxidation step using a solar photo-Fenton process. More than 40 organic compounds were detected and identified as benzene (0.09?±?0.07 mg?L-1), trichlorophenol (TCP) (0.18?±?0.12 mg?L-1), phthalate esters (Di-n-butyl phthalate (DBP), Butyl benzyl phthalate (BBP), Di(2-ethylhexyl) phthalate (DEHP)) (DBP: 0.47?±?0.01 mg?L-1; BBP: 0.36?±?0.02 mg?L-1; DEHP: 0.18?±?0.01 mg?L-1), among others. Toluene, pentachlorophenol, dimethyl phthalate, diethyl phthalate, and Di-n-octyl phthalate were never detected in any of the samples. After the photo-Fenton treatment process, TCP decreased to levels below its detection limit, benzene concentration increased approximately three times, and DBP concentration decreased about 77 % comparatively to the raw leachate sample. The solar photo-Fenton process was considered to be very efficient for the treatment of sanitary landfill leachates, leading to the complete elimination of 24 of the detected micropollutants to levels below their respective detection limits and low to significant abatement of seven other organic compounds, thus resulting in an increase of the leachate biodegradability.  相似文献   

4.
To investigate the spatial and seasonal variations of nitrous oxide (N2O) fluxes and understand the key controlling factors, we explored N2O fluxes and environmental variables in high marsh (HM), middle marsh (MM), low marsh (LM), and mudflat (MF) in the Yellow River estuary throughout a year. Fluxes of N2O differed significantly between sampling periods as well as between sampling positions. During all times of day and the seasons measured, N2O fluxes ranged from ?0.0051 to 0.0805 mg N2O m?2 h?1, and high N2O emissions occurred during spring (0.0278 mg N2O m?2 h?1) and winter (0.0139 mg N2O m?2 h?1) while low fluxes were observed during summer (0.0065 mg N2O m?2 h?1) and autumn (0.0060 mg N2O m?2 h?1). The annual average N2O flux from the intertidal zone was 0.0117 mg N2O m?2 h?1, and the cumulative N2O emission throughout a year was 113.03 mg N2O m?2, indicating that coastal marsh acted as N2O source. Over all seasons, N2O fluxes from the four marshes were significantly different (p?<?0.05), in the order of HM (0.0256?±?0.0040 mg N2O m?2 h?1)?>?MF (0.0107?±?0.0027 mg N2O m?2 h?1)?>?LM (0.0073?±?0.0020 mg N2O m?2 h?1)?>?MM (0.0026?±?0.0011 mg N2O m?2 h?1). Temporal variations of N2O emissions were related to the vegetations (Suaeda salsa, Phragmites australis, and Tamarix chinensis) and the limited C and mineral N in soils during summer and autumn and the frequent freeze/thaw cycles in soils during spring and winter, while spatial variations were mainly affected by tidal fluctuation and plant composition at spatial scale. This study indicated the importance of seasonal N2O contributions (particularly during non-growing season) to the estimation of local N2O inventory, and highlighted both the large spatial variation of N2O fluxes across the coastal marsh (CV?=?158.31 %) and the potential effect of exogenous nitrogen loading to the Yellow River estuary on N2O emission should be considered before the annual or local N2O inventory was evaluated accurately.  相似文献   

5.
Chen  Hui  Mao  Wei  Shen  Yiqiu  Feng  Weiwei  Mao  Guanghua  Zhao  Ting  Yang  Lanqin  Yang  Liuqing  Meng  Chunfeng  Li  Yong  Wu  Xiangyang 《Environmental science and pollution research international》2019,26(24):24609-24619

