首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable 13C and 15N isotope analyses of scale, bone, and muscle tissues were used to investigate diet and trophic position of North Atlantic bluefin tuna (Thunnus thynnus Linnaeus) during residency in the northwest Atlantic Ocean off the northeast coast of the United States. Adult bluefin tuna scales collected from fish between June and October 2001 were significantly enriched in 13C compared to both muscle and bone across all months, while muscle was significantly enriched in 15N compared to either bone or scale throughout the same period. In muscle tissue, there was evidence of a shift over the summer from prey with 13C values (–17 to –18) that were characteristic of silver hake (Merluccius bilinearis) to species with 13C values of –20 to –21 that were similar to Atlantic herring (Clupea harengus) and sandlance (Ammodytes americanus). Depletion of 15N values in adult scales and bone compared to muscle tissue may be explained by bone and scale samples representing juvenile or life-long feeding habits, isotopic routing, or isotopic differences in amino acid composition of the three tissue types. Adult bluefin tuna were estimated to be feeding at a trophic position similar to pelagic sharks in the northwest Atlantic Ocean, while the trophic positions of yellowfin tuna (Thunnus albacares), albacore tuna (Thunnus alalunga), and juvenile bluefin tuna were indicative of a diet of up to a full trophic position below adult bluefin tuna. The close relationship between the juvenile bluefin 15N values and those of suspension feeders suggests that nektonic crustaceans or zooplankton may contribute significantly to the diet of bluefin tuna, a food source previously overlooked for this species in the northwest Atlantic Ocean.Communicated by J.P. Grassle, New Brunswick  相似文献   

2.
D. J. Murie 《Marine Biology》1995,122(3):341-353
Possible differences in the diet or metabolism of sympatric finback and humpback whales in the Gulf of St. Lawrence were investigated through analysis of their blubber fatty acids. Free-ranging finback (Balaenoptera physalus, n=19) and humpback (Megaptera novaeangliae, n=10) whales were sampled through biopsy during summer 1991. The two species differed in the chemical composition and stable carbon isotope distribution of fatty acids extracted from their outermost blubber layer. Finback blubber was slightly but significantly richer in its relative proportions of 12:0, 13:0, i14:0, 17:0, 18:1 n9, 18:1 n7, and 20:0 (probability of difference 99%), 18:2 n6, 18:0, and 19:0 (probability 95%), and 16:1 n5 and 16:0 (90%). The stable isotope ratio of finback total fatty acids averaged-25.5±0.4%. Humpbacks contained relatively more i16:0, 18:1 n5, 20:5 n3, and 22:6 n3 (probability 99%), 16:1 n7, i18:0, 20:4 n6, and 22:5 n3 (95%), and 20:4 n3 (>90%). Their fatty acid 13 averaged -25.8±0.5% (different from finbacks with a probability of 95%). There was no significant difference between the two species in the relative proportions of 14:1, 14:0, i15:0, a15:0, 15:0, i17:0, a17:0, 17:1, 20:1 n9, 20:1 n7, 22:1 n11, or 22:1 n9, which together made up one-third of total fatty acids. We used principal component and cluster analyses to integrate and visualize the differences in the chemometric data sets. The chemical and isotopic differences found in the present study are consistent with a slightly lower trophic position for humpbacks compared to finbacks in the Gulf of St. Lawrence, reflecting a difference in long-term, average diet.  相似文献   

