首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ecological risk assessments of pharmaceuticals are currently difficult because little-to-no aquatic hazard and exposure information exists in the peer-reviewed literature for most therapeutics. Recently several studies have identified fluoxetine, a widely prescribed antidepressant, in municipal effluents. To evaluate the potential aquatic toxicity of fluoxetine, single species laboratory toxicity tests were performed to assess hazard to aquatic biota. Average LC(50) values for Ceriodaphnia dubia, Daphnia magna, and Pimephales promelas were 0.756 (234 microg/l), 2.65 (820 microg/l), and 2.28 microM (705 microg/l), respectively. Pseudokirchneriella subcapitata growth and C. dubia fecundity were decreased by 0.044 (14 microg/l) and 0.72 microM (223 microg/l) fluoxetine treatments, respectively. Oryias latipes survival was not affected by fluoxteine exposure up to a concentration of 28.9 microM (8.9 mg/l). An LC(50) of 15.2 mg/kg was estimated for Chironomus tentans. Hyalella azteca survival was not affected up to 43 mg/kg fluoxetine sediment exposure. Growth lowest observed effect concentrations for C. tentans and H. azteca were 1.3 and 5.6 mg/kg, respectively. Our findings indicate that lowest measured fluoxetine effect levels are an order of magnitude higher than highest reported municipal effluent concentrations.  相似文献   

2.
R B Naddy  S J Klaine 《Chemosphere》2001,45(4-5):497-506
Due to the episodic nature in which organisms are exposed to non-point source pollutants, it is necessary to understand how they are affected by pulsed concentrations of contaminants. This is essential, as standard toxicity tests may not adequately simulate exposure scenarios for short-lived hydrophobic compounds, such as chlorpyrifos (CPF), a broad-spectrum organophosphate insecticide. Studies were conducted with 7-day old Daphnia magna for 7 days to evaluate the effect of pulse frequency and interval among multiple CPF exposures. Daphnids were exposed to a total exposure of either 12 h at 0.5 microg/l or 6 h at 1.0 microg/l nominal CPF, respectively, in all studies. For interval studies, D. magna were exposed to two pulses of CPF at each concentration, with 0-96-h intervals between pulses. For frequency studies, D. magna were exposed to each CPF concentration altering the pulse scheme by decreasing the exposure duration but increasing the number of pulses, keeping the total exposure time the same. The pulse interval between multiple pulses in these experiments was 24 h. Our results suggest that D. magna can withstand an acutely lethal CPF exposure provided that there is adequate time for recovery between exposures.  相似文献   

3.
We exposed the water flea Daphnia magna (Cladocera, Crustacea) to either juvenile hormone I (JH I), juvenile hormone II (JH II), or the juvenile hormone-mimicking insecticides kinoprene, hydroprene, epofenonane, or fenoxycarb. By 21-day reproduction tests, we investigated the effects on the number of neonates born per female and the offspring sex ratio. All six chemicals induced D. magna to produce male neonates; the male sex ratio of the offspring increased as the chemical concentration increased. EC50 values for production of male neonates were estimated as 400 (JH I), 410 (JH II), 190 (kinoprene), 2.9 (hydroprene), 64 (epofenonane), and 0.92 (fenoxycarb) microg/l. The number of neonates produced was reduced with all chemicals at the concentrations investigated. At the EC50 for male production, five of the six chemicals reduced the reproductive rate to less than 50%; the exception was epofenonane, which caused only a slight reduction in reproductive rate. These results were similar to those obtained for five juvenoids studied previously, one of which was studied here again. There are now 10 chemical substances--all juvenile hormones or their analogs-that are known to induce D. magna to produce male neonates. This suggests that juvenile hormone is involved in initiating male production followed by sexual reproduction in D. magna, and probably in most cladocerans that exhibit cyclic parthenogenesis.  相似文献   