Phthalates (PAEs) in drinking water sources such as the Yangtze River in developing countries had aroused widespread concern. Here, the water, suspended particulate matter (SPM), and sediment samples were collected from 15 sites in wet and dry seasons in Zhenjiang, for the determination of six PAEs (DMP, DEP, DIBP, DBP, DEHP, and DOP) using the solid-phase extraction (SPE) or ultrasonic extraction coupled with gas chromatography-mass spectrometry (GC-MS). The total concentrations of six PAEs (Σ6PAEs) spanned a range of 2.65–39.31 μg L?1 in water, 1.97–34.10 μg g?1 in SPM, and 0.93–34.70 μg g?1 in sediment. The partition coefficients (Kd1) of PAEs in water and SPM phase ranged from 0.004 to 3.36 L g?1 in the wet season and from 0.12 to 2.84 L g?1 in the dry season. Kd2 of PAEs in water and sediment phase was 0.001–9.75 L g?1 in the wet season and 0.006–8.05 L g?1 in the dry season. The dominant PAEs were DIBP, DBP, and DEHP in water and SPM, DIBP, DEHP, and DOP in sediment. The concentration of DBP in water exceeded the China Surface Water Standard. The discharge of domestic sewage and industrial wastewater might be the main potential sources of PAEs. The risk quotient (RQ) method used for the risk assessment revealed that DBP (0.01 < RQ < 1) posed a medium risk, while DIBP and DEHP (RQ > 1) posed a high environmental risk in water, DIBP (RQ > 1) also showed a high risk in sediment.

  相似文献   

6.
This paper analyzes the effect of exogenous urea in increased concentration gradient (0, 100, 500 and 1,000 mg L?1) on photosynthetic pigments (measured spectrophotometrically), uptake of 14CO2 (using radioisotope), and urease activity (by measuring ammonia with Nessler’s reagent) in leaves of Elodea densa Planch. We have observed that low concentration of urea (100 mg L?1) stimulates the accumulation of photosynthetic pigments and intensifies photosynthesis in E. densa, whereas high concentration (1,000 mg L?1) suppresses these processes. Urease activity increased by approximately 2.7 and 8 fold when exogenous urea concentrations were 100 and 500 mg L?1, respectively. However, exogenous urea in high concentration (1,000 mg L?1) decreased urease activity by 1.5 fold compared to the control. The necessity of mitigating urea and other nitrogen-containing compounds (NH3 from urea) in water bodies has been discussed with emphasis on the potential for phytoremediation of urea using common water weed viz. E. densa.  相似文献   

7.
A method for trace analysis of two plasticizers, di-2-ethylhexyl phthalate (DEHP) and di-2-ethylhexyl adipate (DEHA), contaminated in packaged curry paste were investigated by gas chromatography with flame ionization detector (GC-FID). Curry paste samples were extracted by ultrasonic and solid phase extraction using Florisil® cartridge. Analysis by the GC-FID system provided limits of detection for DEHA and DEHP at 12 and 25 μ g L? 1 and a linear dynamic range between 25 μ g L? 1 to 60 mg L? 1 with a coefficient of determination (R2) greater than 0.99. High recoveries were obtained, ranged from 91 to 99% and 88 to 98% for DEHP and DEHA with RSD lower than 7 and 10% respectively. The method detection limit and limits of quantitation were ranged from 27 to 30 and 90 to 100 μ g L? 1. The analysis of curry paste samples showed concentrations of DEHP and DEHA in the range of 4.0 ng g? 1 to 0.61 μg g? 1.  相似文献   

8.
The increasing use of nanoparticles (NPs) worldwide has raised some concerns about their impact on the environment. The aim of the study was to assess the toxicity of metal oxide nanoparticles, singly or combined, in a freshwater fish (Carassius auratus). The fish were exposed for 7, 14, and 21 days to different concentrations of NPs (10 μg Al2O3.L?1, 10 μg ZnO.L?1, 10 μg Al2O3.L?1 plus 10 μg ZnO.L?1, 100 μg Al2O3.L?1, 100 μg ZnO.L?1, and 100 μg Al2O3.L?1 plus 100 μg ZnO.L?1). At the end of each exposure period, antioxidant enzyme activity (catalase, glutathione-S-transferase, and superoxide dismutase), lipid peroxidation, and histopathology were assessed in the gills and livers of C. auratus. The results show an increase in catalase (CAT) and superoxide dismutase (SOD) activity in the gills and livers of fish, especially after 14 days of exposure to single and combined NPs, followed by a reduction at 21 days. An increase in glutathione S-transferase (GST) was observed in gills after 7 days for all tested NP concentrations (single and combined); while in livers, a significant increase was determined after 14 days of exposure to 100 μg.L?1 of both single ZnO and Al2O3 NPs. Lipid peroxidation (LPO) significantly increased in gills after 7 days of exposure to 100 μg.L?1 Al2O3 NPs (single or combined). In livers, LPO increased significantly after 7 days of exposure to all tested concentrations of both single ZnO and Al2O3 (except for 10 μg Al2O3.L?1), and after 14 days of exposure to ZnO (10 and 100 μg.L?1) and Al2O3 (100 μg.L?1). The results from histological observations suggest that exposure to metal oxide NPs affected both livers and gills, presenting alterations such as gill hyperplasia and liver degeneration. However, the most pronounced effects were found in gills. In general, this study shows that the tested NPs, single or combined, are capable of causing sub-lethal effects on C. auratus, but when combined, NPs seem to be slightly more toxic than when added alone.  相似文献   