3.
4.
Stable carbon and nitrogen isotope signatures have been determined for littoral fishes from three localities in the Balearic Islands (NW Mediterranean) for trophic assessment. Variation in the isotopic composition was examined at multiple levels: the individual organism, individual populations (ontogenetic variation) and at area effects (different islands). Cluster analyses based on 13C and 15N resulted in two very different dendrograms for the fish assemblages from Menorca and Formentera. In both schemes, congeners of the genera Diplodus and Labrus did not cluster together, suggesting that closely related species do not necessarily feed on similar foods. Significant differences in 15N were detected between locations for Scorpaena porcus, Scorpaena scrofa and Sciaena umbra, and significant differences in 13C were detected for Scorpaena porcus and Scorpaena scrofa. Overall there were significant spatial differences in the trophic position of littoral fishes among the three Balearic Islands, and fishes from Palma, Mallorca tended to feed at a higher trophic level than fishes from either Menorca and Formentera. Large-scale geographic comparisons, using earlier data from three sites in western Mallorca and in Corsica revealed that throughout the western Mediterranean generally, the average trophic level of fishes differs remarkably little. However, large discrepancies were observed in 15N for individual species, notably Scorpaena porcus, D. annularis, D. vulgaris and Serranus scriba. 13C composition of fishes did not seem to change greatly among the locations, although marked discrepancies were observed for D. puntazzo and Mullus surmuletus. Given the large-scale patterns we have observed, it is possible that the extent of multichannel omnivory which has been purported to exist in complex aquatic systems, may have been greatly overstated. Regression of 15N and 13C with fish body size revealed clear and significant trends for some species. In particular, 15N appeared to increase with body length in the macrocarnivorous fishes Scorpaena porcus, Scorpaena scrofa, Serranus scriba and Sciaena umbra. Trends were less apparent in animals which feed primarily on small benthic invertebrates, notably the four Diplodus species (D. vulgaris, D. sargus, D. annularis, D. puntazzo), and the labrids Labrus viridis and L. merula.Communicated by J.P. Thorpe, Port Erin  相似文献   

5.
Jellyfish are increasingly topical within studies of marine food webs. Stable isotope analysis represents a valuable technique to unravel the complex trophic role of these long-overlooked species. In other taxa, sample preservation has been shown to alter the isotopic values of species under consideration, potentially leading to misinterpretation of trophic ecology. To identify potential preservation effects in jellyfish, we collected Aurelia aurita from Strangford Lough (54o22′44.73″N, 5o32′53.44″W) during May 2009 and processed them using three different methods prior to isotopic analysis (unpreserved, frozen and preserved in ethanol). A distinct preservation effect was found on δ15N values: furthermore, preservation also influenced the positive allometric relationship between individual size and δ15N values. Conversely, δ13C values remained consistent between the three preservation methods, conflicting with previous findings for other invertebrate, fish and mammalian species. These findings have implications for incorporation of jellyfish into marine food webs and remote sampling regimes where preservation of samples is unavoidable.  相似文献   

6.
Otolith increment age estimates for a deepwater species, Allocyttus verrucosus, were validated by comparison with the results from 210Pb:226Ra radiometric analysis. Transverse sectioning and subsequent grinding of otoliths to a thickness of 0.2 mm revealed increments which provided age estimates for a range of fish sizes. Age estimates ranged from 7 yr for an immature fish of 15.2 cm total length (TL) to 130 yr for a female fish of 36.5 cm TL. Age at maturity was estimated as 28 yr for females and 24 yr for males. In comparison, radiometric analysis of whole otoliths, using a single linear otolith-mass growth-rate model suggested maximum ages of 130 to 170 yr for fish of 34 to 35 cm TL. Radiometric ages were also recalculated using a two-phase otolith-mass growth-rate model in which the growth rate was assumed to slow after maturity to 90% of the pre-maturity rate. This reduced the maximum age to 132±15 yr for a mean fish length of 34.5 cm. Age at maturity for females was estimated at 34 yr. The similarity between age estimates from otolith-increment counts and radiometric analysis strongly supports the accuracy of results from both methods, and encourages further use of such comparisons as an alternative to traditional validation techniques.  相似文献   