4.
Cartap and cypermethrin, which are among the most widely used pesticides in many countries, are considered safe because of their low mammalian toxicity and their low persistence in the environment. However, recent findings of endocrine-disrupting effects and developmental neurotoxicity have raised concerns about the potential ecological impacts of these pesticides. We evaluated the aquatic toxicity of cartap [S,S'-(2-dimethylaminotrimethylene) bis(thiocarbamate), unspecified hydrochloride] and cypermethrin [(RS)-alpha-cyano-3-phenoxybenzyl-(1RS,3RS,1RS,3SR)-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylate], both individually and combined, on different life stages of the freshwater cladoceran Daphnia magna and a freshwater teleost, Japanese medaka (Oryzias latipes). The 96-hr Daphnia median effective concentrations (EC50s) for cartap and cypermethrin were 91.0 microg/L and 0.00061 microg/L, respectively. Rapid recovery of Daphnia was observed after short-term pulsed exposure to cartap and cypermethrin; there were no adverse effects on reproduction or survival 20 d after a 24 hr exposure to cartap up to 1240 microg/L and cypermethrin up to 1.9 microg/L. Chronic continuous exposure (for 21 d) of 7-d-old Daphnia to cypermethrin significantly reduced the intrinsic population growth rate in a concentration-dependent manner. However, because the intrinsic population growth rates were all above zero, populations did not decrease even at the highest experimental concentration of 200 ng/L. Exposure of Daphnia neonates (< 24 hr old) to cypermethrin for 21 d caused significant, sub-lethal reproduction-related problems, such as increased time to first brood, reduced brood size, and reduced total brood number, at 0.0002, 0.002, and 0.2 ng/L cypermethrin, but the intrinsic population growth rate was not significantly affected. Oryzias latipes was relatively more resistant to both pesticides. In particular, embryos appeared to be more resistant than juveniles or adults, which may be partly due to the protective role of the chorion. The incidence of larval fish deformity was significantly higher after a 96 hr exposure to as low as 250 microg/L of cartap or 40 microg/L of cypermethrin. The mixture of both compounds showed no synergistic toxicity. The extremely high acute-to-chronic ratio suggests that the standard acute lethal toxicity assessment might not reflect the true environmental hazards of these frequently used pesticides. Ecological hazard assessments of long-term low dose or pulsed exposures to cartap and cypermethrin may reveal more realistic consequences of these compounds in surface water.  相似文献   

5.
Wik A  Dave G 《Chemosphere》2006,64(10):1777-1784
Large amounts of tire rubber are deposited along the roads due to tread wear. Several compounds may leach from the rubber and cause toxicity to aquatic organisms. To investigate the toxic effects of tire wear material from different tires, rubber was abraded from the treads of twenty-five tires. Leachates were prepared by allowing the rubber to equilibrate with dilution water at 44 degrees C for 72 h. Then the rubber was filtered from the leachates, and test organisms (Daphnia magna) were added. Forty-eight hour EC50s ranged from 0.5 to >10.0 g l(-1). The toxicity identification evaluation (TIE) indicated that non-polar organic compounds caused most of the toxicity. UV exposure of the filtered tire leachates caused no significant increase in toxicity. However, when tested as unfiltered leachates (the rubber was not filtered from the leachates before addition of D. magna) photo-enhanced toxicity was considerable for some tires, which means that test procedures are important when testing tire leachates for aquatic (photo) toxicity. The acute toxicity of tire wear for Daphnia magna was found to be <40 times a predicted environmental concentration based on reports on the concentration of a tire component found in environmental samples, which emphasizes the need for a more extensive risk assessment of tire wear for the environment.  相似文献   

6.
Many contaminants are chiral compounds with enantiomers that may differ markedly in environmental fate, bioavailability, and toxicity. Enantiospecific environmental fate and ecotoxicological information are lacking for many chiral contaminants. The primary objective of this investigation included an assessment of potential enantiospecific differences in sublethal standardized and behavioral responses of the model organisms Pimephales promelas (teleost) and Daphnia magna (crustacean) to the widely prescribed chiral antidepressant fluoxetine. Endpoints assessed included D. magna immobilization, reproduction, and grazing rate and P. promelas survival, growth, and feeding rate. S-Fluoxetine was found to be more toxic to sublethal standardized and behavioral endpoints in P. promelas, potentially because its primary active metabolite, S-norfluoxetine, is more potent than the same metabolite of R-fluoxetine in mammals. This was not observed for D. magna responses. This differential enantiospecific response between model organisms may have resulted from closer target homology between mammals and fish than between mammals and crustaceans. P. promelas feeding rate, an ecologically relevant and mode-of-action related response, was the most sensitive endpoint tested for R- and S-fluoxetine with 10% effect concentration (EC10) values (+/-SE) of 16.1 (+/-20.2) and 3.7 (+/-4.6) microg l(-1), respectively. Up to a 9.4-fold difference in toxicity between enantiomers was observed; P. promelas growth EC10s (+/-SE) for R- and S-fluoxetine were 132.9 (+/-21.2) and 14.1 (+/-8.1) microg l(-1), respectively. Such differences in sublethal responses to fluoxetine enantiomers suggest that enantiospecific toxicity and mode-of-action related responses that are ecologically relevant (e.g., feeding rate) should be considered in future ecological hazard and risk assessments for chiral contaminants.  相似文献   