9.
Atrazine (1.1 mg · L?1) and Dichlobenil (“DBN”) (4.3 mg · L?1) were dosed in triplicates into the water of a compartimentalized pond. Maximum concentrations of the chemicals detected were 200 μg · L?1 Atrazine and 4.2 mg · L?1 DBN (on day 3 – 5 after dosing). Residues were monitored for 55 days, amounting to 60 μg Atrazine and 1.5 mg DBN per litre at the end of observation.O2- and H+-concentrations were significantly lower for 35 and 30 days resp. in the treated water as compared to controls. The conductivity of the dosed water was significantly higher for at least 65 (DBN) and 120 days (Atrazine) than in the untreated compartments. Differences in phytoplankton abundance and diversity could be evaluated between controls and treated biotopes.  相似文献   

10.
In a hydroponic culture, experiments were performed to study the influence of potassium (K) supplementation (0, 20, 40, 60, 80, and 100 mg L?1) on the arsenic (As; 0, 8, and 10 mg L?1)-accrued changes in growth traits (plant biomass, root–shoot length) and the contents of lepidine, As and K, in garden cress (Lepidium sativum Linn.) at 10 days after treatment. The changes in these traits were correlated with shoot proline content, protein profile, and the activities of antioxidant enzymes namely superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione reductase (GR, EC 1.8.1.7), and ascorbate peroxidase (APX, EC 1.11.1.11). In general, As-alone treatments significantly decreased the growth traits but lead to significant enhancements in shoot proline and enzyme activities. K-supplementation to As-treated L. sativum seedlings decreased shoot-As content, reduced As-induced decreases in growth traits but enhanced the content of shoot proline, and the activities of the studied enzymes maximally with K100 + As8 and As10 mg L?1. Both 8 and 10 mg L?1 of As drastically downregulated the shoot proteins ranging from 43–65 kDa. With As10 mg L?1, there was a total depletion of protein bands below 23 kDa; however, K80 mg L?1 maximally recovered and upregulated the protein bands. Additionally, protein bands were downregulated (at par with As-alone treatment) above K80 mg L?1 level. Interestingly, As-stress increased lepidine content in a dose-dependent manner which was further augmented with the K-supplementation. It is suggested that K protects L. sativum against As-toxicity by decreasing its accumulation and strengthening antioxidant defense system and protein stability.  相似文献   