7.
A network model of trophic interactions in a tropical reservoir in India was developed with the objective to quantify matter and energy flows between system components and to study the impact of invasive fishes on the ecosystem. Structure of flows and their distribution within and between trophic levels were analysed by aggregating single flows into combined flows for discrete trophic levels. The trophic flows primarily occurred in the first four trophic level (TL) and the food web structure in this reservoir ecosystem was characterized by the dominance of low TL organisms, with the highest TL of only 3.57 for the top predator. Highest system omnivory index (SOI) was observed for indigenous catfishes (0.422), followed by the exotic fish Mozambique Tilapia (0.402). Nile Tilapia and Pearl spots show the highest niche overlap which suggests high competition for similar resources. The mixed trophic impact routine reveals that an increase in the abundance of the African catfish would negatively impact almost all fish groups such as Indian major carps, Pearl spots, indigenous catfishes and Tilapines. The other invasive fish Mozambique Tilapia adversely affects the indigenous catfishes. The most interesting observation in this study is that the most dominant invasive fish in this reservoir, the Nile Tilapia does not negatively impact any of the fish groups. In fact it positively impacts the Indian major carps. The direct and indirect effects of predation between system components (i.e. fish, invertebrates, phytoplankton and detritus) are quantitatively described and the possible influence and role in the ecosystem's functioning of the invasive fish species are discussed.  相似文献   

8.
Oxygen and carbon isotopic composition of the aragonite of fish otoliths was measured on 175 specimens comprising 24 different species in 1989 and 1990. All specimens but two came from the northern Adriatic Sea or the northern Tyrrhenian Sea (two freshwater specimens were studied for comparison with the marine fish). The data obtained confirm the results of previous research suggesting the existence of equilibrium conditions between the otolith aragonite and ambient water with respect to ·18O(CO3 2-) values. Examination of one of the species indicated that the CaCO3 of otoliths probably accumulates continuously over time, seasonal isotopic changes being clearly visible (from a set of radial spot samples) for both oxygen and carbon isotopes. The apparent isotopic equilibrium with ambient water suggests that the 18O(H2O) of the endolymph is equal to that of seawater and considerably different from that of fish body water. In the case of 13C(CO3 2-), isotopic equilibrium with dissolved carbon species in seawater is never reached, even though the contribution of metabolic CO2 is variable among different species and even among different individuals of the same species. This rules out the possibility of using 13C(CO3 2-) values obtained from fossil otoliths for paleoenvironmental and paleobiological conclusions.  相似文献   

9.
Spatial and temporal dynamics of carbon and nitrogen stable isotope signatures of the bottom-dwelling caridean shrimp Nauticaris marionis were measured during April and May between 1984 and 2000 in the vicinity of Marion Island (the Prince Edward Islands, Southern Ocean). There was one trophic-level enrichment in bulk 15N and 13C signatures between small (<20 mm long) and large (>20 mm) specimens of N. marionis, suggesting distinct trophic differentiation among major shrimp size groups. Both 15N and 13C values of N. marionis increased with the depth, reflecting changes in their diet. There were no clear temporal trends in bulk 15N signatures of N. marionis. However, compound-specific 15N measurements of amino acids indicated that N. marionis from the inter-island realm occupied the trophic level of second order carnivores, while similarly sized shrimps in the near-shore realm were at the trophic level of first order carnivores. Compound-specific measurements also identified a change in the source of inorganic nitrogen at the base of the food web between the inter-island and near-shore realms. In contrast to the bulk 15N values, a significant shift in bulk 13C values of N. marionis was observed between 1984 and more recent years. This temporal change appears to be linked to changes in the overall productivity of the Prince Edward Island inter-island system, which could be linked to global climate change.Communicated by J.P. Thorpe, Port Erin  相似文献   

