共查询到18条相似文献,搜索用时 58 毫秒
1.
石墨炉原子吸收法测定食用菌中镉和铅 总被引:3,自引:3,他引:3
陆梅 《环境监测管理与技术》2005,17(5):29-30
采用塞曼效应背景校正、最大功率升温和峰面积积分,以钯和抗坏血酸为基体改进剂,用恒温平台石墨炉原子吸收法测定食用菌中镉和铅,检出限镉为5.0×10-13g,铅为4.0×10-12g,相对标准偏差在2.8%~7.1%之间,加标回收率镉为92.0%~104%,铅为89.3%~95.0%。 相似文献
2.
微波消解-石墨炉原子吸收法测定蔬菜中痕量铅和镉 总被引:5,自引:0,他引:5
采用微波消解-石墨炉原子吸收法测定蔬菜中痕量铅和镉,优化了微波消解程序和石墨炉工作条件,讨论了基体改进剂和微波消解用酸的选择.该方法测定蔬菜中铅和镉的检出限为0.002 mg/kg和0.001 mg/kg,RSD为0.1%~4.3%,加标回收率为98.0%~104%. 相似文献
3.
微波消解-石墨炉原子吸收法测定土壤中钒 总被引:4,自引:0,他引:4
建立了微波消解-石墨炉原子吸收测定土壤中钒的方法,优化了微波消解程序。方法在0μg/L~100μg/L范围内线性良好,以称样0.5000g、定容体积50mL计,方法检出限为0.2μg/g,环境土壤标准样品测定的RSD为2.5%,加标回收率为92.0%-104%。 相似文献
4.
石墨炉原子吸收法测定铅,镉的干扰及消除 总被引:5,自引:0,他引:5
路学军 《环境监测管理与技术》1997,9(3):45-46
进行了以添加铵盐来消除石墨炉原子吸收测定铅,镉时共存金属的干扰。进样量为10μL时,直接将200g/L磷酸铵溶液20μL加入石墨管内,能消除相当于1000倍的共存金属对铅的干扰。加入100g/L硫酸铵溶液20μL,能消除相当于1000倍的共存金属对镉的干扰。 相似文献
5.
通过研究土壤消解体系、混合基体改进剂的使用、石墨管类型的选择和标准加入定量过程对测定结果的影响,建立了适用于土壤中重金属铊的微波消解-平台石墨炉原子吸收方法。结果表明,使用HNO_3-HF-H_2O_2消解体系对土壤进行微波消解,石墨炉原子吸收测定过程采用Pd(NO_3)_2/Mg(NO_3)_2混合基体改进剂和平台石墨管,土壤中铊的检出限可达0.05 mg/kg,线性相关系数为0.996,加标回收率在95.0%~105.0%。使用该方法测得的结果与ICP-MS法比较,无统计学差异。改进后的方法具有简单快捷、灵敏度高、重现性好、线性范围广、结果准确等优势,易于推广使用。 相似文献
6.
顾咏红 《环境监测管理与技术》2005,17(5):31-32
对浓缩火焰原子吸收法和石墨炉原子吸收法测定地表水中痕量铜和镉的结果作了比较。试验结果表明,两种方法测定结果间无明显差异,加标回收率为88.7%~103%,可互相替代,等效使用。 相似文献
7.
以氯化钯为基体改进剂,采用微波消解石墨炉原子吸收法测定土壤和沉积物中的铍,优化了微波消解条件,考察了共存元素对测定的干扰。方法在0μg/L~4.00μg/L范围内线性良好,检出限为0.01μg/g(以取样质量0.2000g、定容体积50mL计),标准样品平行测定的RSD为3.5%~6.7%,实际样品的加标回收率为84.0%-113%。 相似文献
8.
