首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ammonia stomatal compensation point of plants is determined by leaf temperature, ammonium concentration ([NH4+]apo) and pH of the apoplastic solution. The later two depend on the adjacent cells metabolism and on leaf inputs and outputs through the xylem and phloem. Until now only empirical models have been designed to model the ammonia stomatal compensation point, except the model of Riedo et al. (2002. Coupling soil-plant-atmosphere exchange of ammonia with ecosystem functioning in grasslands. Ecological Modelling 158, 83-110), which represents the exchanges between the plant's nitrogen pools. The first step to model the ammonia stomatal compensation point is to adequately model [NH4+]apo. This [NH4+]apo has been studied experimentally, but there are currently no process-based quantitative models describing its relation to plant metabolism and environmental conditions. This study summarizes the processes involved in determining the ammonia stomatal compensation point at the leaf scale and qualitatively evaluates the ability of existing whole plant N and C models to include a model for [NH4+]apo.  相似文献   

2.
Stomatal O3 fluxes to a mixed beech/spruce stand (Fagus sylvatica/Picea abies) in Central Europe were determined using two different approaches. The sap flow technique yielded the tree-level transpiration, whereas the eddy covariance method provided the stand-level evapotranspiration. Both data were then converted into stomatal ozone fluxes, exemplifying this novel concept for July 2007. Sap flow-based stomatal O3 flux was 33% of the total O3 flux, whereas derivation from evapotranspiration rates in combination with the Penman-Monteith algorithm amounted to 47%. In addition to this proportional difference, the sap flow-based assessment yielded lower levels of stomatal O3 flux and reflected stomatal regulation rather than O3 exposure, paralleling the daily courses of canopy conductance for water vapor and eddy covariance-based total stand-level O3 flux. The demonstrated combination of sap flow and eddy covariance approaches supports the development of O3 risk assessment in forests from O3 exposure towards flux-based concepts.  相似文献   

3.
An Open-Top Chambers experiment on Fagus sylvatica and Quercus robur seedlings was conducted in order to compare the performance of an exposure-based (AOT40) and a flux-based approaches in predicting the appearance of ozone visible injuries on leaves. Three different ozone treatments (charcoal-filtered; non-filtered; and open plots) and two soil moisture treatments (watered and non-watered plots) were performed. A Jarvisian stomatal conductance model was drawn up and parameterised for both species and typical South Alpine environmental conditions, thus allowing the calculation of ozone stomatal fluxes for every treatment. A critical ozone flux level for the onset of leaf visible injury in beech was clearly identified between 32.6 and 33.6 mmolO3 m(-2). In contrast, it was not possible to identify an exposure critical level using the AOT40 index. Water stress delayed the onset of the leaf visible injuries, but the flux-based approach was able to take it into account accurately.  相似文献   

4.
Ozone and energy fluxes have been measured using the eddy covariance technique, from June to December 2004 in Castelporziano near Rome (Italy), and compared to similar measurements made in the previous year. The studied ecosystem consisted in a typical Mediterranean Holm oak forest. Stomatal fluxes have been calculated using the resistance analogy and by inverting the Penmann-Monteith equation. Results showed that the average stomatal contribution accounts for 42.6% of the total fluxes. Non-stomatal deposition proved to be enhanced by increasing leaf wetness and air humidity during the autumnal months. From a comparison of the two years, it can be inferred that water supply is the most important limiting factor for ozone uptake and that prolonged droughts alter significantly the stomatal conductance, even 2 months after the soil water content is replenished. Ozone exposure, expressed as AOT40, behaves similarly to the cumulated stomatal flux in dry conditions whereas a different behaviour for the two indices appears in wet autumnal conditions. A difference also occurs between the two years.  相似文献   

5.
Fluxes of NO, NO2 and O3 were determined over a drained marshland pasture in south-east England by using flux-gradient techniques. Nitric oxide was found to be emitted at rates of up to 40 ng m(-2) s(-1), the rate of emission being related to the magnitude of the eddy diffusivity. Nitrogen dioxide deposited at rates of up to 90 ng m(-2) s(-1) under the control of stomatal resistance, a clear diurnal cycle being observed. Minimum canopy resistance was of the order of 80 s m(-1). Ozone deposition was also controlled by stomatal resistance, the minimum canopy resistance being around 100 s m(-1) and fluxes reaching a maximum of 220 ng m(-2) s(-1). Corrections made to NO and NO2 fluxes to compensate for chemical reactions showed flux divergences of the order of 30% for NO and NO2, but these were not statistically significantly different from the measured fluxes. The pasture was found to be a net sink for nitrogen in the form of NOx.  相似文献   