10.
Prey selection shortly after the onset of feeding by laboratory-reared gilthead seabream, Sparus aurata L., larvae was studied using larvae fed on two types of microcapsule (hard- and soft-walled) having diameters ranging from 25 to 300 m. Preferences between inert food and live prey (rotifers and Artemia sp. nauplii) were also studied. Seabream larvae were able to ingest inert food from first feeding. Larvae of all size classes ingested hard microcapsules with diameters in the range 25 to 250 m. However, larvae with a total length (TL) below 4 mm preferentially selected particles 25 to 50 m in diameter, larvae of TL 4 and 5 mm preferred particles 51 to 100 m in diameter, while larvae above 5 mm TL preferred particles 101 to 150 m in diameter. With soft microcapsules, larvae always preferred particles larger than in the previous case, and above 4.5 mm TL they preferentially selected particles 201 to 250 m in diameter. In addition, the gradual increase of preferred diameters with increasing TL was more pronounced when larvae were increasing TL was more pronounced when larvae were fed on soft particles. Mean values for prey width/mouth width ratios were approximately 0.24 and 0.30 when larvae were fed on hard-walled and soft-walled microcapsules, respectively, irrespective of the absolute value of larval length. When a mixed diet of live and inert food items was offered, live prey were always preferentially selected, even if the prey width/mouth width ratio was apparently not favourable. Only a physical constraint such as excessive prey width could counter this preference for living prey vs inert microcapsules. These results contribute to our knowledge in larval feeding behaviour, especially in the presence of inert food, and represent a fundamental step in developing prepared food for marine fish larvae.  相似文献   

11.
RNA-DNA ratio: an index of larval fish growth in the sea   总被引:1,自引:0,他引:1  
Data on water temperature, RNA-DNA ratio, and growth of eight species of temperate marine fish larvae reared in the laboratory were fit to the equation: $$G_{pi} = 0.93{\text{ }}\operatorname{T} + 4.75{\text{ RNA - DNA}} - 18.18$$ where Gpi is the protein growth rate in % d-1 and T is the water temperature. Water temperature and larval RNA-DNA ratio explained 92% of the variability in growth rate of laboratory-reared larvae. The model is useful over the entire range of feeding levels (starvation to excess), temperatures (2° to 20°C) and fish species studied. Estimates of recent growth of larval cod, haddock, and sand lance caught at sea based on water temperature and RNA-DNA ratio ranged from negative to 26% d-1. These data demonstrate the importance of food availability in larval fish mortality and suggest that short-term growth under favorable conditions may be considerably higher than expected from long-term indicators. RNA-DNA ratio analysis offers new possibilities for understanding larval growth and mortality, and their relation to environmental variability.  相似文献   

12.
S. Vizzini  A. Mazzola 《Marine Biology》2003,142(5):1009-1018
Stable carbon and nitrogen isotope ratios (13C/12C and 15N/14N) of primary producers and consumers were investigated seasonally throughout 1999, in order to describe the food web in a western Mediterranean coastal lagoon (Lake of Sabaudia, central Italy). Particulate organic matter and algal material (seagrass epiphytes and macroalgae) seem to constitute the main food sources for primary consumers (zooplankton and small benthic invertebrates, respectively) throughout the sampling year, while the seagrass Cymodocea nodosa appears to play a negligible trophic role. As regards the ichthyofauna, carbon stable isotopes differentiated between planktivore and benthivore fish species. However, a benthic-pelagic coupling seems to occur, with some fish of higher trophic levels feeding both on benthic and pelagic materials. Analysis of variance showed that the interaction between the three main factors (species2size2season) significantly affects the isotopic composition of fish, suggesting the presence of intra- and inter-specific resource partitioning. Wide seasonal variations in the isotopic composition were observed in organic matter sources, invertebrates and fish, with a general trend towards depleted values in winter and enriched values in summer. The winter depletion of organic matter sources may be due to several environmental factors and seems to be mirrored in the upper trophic levels. Primary producers and invertebrates are known to have shorter time-integrated isotopic signatures than vertebrates, yet fish also exhibited seasonal isotopic differences. We concluded that the examined fish species can assume a new muscle isotopic signature relatively quickly in response to changes in the isotopic composition of their diet and/or diet shifts.  相似文献   