7.
Threshold concentrations for treatment related effects of 31 insecticides, as derived from aquatic micro-/mesocosm tests, were used to calibrate the predictive value of the European Tier-1 acute effect assessment on basis of laboratory toxicity tests with Daphnia magna, Chironomus spp., Americamysis bahia and Gammarus pulex. The acute Tier-1 effect assessment on basis of Daphnia (EC(50)/100) overall was protective for organophosphates, carbamates and most pyrethroids but not for neonicotinoids and the majority of insect growth regulators (IGRs) in the database. By including the 28-day water-spiked Chironomus riparius test, the effect assessment improves but selecting the lowest value on basis of the 48-h Daphnia test (EC50/100) and the 28-day Chironomus test (NOEC/10) is not fully protective for 4 out of 23 insecticide cases. An assessment on basis of G. pulex (EC(50)/100) is sufficiently protective for 15 out of 19 insecticide cases. The Tier-1 procedure on basis of acute toxicity data (EC(50)/100) for the combination of Daphnia and A. bahia and/or Chironomus (new EU dossier requirements currently under discussion) overall is protective to pulsed insecticide exposures in micro-/mesocosms. For IGRs that affect moulting, the effect assessment on basis of the 48-h Chironomus test (EC(50)/100) may not always be protective enough to replace that of the water-spiked 28-day C. riparius test (NOEC/10) because of latency of effects.  相似文献   

8.
Hoang TC  Klaine SJ 《Chemosphere》2008,71(3):429-438
The acute toxicity of selenium (Se) to aquatic biota has been studied extensively for decades. However, most studies have used a constant concentration aqueous exposure of Se to an invertebrate species. Since constant concentration exposure of toxicants to invertebrates is unusual in the environment, episodic exposure or pulsed exposures may represent true risk to aquatic biota more accurately. This research was designed to characterize the toxicity effects of pulsed Se exposure to Daphnia magna. Selenium exposure was varied during a 21-d chronic toxicity test to examine the effects of exposure concentration, duration, and recovery on survival, growth, and reproduction of D. magna. While D. magna did not die during exposures, latent mortality was observed. Latent mortality increased with exposure concentration and duration. Hence, standard toxicity test using continuous exposures would underestimate Se toxicity. Risk assessment method using results of continuous exposure would underestimate risk of Se to biota. For double-pulse exposures, cumulative mortality on day 21 was higher when time interval between pulses was shorter. With the same total exposure time, continuous exposure caused higher toxicity than did pulsed exposures due to recovery and tolerance development in D. magna after earlier pulses. Growth and reproduction of surviving D. magna were not affected by pulsed Se exposure due to recovery of D. magna after removal of the pulses. Based on these results, risk assessment for Se should take latent effects and the effect of recovery in to account.  相似文献   

9.
Acute and chronic toxicity of veterinary antibiotics to Daphnia magna   总被引:49,自引:0,他引:49  
The acute and chronic toxicity of nine antibiotics used both therapeutically and as growth promoters in intensive farming was investigated on the freshwater crustacean Daphnia magna. The effect of the antibiotics metronidazole (M), olaquindox (OL), oxolinic acid (OA), oxytetracycline (OTC), streptomycin (ST), sulfadiazine (SU), tetracycline (TC), tiamulin (TI) and tylosin (TY) was tested in accordance to the ISO (1989) and OECD (1996) standard procedures. The acute toxicities (48-h EC50 value, mg/l) in decreasing order were OA (4.6), TI (40), SU (221), ST (487), TY (680) and OTC (approximately 1000). NOECs were 340 mg/l for TC and 1000 mg/l for M and OL. Toxic effect on reproduction occurred generally at concentrations, which were one order of magnitude below the acute toxic levels. The chronic toxicity (EC50 values, mg/l) in the D. magna reproduction test in decreasing order were TI (5.4), SU (13.7), TC (44.8) and OTC (46.2). The NOECs (mg/l) obtained in the reproduction test with OA, ST, TY and M were 0.38 for OA, 32 for ST, 45 for TY and 250 for M. The observed toxicity of OA to D. magna indicates that this substance, which is a commonly used feed additive in fish farms, has a potential to cause adverse effects on the aquatic environment.  相似文献   