6.
Modelling stomatal ozone flux across Europe   总被引:4,自引:0,他引:4  
A model has been developed to estimate stomatal ozone flux across Europe for a number of important species. An initial application of this model is illustrated for two species, wheat and beech. The model calculates ozone flux using European Monitoring and Evaluation Programme (EMEP) model ozone concentrations in combination with estimates of the atmospheric, boundary layer and stomatal resistances to ozone transfer. The model simulates the effect of phenology, irradiance, temperature, vapour pressure deficit and soil moisture deficit on stomatal conductance. These species-specific microclimatic parameters are derived from meteorological data provided by the Norwegian Meteorological Institute (DNMI), together with detailed land-use and soil type maps assembled at the Stockholm Environment Institute (SEI). Modelled fluxes are presented as mean monthly flux maps and compared with maps describing equivalent values of AOT40 (accumulated exposure over threshold of 40 ppb or nl l(-1)), highlighting the spatial differences between these two indices. In many cases high ozone fluxes were modelled in association with only moderate AOT40 values. The factors most important in limiting ozone uptake under the model assumptions were vapour pressure deficit (VPD), soil moisture deficit (for Mediterranean regions in particular) and phenology. The limiting effect of VPD on ozone uptake was especially apparent, since high VPDs resulting in stomatal closure tended to co-occur with high ozone concentrations. Although further work is needed to link the ozone uptake and deposition model components, and to validate the model with field measurements, the present results give a clear indication of the possible implications of adopting a flux-based approach for future policy evaluation.  相似文献   

7.
It has been proposed that stomatal flux of ozone would provide a more reliable basis than ozone exposure indices for the assessment of the risk of ozone damage to vegetation across Europe. However, implementation of this approach requires the development of appropriate models which need to be rigorously tested against actual data collected under field conditions. This paper describes such an assessment of the stomatal component of the model described by Emberson et al. (2000. Modelling stomatal ozone flux across Europe. Environmental Pollution 110). Model predictions are compared with field measurements of both stomatal conductance (g(s)) and calculated ozone flux for shoots of mature Norway spruce (Picea abies) growing in the Tyrol Mountains in Austria. The model has been developed to calculate g(s) as a function of leaf phenology and four environmental variables: photosynthetic flux density (PFD), temperature, vapour pressure deficit (VPD) and soil moisture deficit (SMD). The model was run using climate data measured on site, although the SMD component was omitted since the necessary data were not available. The model parameterisation for Norway spruce had previously been collected from the scientific literature and therefore established independently from the measurement study. Overall, strong associations were found between model predictions and measured values of stomatal conductance to ozone (GO(3)) and calculated stomatal ozone flux (FO(3)). Average diurnal profiles of GO(3) and FO(3) showed good agreement between the field data and modelled values except during the morning period of 1990. The diurnal pattern of ozone flux was determined primarily by PFD and VPD, as there was little diurnal variation in ozone concentration. In general, the model predicted instances of high ozone flux satisfactorily, indicating its potential applicability in identifying areas of high ozone risk for this species.  相似文献   

8.
New parameterizations for surface–atmosphere exchange of ammonia are presented for application in atmospheric transport models and compared with parameterizations of the literature. The new parameterizations are based on a combination of the results of three years of ammonia flux measurements over a grassland canopy (dominated by Lolium perenne and Poa trivialis) near Wageningen, the Netherlands and existing parameterizations from literature. First, a model for the surface–atmosphere exchange of ammonia that includes the concentration at the external leaf surface is derived and validated. Second, a parameterization for the stomatal compensation point (expressed as Γs, the ratio of [NH4+]/[H+] in the leaf apoplast) that accounts for the observed seasonal variation is derived from the measurements. The new, temperature-dependent Γs describes the observed seasonal behavior very well. It is noted, however, that senescence of plants and field management practices will also influence the seasonal variation of Γs on a shorter timescale. Finally, a relation that links Γs to the atmospheric pollution level of the location through the ‘long-term’ NH3 concentration in the air is proposed.  相似文献   

9.
The paper summarises the results to determine the fluxes of different N-compounds within the atmosphere and an aquatic and a terrestrial ecosystems, in Hungary. In the exchange processes of N-compounds between atmosphere and various ecosystems the deposition dominates. The net deposition fluxes are -730, -1270 and -1530 mg Nm(-2)yr(-1) for water, grassland, and forest ecosystems, respectively. For water, the main source of nitrogen compounds is the wet deposition. Ammonia gas is close to the equilibrium between the water and the air. For grassland the dry flux of nitric acid and ammonia is also an important term beside the wet deposition. Dry deposition to terrestrial ecosystems is roughly two times higher than wet deposition. A total of 8-10% of the nitrates and NH(x) deposited to terrestrial ecosystems are re-emitted into the air in the form of nitrous oxide (N2O) greenhouse gas.  相似文献   