13.
Cephalopod beaks retrieved from stomachs of dead emperor penguin chicks at Pointe Géologie, Terre Adélie, provide information on taxonomic and size composition of the penguin’s squid diet, on the trophic range of the squid species preyed upon and on the fractional trophic impact of the penguin on the whole food web. Emperor penguins prey upon four squid species (Psychroteuthis glacialis, Kondakovia longimana, Gonatus antarcticus, Alluroteuthis antarcticus) and do not take squid larger than 480 mm mantle length. Larger squid live either below the penguin’s diving range or are beyond its handling capacity. Nitrogen stable isotope ratios indicate that squids cover a range of about two trophic levels (2.5–8‰ δ15N). The impact of the emperor penguin, however, concentrates on the upper part of this range, about 68% of its squid prey being >6‰ δ15N. The principal components of the emperor’s diet, fish, krill and squid, differ distinctly in average trophic level. Consequently the trophic position of the emperor penguin changes accordingly with diet composition and may differ by almost one trophic level between different emperor penguin colonies.  相似文献   

14.
The assessment of relevant spatial scales at which ecological processes occur is of special importance for a thorough understanding of ecosystem functioning. In coastal ecosystems, the variability of trophic interactions has been studied at different spatial scales, but never at scales from centimetres to metres. In the present study, we investigated the link between habitat structure and small-scale variability of food web functioning on intertidal boulder field ecosystems. Two microhabitats, boulder-top and boulder-bottom, were considered, and the trophic ecology of invertebrate consumers was studied using stable isotope tracers. We found for two of the main suspension feeders of northern Atlantic rocky shores (the sponges Halichondria panicea and Hymeniacidon sanguinea) consistent 15N enrichment for individuals sampled under boulders, suggesting that these consumers relied on different trophic resource according to the microhabitat inhabited, at a centimetre scale. The high δ15N signatures found underneath boulders suggested higher use of highly decomposed organic matter in this microhabitat. The isotopic difference between the two microhabitats decreased in higher trophic level consumers, which likely foraged at a spatial scale including both microhabitats. Finally, our results reveal that in highly heterogeneous habitats such as boulder fields, trophic interactions are likely to vary strongly in space, which should be considered in future researches. The link between habitat physical structure and food web variability might also contribute to the high biological diversity characterizing heterogeneous ecosystems.  相似文献   

15.
Condition indices (CI), hepatosomatic indices (HSI) and proximate, lipid and fatty acid composition of wild and laboratory-reared yellowtail flounder (Limanda ferruginea) (Storer, 1839) were compared from data taken throughout spring and summer 1996–1998. Cluster analysis was performed on the fatty acid signatures of these two groups along with a commercial diet and several invertebrate species to determine possible feeding patterns in Conception Bay, Newfoundland. HSI and levels of storage fat were significantly higher in the muscle and liver of laboratory-reared yellowtail flounder, indicating an efficient absorption of dietary lipid and an increase in fat deposition. Fatty acid analysis of the liver showed that wild fish contained significantly higher proportions of the essential fatty acids 20:46, 20:53 and 22:63; whereas proportions of 18:1 and 18:26 were significantly higher in all fractions of lipid examined from laboratory-reared fish than they were from wild fish. Polar fractions of lipid were more similar than the neutral fraction of lipid when comparing wild and laboratory-reared fish. Taken together, the differences in CI, HSI, proximate and fatty acid composition suggest that feeding commercial diets to L. ferruginea can cause changes in patterns of lipid deposition and metabolism. Cluster analysis of marine plankton, sedimenting particulate matter, wild invertebrates, the commercial diet and fish tissues showed that the fatty acid signatures of both wild and laboratory-reared yellowtail flounder closely resembled their respective food items. Fatty acid signatures from wild fish were more closely related to plankton and settling particulate matter, suggesting relatively few steps in the food web leading to yellowtail flounder. In addition to the resemblance between fatty acids in the commercial diet and the tissues of laboratory-reared yellowtail flounder, these fish had similar fatty acid signatures to those of wild invertebrates.Communicated by J.P. Grassle, New Brunswick  相似文献   