10.
Freshwater quality criteria for 2,4-dichlorophenol (2,4-DCP) were developed with particular reference to the aquatic biota in China, and based on USEPA's guidelines. Acute toxicity tests were performed on nine different domestic species indigenous to China to determine 48-h LC50 and 96-h LC50 values for 2,4-DCP. In addition, 21 day survival-reproduction tests with Daphnia magna, 30-day embryo-larval tests with Carassius auratus, 60 day fry-juvenile test with Ctenopharyngodon idellus, 30 d early life stage tests with Bufo bufo gargarizans and 96 h growth inhibition tests with Scenedesms obliqaus were conducted, to estimate lower chronic limit (LCL) and upper chronic limit (UCL) values. The final acute value (FAV) was 2.49 mg/l 2,4-DCP. Acute-to-chronic ratios (ACR) ranged from 3.74 to 22.5. The final chronic value (FCV) and the final plant value (FPV) of 2.4-DCP were 0.212 mg/l and 7.07 mg/l respectively. Based on FAV, FCV, and FPV, a criteria maximum concentration (CMC) of 1.25 mg/l and a criterion continuous concentration (CCC) of 0.212 mg/l were derived. The results of this study provide useful data for deriving national or local water quality criteria for 2,4-DCP based on aquatic biota in China.  相似文献   

11.
We studied the susceptibility of three genetically different strains of the cyclical parthenogen Daphnia magna (Cladocera, Crustacea) in producing male neonates following exposure to juvenile hormone analogs. In experiment 1, NIES, Clone A, and Belgium A strains were exposed to the insect growth regulators (IGRs) fenoxycarb or epofenonane in a 21-day reproduction experiment. Fenoxycarb exposure decreased the total number of neonates and increased production of male neonates in a concentration-dependent manner in the NIES strain. The decrease in the total number of neonates was so great in Clone A following fenoxycarb exposure that male neonates were not observed, even at the highest concentration, where the total number of neonates was only 2% of the control. In the Belgium A strain, male neonates were observed at a rate of about 20% following exposure to the highest fenoxycarb concentration, but the total number observed was small. Epofenonane did not decrease reproduction in the NIES and Belgium A strains as dramatically as did fenoxycarb, but the neonatal sex ratio changed in a concentration-dependent manner. Although the ratio of males was as low as about 10%, induction of male neonates was also observed in Clone A following epofenonane exposure. In experiment 2, gravid females were exposed to high concentrations (5 or 10 microg/l) of fenoxycarb or pyriproxyfen for 12h. These treatments induced the production of male neonates in all strains, with a small decrease in the total number of neonates. Although induction of male neonates by juvenile hormones and their analogs was universal among genetically different strains, care is needed in interpreting the results of the 21-day reproduction tests, because decreased numbers of neonates at higher concentrations could obscure the presence of male neonates.  相似文献   

12.
In the present study, the existing life stage-specific cDNA library was extended with energy- and molting-related genes using Suppression Subtractive Hybridization PCR and a microarray for the aquatic test organism Daphnia magna was created. A gene set of 2455 fragments was produced belonging to different pathways such as carbohydrate and lipid metabolism, O2 transport and heme metabolism, immune response, embryo development, cuticula metabolism and visual perception pathways. Using this custom microarray, gene expression profiles were generated from neonates exposed to three concentrations of the anti-ecdysteroidal fungicide fenarimol (0.5, 0.75, 1 microg/ml) during 48 h and 96 h. In total, 59 non-redundant genes were differentially expressed, of which more genes were down- than up-regulated. The gene expression data indicated a main effect on molting specific pathways. At the highest concentration, a set of proteolytic enzymes - including different serine proteases and carboxypeptidases - were induced whereas different cuticula proteins were down-regulated (48 h). Moreover, effects on embryo development were demonstrated at the gene expression as well as at the organismal level. The embryo development related gene vitellogenin was differentially expressed after 96 h of exposure together with a significant increase in embryo abnormalities in the offspring. This study suggests that this Daphnia magna microarray is of great further value for the elucidation of molecular mechanisms of toxicity and for the future development of specific biomarkers for hazard characterization.  相似文献   