11.
Photosynthetic activity, oxidative stress, and Cu bioaccumulation in the seagrass Cymodocea nodosa were assessed 4, 12, 24, 48, and 72 h after exposure to two copper oxide nanoparticle (CuO NP) concentrations (5 and 10 mg L?1). CuO NPs were characterized by scanning electron microscopy (SEM) and dynamic light scattering measurements (DLS). Chlorophyll fluorescence analysis was applied to detect photosystem II (PSII) functionality, while the Cu accumulation kinetics into the leaf blades was fitted to the Michaelis-Menten equation. The uptake kinetics was rapid during the first 4 h of exposure and reached an equilibrium state after 10 h exposure to 10 mg L?1 and after 27 h to 5 mg L?1 CuO NPs. As a result, 4-h treatment with 5 mg L?1 CuO NPs, decreased the quantum yield of PS II photochemistry (Φ PSΙΙ ) with a parallel increase in the regulated non-photochemical energy loss in PSII (Φ NPQ ). However, the photoprotective dissipation of excess absorbed light energy as heat, through the process of non-photochemical quenching (NPQ), did not maintain the same fraction of open reaction centers (q p ) as in control plants. This reduced number of open reaction centers resulted in a significant increase of H2O2 production in the leaf veins serving possibly as an antioxidant defense signal. Twenty-four-hour treatment had no significant effect on Φ PSΙΙ and q p compared to controls. However, 24 h exposure to 5 mg L?1 CuO NPs increased the quantum yield of non-regulated energy loss in PSII (Φ NO ), and thus the formation of singlet oxygen (1O2) via the triplet state of chlorophyll, possible because the uptake kinetics had not yet reached the equilibrium state as did 10 mg L?1. Longer-duration treatment (48 and 72 h) had less effect on the allocation of absorbed light energy at PSII and the fraction of open reaction centers, compared to 4-h treatment, suggesting the function of a stress defense mechanism. The response of C. nodosa leaves to CuO NPs fits the “Threshold for Tolerance Model” with a threshold time (more than 4 h) required for induction of a stress defense mechanism, through H2O2 production.  相似文献   

12.
In this study, photocatalytic (photo-Fenton and H2O2/UV) and dark Fenton processes were used to remove ethylenethiourea (ETU) from water. The experiments were conducted in a photo-reactor with an 80 W mercury vapor lamp. The mineralization of ETU was determined by total organic carbon analysis, and ETU degradation was qualitatively monitored by the reduction of UV absorbance at 232 nm. A higher mineralization efficiency was obtained by using the photo-peroxidation process (UV/H2O2). Approximately 77% of ETU was mineralized within 120 min of the reaction using [H2O2]0 = 400 mg L?1. The photo-Fenton process mineralized 70% of the ETU with [H2O2]0 = 800 mg L?1 and [Fe2+] = 400 mg L?1, and there is evidence that hydrogen peroxide was the limiting reagent in the reaction because it was rapidly consumed. Moreover, increasing the concentration of H2O2 from 800 mg L?1 to 1200 mg L?1 did not enhance the degradation of ETU. Kinetics studies revealed that the pseudo-second-order model best fit the experimental conditions. The k values for the UV/H2O2 and photo-Fenton processes were determined to be 6.2 × 10?4 mg L?1 min?1 and 7.7 × 10?4 mg L?1 min?1, respectively. The mineralization of ETU in the absence of hydrogen peroxide has led to the conclusion that ETU transformation products are susceptible to photolysis by UV light. These are promising results for further research. The processes that were investigated can be used to remove pesticide metabolites from drinking water sources and wastewater in developing countries.  相似文献   

13.
A novel method for the extraction of Sudan dyes including Sudan I, II, III, and IV from environmental water by magnetic titanium dioxide nanoparticles (Fe3O4@TiO2) coated with sodium dodecylsulfate (SDS) as adsorbent was reported. Fe3O4@TiO2 was synthesized by a simple method and was characterized by transmission electron microscopy, Fourier-transform infrared spectrometry, and vibrating sample magnetometer. The magnetic separation was quite efficient for the adsorption and desorption of Sudan dyes. The effect of the amount of SDS, extraction time, pH, desorption condition, maximal extraction volume, and humic acid on the extraction process were investigated. This method was employed to analyze three environmental water samples. The results demonstrated that our proposed method had wide linear range (25–5,000 ng L?1) with a good linearity (R 2?>?0.999) and low detection limits (2.9–7.3 ng L?1). An enrichment factor of 1,000 was achieved. In all three spiked levels (25, 250, and 2,500 ng L?1), the recoveries of Sudan dyes were in the range of 86.9–93.6 %. The relative standard deviations obtained were ranging from 2.5 to 9.3 %. That is to say, the new method was fast and effective for the extraction of Sudan dye from environmental water.  相似文献   