16.
Replicate mass-balanced solutions to Ecopath models describing carbon-based trophic structures and flows were developed for the Lake Ontario offshore food web before and after invasion-induced disruption. The food webs link two pathways of energy and matter flow: the grazing chain (phytoplankton-zooplankton-fish) and the microbial loop (bacteria-protozoans) and include 19 species-groups and three detrital groups. Mass-balance was achieved by using constrained optimization techniques to randomly vary initial estimates of biomass and diet composition. After the invasion, production declined for all trophic levels and species-groups except Chinook salmon. The trophic level (TL) increased for smelt, adult sculpin, adult alewife and Chinook salmon. Changes to ecotrophic efficiencies indicate a reduction in phytoplankton grazing, increased predation pressure on Mysis, adult smelt and alewife and decreased predation pressure on protozoans. Specific resource to consumer TTE changed; increasing for protozoans (8.0-11.5%), Mysis (0.6-1.0%), and Chinook salmon (1.0-2.3%) and other salmonines (0.4-0.5%) and decreasing for zooplankton (20.2-15.1%), prey-fish (9.7-8.8%), and benthos (1.7-0.6%). Direct trophic influences of recent invasive species were low. The synchrony of the decline in PP and species-group production indicates strong bottom-up influence. Mass balance required an increase of two to threefold in lower trophic level biomass and production, confirming a previously observed paradoxical deficit in lower trophic level production. Analysis of food web changes suggest hypotheses that may apply to other similar large pelagic systems including, (1) as pelagic primary productivity declines, overgrazing of zooplankton results in an increase in protozoan production and a loss of trophic transfer efficiency, (2) habitat and food web changes increased Mysis predation on Diporeia and contributed to their recent decline, and (3) production of Chinook salmon, the primary piscivore, was uncoupled from pelagic production processes. This study demonstrates the value of food web models to better understand the impact of invasive species and to develop novel hypotheses concerning trophic influences.  相似文献   

17.
Exotic species invasion is widely considered to affect ecosystem structure and function. Yet, few contemporary approaches can assess the effects of exotic species invasion at such an inclusive level. Our research presents one of the first attempts to examine the effects of an exotic species at the ecosystem level in a quantifiable manner. We used ecological network analysis (ENA) and a social network analysis (SNA) method called cohesion analysis to examine the effect of zebra mussel (Dreissena polymorpha) invasion on the Oneida Lake, New York, USA, food web. We used ENA to quantify ecosystem function through an analysis of food web carbon transfer that explicitly incorporated flow over all food web paths (direct and indirect). The cohesion analysis assessed ecosystem structure through an organization of food web members into subgroups of strongly interacting predators and prey. Our analysis detected effects of zebra mussel invasion throughout the entire Oneida Lake food web, including changes in trophic flow efficiency (i.e., carbon flow among trophic levels) and alterations of food web organization (i.e., paths of carbon flow) and ecosystem activity (i.e., total carbon flow). ENA indicated that zebra mussels altered food web function by shunting carbon from pelagic to benthic pathways, increasing dissipative flow loss, and decreasing ecosystem activity. SNA revealed the strength of zebra mussel perturbation as evidenced by a reorganization of food web subgroup structure, with a decrease in importance of pelagic pathways, a concomitant rise of benthic pathways, and a reorganization of interactions between top predator fish. Together, these analyses allowed for a holistic understanding of the effects of zebra mussel invasion on the Oneida Lake food web.  相似文献   

18.
The role of zooplankton in a tropical seagrass ecosystem was investigated in milkfish farms pollution-impacted and -unimpacted seagrass beds in Santiago Island coral reefs, Northwestern Philippines. The aim was to compare between the two sites: (1) abiotic factors and zooplankton community parameters, and (2) the trophic structure using C and N stable isotopes. Low water (98–119?mV) and sediment (–121 to ?138?mV) Oxidation Reduction Potential values indicated a reducing environment in the impacted site. Zooplankton in the impacted site showed the typical community response to eutrophication (low diversity, but high total abundance due to the dominance of the cyclopoid copepod Oithona oculata), generally few elevated δ15N values, but a significant shift towards depleted 13C due to the organic enrichment of fish-farm feeds. Apart from suggesting a highly complex food web with POM and zooplankton as main food sources in the unimpacted site, the Bayesian mixing model simulation generated reduced complexity in feeding interactions between basal sources, zooplankton, and fish including adults of a key fish species, Siganus fuscescens, in the impacted sites. In this study, C and N stable isotope analysis has clarified the importance of zooplankton as fish prey in a seagrass bed food web.  相似文献   