13.
Acute zinc toxicity was assessed for 10 freshwater cladoceran species collected in six different ecosystems across Europe and for two standard laboratory-reared species (Daphnia magna and Ceriodaphnia dubia). The collected organisms belonged to five different genera: Daphnia (subgenus Daphnia and Ctenodaphnia), Ceriodaphnia, Simocephalus, Acroperus and Chydorus. The 48-h EC50 of the field-collected organisms tested in standard laboratory water ranged from 375+/-141 to 4314+/-1513 microg Znl(-1). The laboratory clone of D. magna was less sensitive than the majority of the field-collected species, while our laboratory Ceriodaphnia dubia was the second most sensitive. Considerable inter-species variation was found within the genus of Ceriodaphnia (factor 6) and within the genus Daphnia (factor 8). Among the different (sub)genera tested, Chydorus and Ctenodaphnia were significantly more tolerant than the others (up to a factor 3 difference). A significant positive relationship (r2=0.67, p<0.05) between the mean cladoceran 48-h EC50 and the ambient zinc concentration of the different aquatic systems was demonstrated, suggesting a role of acclimation and/or adaptation. No significant correlation between the acute zinc tolerance and the length of the organisms was found.  相似文献   

14.
The acute and chronic toxicity of lanthanum to Daphnia carinata   总被引:2,自引:0,他引:2  
Barry MJ  Meehan BJ 《Chemosphere》2000,41(10):1669-1674
The rare earth elements (REEs) are increasingly being used as trace supplements in agriculture. This study measured the acute and chronic toxicity of one REE, lanthanum (La), to Daphnia carinata. The 48-h EC50 of La to Daphnia was measured in three media of differing composition and hardness. Lanthanum was most toxic to Daphnia in soft tap water (TW) with an acute 48-h EC50 of 43 microg/l compared with 1180 microg/l in ASTM hard water (ASTM). In the third daphnid growth medium (DW), based on diluted sea water, the acute 48-h EC50 was 49 microg La/l, however, there was significant precipitation of La in this media. The chronic toxicity of La to Daphnia was measured in the DW and ASTM media. Nominal exposure concentrations were 100, 200, 400, 600, 800, and 1000 microg La/l. Mortality was a more sensitive endpoint than growth or reproduction in both chronic experiments. Very little La was detected in either media after 24 h and the measured concentrations below were estimated by logarithmic mean of nominal and measured values. There was 100% mortality at concentrations > or = 80 microg La/l (400 microg/l nominal) by day six of the experiment using DW media, but no effect on survival growth or reproduction at lower concentrations. In the ASTM media, La caused significant mortality to Daphnia at concentrations > or = 39 microg/l (200 microg/l nominal), however, at least one animal survived to the end of the study at each of the tested concentrations. There was no effect of La on growth of surviving daphnids at concentrations < or = 57 microg/l (400 g/l), however, second brood clutch sizes were significantly increased at 30, 39, and 57 microg/l (100, 200, 400 g/l nominal) compared with controls. Lanthanum also caused a delayed maturation in Daphnia.  相似文献   

15.
Light exposure of aqueous suspensions of prednisolone and dexamethasone causes their partial phototransformation. The photoproducts, isolated by chromatographic techniques, have been identified by spectroscopic means. Prednisolone, dexamethasone and their photoproducts have been tested to evaluate their acute and chronic toxic effects on some freshwater chain organisms. The rotifer Brachionus calyciflorus and the crustaceans Thamnocephalus platyurus and Daphnia magna were chosen to perform acute toxicity tests, while the alga Pseudokircheneriella subcapitata (formerly known as Selenastrum capricornutum) and the crustacean Ceriodaphnia dubia to perform chronic tests. The photochemical derivatives are more toxic than the parent compounds. Generally low acute toxicity was found. Chronic exposure to this class of pharmaceuticals caused inhibition of growth population on the freshwater crustacean C. dubia while the alga P. subcapitata seems to be less affected by the presence of these drugs.  相似文献   