14.
In the last few years, several works dealing with Fenton oxidation of ionic liquids (ILs) have proved the capability of this technology for their degradation, achieving complete ILs removal and non-toxic effluents. Nevertheless, very little is known about the kinetics of this process, crucial for its potential application. In this work, the effect of several operating conditions, including reaction temperature (50–90 °C), catalyst load (10–50 mg L?1 Fe3+), initial IL concentration (100–2000 mg L?1), and hydrogen peroxide dose (10–200% of the stoichiometric amount for the complete IL mineralization) on 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) oxidation has been investigated. Under the optimum operating conditions (T = 90 °C; [Fe3+]0 = 50 mg L?1; [H2O2]0 = 100% of the stoichiometric amount), the complete removal of [C4mim]Cl (1000 mg L?1) was achieved at 1.5-min reaction time. From the experimental results, a potential kinetic model capable to describe the removal of imidazolium-based ILs by Fenton oxidation has been developed. By fitting the proposed model to the experimental data, the orders of the reaction with respect to IL initial concentration, Fe3+ amount and H2O2 dose were found to be close to 1, with an apparent activation energy of 43.3 kJ mol?1. The model resulted in a reasonable fit within the wide range of operating conditions tested in this work.  相似文献   

15.
The aqueous photodegradation of fluopyram was investigated under UV light (λ?≥?200 nm) and simulated sunlight irradiation (λ?≥?290 nm). The effect of solution pH, fulvic acids (FA), nitrate (NO3 ?), Fe (III) ions, and titanium dioxide (TiO2) on direct photolysis of fluopyram was explored. The results showed that fluopyram photodegradation was faster in neutral solution than that in acidic and alkaline solutions. The presence of FA, NO3 ?, Fe (III), and TiO2 slightly affected the photodegradation of fluopyram under UV irradiation, whereas the photodegradation rates of fluopyram with 5 mg L?1 Fe (III) and 500 mg L?1 TiO2 were about 7-fold and 13-fold faster than that without Fe (III) and TiO2 under simulated sunlight irradiation, respectively. Three typical products for direct photolysis of fluopyram have been isolated and characterized by liquid chromatography tandem mass spectrometry. These products resulted from the intramolecular elimination of HCl, hydroxyl-substitution, and hydrogen extraction. Based on the identified transformation products and evolution profile, a plausible degradation pathway for the direct photolysis of fluopyram in aqueous solution was proposed. In addition, acute toxicity assays using the Vibrio fischeri bacteria test indicated that the transformation products were more toxic than the parent compound.  相似文献   

16.
This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g?1) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 24 factorial experimental design. The Trametes maximaPaecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein?1, H2O2 = 6.2 mg L?1) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein?1, H2O2 = 4.0 mg L?1). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.  相似文献   

17.
Different advanced oxidation processes (AOPs) were applied to the treatment of a real cotton-textile dyeing wastewater as a pre-oxidation step to enhance the biodegradability of the recalcitrant compounds, which can be further oxidized using a biological process. Tests were conducted on a lab-scale prototype using artificial solar radiation and at pilot scale with compound parabolic collectors using natural solar radiation. The cotton-textile dyeing wastewater presents a lilac color, with a maximum absorbance peak at 641 nm, alkaline pH (pH?=?8.2), moderate organic content (DOC?=?152 mg C L?1, COD?=?684 mg O2 L?1) and low-moderate biodegradability (40 % after 28 days in Zahn–Wellens test). All the tested processes contributed to an effective decolorization and mineralization, but the most efficient process was the solar-photo-Fenton with an optimum catalyst concentration of 60 mg Fe2+ L?1, leading to 98.5 % decolorization and 85.5 % mineralization after less than 0.1 and 5.8 kJUV L?1, respectively. In order to achieve a final wastewater with a COD below 250 mg O2 L?1 (discharge limit into water bodies imposed by the Portuguese Legislation-Portaria no. 423/97 of 25 June 1997), considering the combination of a solar-photo-Fenton reaction with a biological process, the phototreatment energy required is 0.5 kJUV L?1, consuming 7.5 mM hydrogen peroxide, resulting in 58.4 % of mineralization $ \left({t}_{30\mathrm{W}}=3.2\ \min; \overline{T}=30.7\ {}^{\circ}\mathrm{C};\overline{\mathrm{pH}}=2.80;{\overline{\mathrm{UV}}}_{G,n}={13\ \mathrm{W}\ \mathrm{m}}^{-2}\right). $   相似文献   