19.
Isotopic niches of emperor and Adélie penguins in Adélie Land,Antarctica   总被引:2,自引:1,他引:1  
Yves Cherel 《Marine Biology》2008,154(5):813-821
The emperor and Adélie penguins are the only two species of penguins that co-occur at high-Antarctic latitudes. We first measured and compared their isotopic niches on the same year in Adélie Land in spring, when the two species co-exist. Emperor and Adélie penguins segregated by their blood isotopic signatures, with adult δ13C values (−24.5 ± 0.2 and −25.4 ± 0.2‰, respectively) suggesting that emperor penguins foraged in more neritic waters than Adélie penguins in spring. At that time, difference in their δ15N values (4.1‰, 12.0 ± 0.4 vs. 7.9 ± 0.1‰) encompassed more than one trophic level, indicating that emperor penguins preyed mainly upon fish (and squids), while Adélie penguins fed exclusively on euphausiids. Second, we compared the food of breeding adults and chicks. The isotopic signatures of adults and chicks of emperor penguins were not statistically different, but δ15N value of Adélie penguin chicks was higher than that of adults (10.2 ± 0.8 vs. 9.0 ± 0.2‰). The difference showed that adult Adélie penguins captured higher trophic level prey, i.e. higher-quality food, for their chicks. Third, the isotopic signatures of Adélie penguins breeding in Adélie Land showed that adults fed on Antarctic krill in oceanic waters in spring and shifted to neritic waters in summer where they preyed upon ice krill for themselves and upon fish and euphausiids for their chicks. A comparison of isotopic niches revealed large overlaps in both blood δ13C and δ15N values within the community of Antarctic seabirds and pinnipeds. The continuum in δ15N values nevertheless encompassed more than one trophic level (5.2‰) from Adélie penguin and crabeater seal to the Weddell seal. Such a broad continuum emphasizes the fact that all Antarctic seabirds and marine mammals feed on varying proportions of a few crustacean (euphausiids) and fish (Antarctic silverfish) species that dominate the intermediate trophic levels of the pelagic neritic and oceanic ecosystems.  相似文献   

20.
Using an autonomous free-fall vehicle (AU-DOS), observations were made of demersal fish attracted to baits and baited acoustic transmitters at two stations in the North Atlantic Ocean. A comparison was made between Station PAP (48°50N; 16°30W), 4800 m deep on the Porcupine Abyssal Plain which is relatively eutrophic, and Station MAP (31°N; 20°W), 4900 m deep on the Madeira Abyssal Plain, which is oligotrophic. Experiments were conducted during summer, in 1989 and 1990. Four species of fish were observed at Station MAP, the grenadier, Coryphaenoides (Nematonurus) armatus, the eel, Synaphobranchus bathybius, and the ophidiids Spectrunculus grandis, and Barathrites sp. At Station PAP, C. (N.) armatus and H. (S.) bathybius were attracted to bait on all deployments and only two other individuals of different species, probably ophidiids, were seen. The mean first grenadier arrival time was 30 and 138 min at Stations PAP and MAP, respectively. Mean first eel arrival time was 29 and 151 min at Stations PAP and MAP, respectively. Estimated population densities of fish were 167 grenadiers km-2 and 180 synaphobranchid eels km-2 at Station PAP and 8 grenadiers km-2 and 7 eels km-2 at Station MAP. Only the grenadier C. (N.) armatus definitely ingested transmitters, and this species dominated fish activity around the baits. Mean time of departure of grenadiers with transmitters in their stomachs across an acoustic horizon at 1000 m range was 371 and 488 min at Stations PAP and MAP, respectively. Grenadiers had a longer mean staying time at the food source at the more oligotrophic Station MAP (364 min) than at Station PAP (141 min). This corresponds with predictions of optimal foraging theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号