16.
Zhang DQ  Gersberg RM  Hua T  Zhu J  Tuan NA  Tan SK 《Chemosphere》2012,87(3):273-277
Determining the fate of emerging organic contaminants in an aquatic ecosystem is important for developing constructed wetlands (CWs) treatment technology. Experiments were carried out in subsurface flow CWs in Singapore to evaluate the fate and transport of eight pharmaceutical compounds. The CW system included three parallel horizontal subsurface flow CWs and three parallel unplanted beds fed continuously with synthetic wastewater at different hydraulic retention times (HRTs). The findings of the tests at 2-6 d HRTs showed that the pharmaceuticals could be categorized as (i) efficiently removed compounds with removal higher than 85% (ketoprofen and salicylic acid); (ii) moderately removed compounds with removal efficiencies between 50% and 85% (naproxen, ibuprofen and caffeine); and (iii) poorly removed compounds with efficiency rate lower than 50% (carbamazepine, diclofenac, and clofibric acid). Except for carbamazepine and salicylic acid, removal efficiencies of the selected pharmaceuticals showed significant (p<0.05) enhancement in planted beds as compared to the unplanted beds. Removal of caffeine, ketoprofen and clofibric acid were found to follow first order decay kinetics with decay constants higher in the planted beds than the unplanted beds. Correlations between pharmaceutical removal efficiencies and log K(ow) were not significant (p>0.05), implying that their removal is not well related to the compound's hydrophobicity.  相似文献   

17.
Fate and mobility of pharmaceuticals in solid matrices   总被引:2,自引:0,他引:2  
The sorption and mobility of six pharmaceuticals were investigated in two soil types with different organic carbon and clay content, and in bacterial biomass (aerobic and anaerobic). The pharmaceuticals examined were carbamazepine, propranolol, diclofenac sodium, clofibric acid, sulfamethoxazole and ofloxacin. The sorption experiments were performed according to the OECD test Guideline 106. The distribution coefficients determined by this batch equilibrium method varied with the pharmaceutical tested and the solid matrix type. Ofloxacin was particularly strongly adsorbed (except of the case of using anaerobic biomass for the solid matrix) while clofibric acid was found to be weakly adsorbed. The fate of pharmaceuticals in soil was also assessed using lysimeters. Important parameters that were studied were: the pharmaceutical loading rate and the hydraulic loading rate for adsorption and the rate and duration of a "rain" event for desorption. Major differences in the mobility of the six pharmaceuticals were observed and correlated with the adsorption/desorption properties of the compounds.  相似文献   

18.
BACKGROUND, AIM AND SCOPE: Pollution-induced endocrine disruption in vertebrates and invertebrates is a worldwide environmental problem, but relatively little is known about effects of endocrine disrupting compounds (EDCs) in planktonic crustaceans (including Daphnia magna). Aims of the present study were to investigate acute 48 h toxicity and sub-chronic (4-6 days) and chronic (21 days) effects of selected EDCs in D. magna. We have investigated both traditional endpoints as well as other parameters such as sex determination, maturation, molting or embryogenesis in order to evaluate the sensitivity and possible use of these endpoints in ecological risk assessment. MATERIALS AND METHODS: We have studied effects of four model EDCs (vinclozolin, flutamide, ketoconazole and dicofol) on D. magna using (i) an acute 48 h immobilization assay, (ii) a sub-chronic, 4-6 day assay evaluating development and the sex ratio of neonates, and (iii) a chronic, 21 day assay studying number of neonates, sex of neonates, molting frequency, day of maturation and the growth of maternal organisms. RESULTS: Acute EC50 values in the 48 h immobilization test were as follows (mg/L): dicofol 0.2, ketoconazole 1.5, flutamide 2.7, vinclozolin >3. Short-term, 4-6 day assays with sublethal concentrations showed that the sex ratio in Daphnia was modulated by vinclozolin (decreased number of neonate males at 1 mg/L) and dicofol (increase in males at 0.1 mg/L). Flutamide (up to 1 mg/L) had no effect on the sex of neonates, but inhibited embryonic development at certain stages during chronic assay, resulting in abortions. Ketoconazole had no significant effects on the studied processes up to 1 mg/L. DISCUSSION: Sex ratio modulations by some chemicals (vinclozolin and dicofol) corresponded to the known action of these compounds in vertebrates (i.e. anti-androgenicity and anti-oestrogenicity, respectively). Our study revealed that some chemicals known to affect steroid-regulated processes in vertebrates can also affect sublethal endpoints (e.g. embryonic sex determination and/or reproduction) in invertebrates such as D. magna. CONCLUSIONS: A series of model vertebrate endocrine disrupters affected various sub-chronic and chronic parameters in D. magna including several endpoints that have not been previously studied in detail (such as sex determination in neonates, embryogenesis, molting and maturation). Evaluations of traditional reproduction parameters (obtained from the 21 day chronic assay). as well as the results from a rapid, 4-6 day, sub-chronic assay provide complementary information on non-lethal effects of suspected organic endocrine disrupters. RECOMMENDATIONS AND PERSPECTIVES: It seems that there are analogies between vertebrates and invertebrates in toxicity mechanisms and in vivo effects of endocrine disruptors. However, general physiological status of organisms may also indirectly affect endpoints that are traditionally considered 'hormone regulated' (especially at higher effective concentrations as observed in this study) and these factors should be carefully considered. Further research of D. magna physiology and comparative studies with various EDCs will help to understand mechanisms of action as well as ecological risks of EDCs in the environment.  相似文献   