18.
The aims of this research were to evaluate the efficacy of copper oxychloride (CuCl2.3Cu(OH)2), copper hydroxide (Cu(OH)2) and diquat (1.1′-ethylene-2.2′-bipyridyldiylium dibromide), isolated and in association with 0.1% of both copper sources, in the control of the unicellular algae Ankistrodesmus gracilis and the filamentous algae Pithophora kewesis, and to determine the acute toxicity of the tested chemicals in Hyphressobrycon eques, Pomacea canaliculata, Lemna minor and Azolla caroliniana. The efficacy was estimated by the methods of chlorophyll a and pheophytin a readings, changed into growth inhibition percentage. Both algae were exposed to the following concentrations: 0.2; 0.4; 0.8; 1.2 mg L?1 of diquat and its association with the copper sources; and 0.1; 0.3; 0.5; 0.7; 1.0 and 1.5 mg L?1 in the isolated applications of copper hydroxide and copper oxychloride. An untreated control was kept. The acute toxicity was estimatedby 50% lethal concentration (LC50). The copper sources were effective for A. gracilis control, at rates as high as 0.1 mg L?1 (>95% efficacy). Isolated diquat and its association with copper hydroxide were both effective at rates as high as 0.4 mg L?1, with 95 and 88% control efficacy, respectively. The copper oxychloride was effective at 0.2 mg L?1, with 93% efficacy. None of the tested chemicals and associations was effective on P. kewesis control. The most sensitive non target organism to the tested chemicals was L. minor; the less sensitive was H. eques.  相似文献   

19.
Denitrification is an important N removal process in aquatic systems but is also implicated as a potential source of global N2O emissions. However, the key factors controlling this process as well as N2O emissions remain unclear. In this study, we identified the main factors that regulate the production of net N2 and N2O in sediments collected from rivers with a large amount of sewage input in the Taihu Lake region. Net N2 and N2O production were strongly associated with the addition of NO3 ?-N and NH4 +-N. Specifically, NO3 ?-N controlled net N2 production following Michaelis–Menten kinetics. The maximum rate of net N2 production (V max) was 116.3 μmol N2-N m?2 h?1, and the apparent half-saturation concentration (k m) was 0.65 mg N L?1. N2O to N2 ratios increased from 0.18?±?0.03 to 0.68?±?0.16 with the addition of NO3 ?-N, suggesting that increasing NO3 ?-N concentrations favored the production of N2O more than N2. The addition of acetate enhanced net N2 production and N2O to N2 ratios, but the ratios decreased by about 59.5 % when acetate concentrations increased from 50 to 100 mg C L?1, suggesting that the increase of N2O to N2 ratios had more to do with the net N2 production rate rather than acetate addition in this experiment. The addition of Cl? did not affect the net N2 production rates, but significantly enhanced N2O to N2 ratios (the ratios increased from 0.02?±?0.00 to 0.10?±?0.00), demonstrating that the high salinity effect might have a significant regional effect on N2O production. Our results suggest that the presence of N-enriching sewage discharges appear to stimulate N removal but also increase N2O to N2 ratios.  相似文献   

20.
The objective of this study was to determine the acute toxicity of some pesticides used in irrigated rice farming to Lithobates catesbeianus tadpoles. The LC50-96h for commercial formulations containing bentazon, penoxsulam, vegetable oil, permethrin and carbofuran, separately and their mixtures, were determined at the proportions commonly used in the field. The limits of risk concentrations of these products for the studied species were also established. The LC50-96h for tadpoles was 4,530 mg L?1 for bentazon; 7.52 mg L?1 for penoxsulam + 145.66 mg L?1 of vegetable oil; 81.57 mg L?1 for vegetable oil; 0.10 mg L?1 for permethrin; 29.90 mg L?1 for carbofuran (active ingredients), and 38.79 times the dose used in the field for the mixture of these products. The environmental risk was determined only for permethrin, and care should be taken when using the vegetable oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号