用微波消解-原子吸收光度法测定土壤中铜,锌,铅,镉,镍和铬。通过硝酸-氢氟酸-过氧化氢体系消解液对土壤样品消解,选择出微波最佳消解条件。对硝酸-盐酸-过氧化氢体系消解液和硝酸-氢氟酸-过氧化氢体系消解液进行消解对比试验,发现前者不能将土壤样品完全消解,后者能将样品消解完全,但需将消解液中剩余的酸赶尽,否则测定结果将明显偏低。微波消解土壤与传统电热消解相比,操作简便快速,可提高工作效率。 相似文献
9.
10.
11.
12.
采用全自动石墨消解-原子荧光光度法对土壤总汞进行测定,确定最佳消解时间为1 h,消解液最佳用量为8.0 m L。方法在总汞质量浓度为0.2~2.0μg/L范围内具有良好的线性,相关系数为0.999 9,当取样量为0.500 0 g时,检出限为0.002 mg/kg;测定不同标准土壤样品总汞的结果均在保证值范围内,精密度为4.0%~7.0%,加标回收率为95.0%~108.5%;对甘肃省实际土壤及沉积物样品测定进一步验证了方法的适用性。该法适合大批量样品分析,对于提高工作效率有重要意义。 相似文献
13.
采用超细玻璃纤维滤膜采集环境空气中钴,硝酸-过氧化氢-氢氟酸混合进行消解,采用硝酸镁和硝酸混合液作为基体改进剂,石墨炉原子吸收光谱法测定环境空气中钴。此方法对测定环境空气中钴的灵敏度、准确度都有很大的提高,方法的最低检出浓度为0.25μg/L,当采样体积为100 L,钴最低检出质量浓度为0.000 1 mg/m3。对实际样品进行分析,钴的加标回收率为91.0%~106.5%。 相似文献
14.
通过湿法消解土壤样品,利用石墨炉原子吸收分光光度法(GAAS)和火焰原子吸收分光光度法(FAAS)测定不同土壤样品中铅的含量,以验证2种方法的有效性并加以对比。实验结果表明:2种方法均满足土壤中铅含量的测定要求,测定的标准土样含量均在标准值的不确定度范围内,GAAS方法测定结果更接近保证值。二者的相对标准偏差(RSD)值均低于1.5%,FAAS方法的精密度更高,且具有快速简单等优势。 相似文献
15.
石墨炉原子吸收光谱法测定海河下游水中痕量镉 总被引:2,自引:0,他引:2
原子吸收光谱法直接测定高盐水中痕量镉时,有很大背景吸收和误差。本文采用络合—萃取技术使共存元素与待测元素分离,既消除了基体干扰,又达到了富集作用,使测定结果准确可靠。 相似文献
16.
采用固体进样原子吸收法直接测定土壤中的镉,可以避免传统酸消解预处理过程耗时长、试剂消耗大、操作步骤繁琐等缺点,提升镉的检测效率。通过优化测镉仪的仪器参数,确定了固体进样-电热蒸发-原子吸收法的优化仪器条件。采用优化条件测定了不同浓度的土壤样品,研究了该方法的检出限、正确度、精密度。研究结果表明:镉质量范围为0~200 ng时与峰面积的线性相关系数优于0.999 5,空气流下优化的灰化温度和热解温度均为800 ℃,优化的热解气体氢气流量为300 mL/min,当样品进样量为0.1 g时,检出限为0.009 mg/kg,7次连续测定相对标准偏差为1.4%~5.0%,加标回收率为96.2%~102.1%,分析时间小于4 min。该方法操作简便,用时短,无需高压气源,可以用于土壤中镉的高效检测。 相似文献
17.
石墨炉原子吸收法测定水中铊的方法改进 总被引:1,自引:0,他引:1
采用石墨炉原子吸收法测定水中铊,对样品前处理的多个细节进行改进,使前处理过程耗时缩短,回收率提高。试验表明,方法在0μg/L ~50.0μg/L范围内线性良好,相关系数r为0.9995;检出限为2.0μg/L,取样量为500 mL,富集50倍时,方法检出限为0.04μg/L;实际水样测定结果的 RSD 为4.9%~8.4%;实际样品的加标回收率为94.0%~102%。 相似文献