19.
This study analyzed the toxicity of three pesticides (the herbicide atrazine, the insecticide chlorpyrifos and the fungicide chlorothalonil) individually, and in two mixtures (atrazine and chlorpyrifos; atrazine and chlorothalonil) to the marine phytoplankton species Dunaliella tertiolecta (Chlorophyta). A standard 96 h static algal bioassay was used to determine pesticide effects on the population growth rate of D. tertiolecta. Mixture toxicity was assessed using the additive index approach. Atrazine and chlorothalonil concentrations > or = 25 microg/L and 33.3 microg/L, respectively, caused significant decreases in D. tertiolecta population growth rate. At much higher concentrations (> or = 400 microg/L) chlorpyrifos also elicited a significant effect on D. tertiolecta population growth rate, but toxicity would not be expected at typical environmental concentrations. The population growth rate EC50 values determined for D. tertiolecta were 64 microg/L for chlorothalonil, 69 microg/L for atrazine, and 769 microg/L for chlorpyrifos. Atrazine and chlorpyrifos in mixture displayed additive toxicity, whereas atrazine and chlorothalonil in mixture had a synergistic effect. The toxicity of atrazine and chlorothalonil combined was approximately 2 times greater than that of the individual chemicals. Therefore, decreases in phytoplankton populations resulting from pesticide exposure could occur at lower than expected concentrations in aquatic systems where atrazine and chlorothalonil are present in mixture. Detrimental effects on phytoplankton population growth rate could impact nutrient cycling rates and food availability to higher trophic levels. Characterizing the toxicity of chemical mixtures likely to be encountered in the environment may benefit the pesticide registration and regulation process.  相似文献   

20.
An environmental risk assessment is presented for the 25 most used pharmaceuticals in the primary health sector in Denmark. Predicted environmental concentrations (PECs) for the aquatic environment were calculated using conservative assumptions and all PECs exceeded 1 ng/l. Measured concentrations were in general within a factor of 2-5 of PECs and ranged from approximately 0.5 ng/l to 3 micrograms/l for nine of the pharmaceuticals reported in literature. The calculation of predicted no-effect concentration (PNEC) based on aquatic ecotoxicity data was possible for six of the pharmaceuticals. PEC/PNEC ratio exceeded one for ibuprofen, acetylsalicylic acid, and paracetamol. For estrogens the PEC/PNEC ratio approached one when non-standard test was used. The ratio was below one for estrogens (standard test), diazepam and digoxin. For the terrestrial compartment, toxicity data were not available, and no assessment was carried out. Comparisons of predicted concentrations of furosemide, ibuprofen, oxytetracycline and ciprofloxacin in sludge based on either preliminary experimental sludge-water partition coefficients (Kd), octanol-water coefficients (Kow) or acid-base constants (pKa) revealed large variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号