10.
A passive wind-vane flux sampler is a simple low-cost device used to estimate long-term vertical fluxes of ammonia in the atmospheric surface boundary layer. The passive flux sampler measures the horizontal flux of ammonia. A vertical gradient of the horizontal flux, combined with micro-meteorological measurements of wind speed and temperature, is used to estimated the vertical flux of ammonia using a modified aerodynamic gradient technique. The passive wind-vane flux sampler gradient was calibrated against a gradient measured with fast response (6 min) continuous-flow denuders. The measurements were carried out at a heathland located in an intensive farming area in the centre of the Netherlands. A field campaign took place over 70 day period in the summer of 1996, during which the sampling periods of the passive wind-vane flux sampler varied between 3 and 9 days. The comparison clearly showed that the long-term measurements with the passive wind-vane flux samplers gave accurate average ammonia deposition values for the field campaign as a whole which deviated by only 18% from the reference flux. However, there was no significant correlation between the fluxes from the passive samplers and the reference method for the individual 10 periods which were compared. Possible explanations found for the lacking correlation were (I) a high percentage number of half-hour emission events within each period resulted in a significant large relative deviation between the fluxes, and (II) uncertainties in the reference method might also explain the lacking correlation. The passive wind-vane flux samplers proved to be a stable method for long-term measurements (months to years) due to a close to 100% optimal functioning during the field campaign.  相似文献   

11.
Quantification of pollutant mass fluxes is essential for assessing the impact of contaminated sites on their surrounding environment, particularly on adjacent surface water bodies. In this context, it is essential to quantify but also to be able to monitor the variations with time of Darcy fluxes in relation with changes in hydrogeological conditions and groundwater - surface water interactions. A new tracer technique is proposed that generalizes the single-well point dilution method to the case of finite volumes of tracer fluid and water flush. It is called the Finite Volume Point Dilution Method (FVPDM). It is based on an analytical solution derived from a mathematical model proposed recently to accurately model tracer injection into a well. Using a non-dimensional formulation of the analytical solution, a sensitivity analysis is performed on the concentration evolution in the injection well, according to tracer injection conditions and well-aquifer interactions. Based on this analysis, optimised field techniques and interpretation methods are proposed. The new tracer technique is easier to implement in the field than the classical point dilution method while it further allows monitoring temporal changes of the magnitude of estimated Darcy fluxes, which is not the case for the former technique. The new technique was applied to two experimental sites with contrasting objectives, geological and hydrogeological conditions, and field equipment facilities. In both cases, field tracer concentrations monitored in the injection wells were used to fit the calculated modelled concentrations by adjusting the apparent Darcy flux crossing the well screens. Modelling results are very satisfactory and indicate that the methodology is efficient and accurate, with a wide range of potential applications in different environments and experimental conditions, including the monitoring with time of changes in Darcy fluxes.  相似文献   

12.
Ozone flux-response relationships were derived for lettuce, employing a multiplicative approach to model the manner in which stomatal conductance is influenced by key environmental variables, using a dataset collected during field experimentation in Crete and yield-response relationships derived from parallel open-top chamber experiments. Regional agronomic practices were adopted throughout. Computed versus measured data revealed that the derived model explained 51% (P<0.001) of the observed variation in stomatal conductance. Concentration-based indices were compared with flux-based indices. Analyses revealed a significant relationship between accumulated stomatal ozone flux and yield employing flux threshold cut-offs up to 4 nmol m(-2) s(-1). Regressions employing very low or zero flux thresholds resulted in the strongest yield-flux relationships (explaining approximately 80% (P<0.05) of the variation in the dataset).  相似文献   

13.
To improve our knowledge of atmospheric inputs to forests, experiments were performed in the field to measure the dry deposition of SO2 and HNO3 to oak, elm, and pine leaves. A tree branch was enclosed in a Teflon chamber, through which SO2 or HNO3 flowed. The dry deposition characteristics of SO2 and HNO3 were very different. The SO2 deposition occurred primarily through stomatal openings for the oak and pine leaves, and equal stomatal and cuticular deposition was observed for the elm leaves. The deposited SO2 could not be removed from the branch by extracting in water or by revolatilization. In contrast, over 90% of HNO3 dry deposition occurred to the cuticle. Most of the deposited HNO3 could be extracted from the leaves. Revolatilization of HNO3 was negligible from an active branch, but increased from a dormant or detached branch. A deposition velocity was derived from the ratio of the flux of the gas to the leaves and the gas concentration in the chamber. Deposition velocities ranged from 0.02 to 0.11 cm s(-1) for SO2 and from 0.2 to 1.2 cm s(-1) for HNO3 to individual leaf surfaces.  相似文献   

14.
针对活性污泥法污水处理系统的强耦合和动态变化特性,提出一种用于前置反硝化脱氮工艺的多模型动态矩阵(DMC)解耦控制方法;通过K-均值聚类分析法对外界入水中氨氮浓度进行聚类,获得以聚类中心为入水氨氮浓度的静态模型集合,分别设计线性DMC解耦控制器;再以当前时刻外界进水氨氮浓度和聚类中心为基本元素,构造切换函数,实现多模型切换。将该方法应用于活性污泥1号模型(ASM1)中,获得了较好的动态仿真效果。  相似文献   

15.
Applications of a parameterised Jarvis-type multiplicative stomatal conductance model with data collated from open-top chamber experiments on field grown wheat and potato were used to derive relationships between relative yield and stomatal ozone uptake. The relationships were based on thirteen experiments from four European countries for wheat and seven experiments from four European countries for potato. The parameterisation of the conductance model was based both on an extensive literature review and primary data. Application of the stomatal conductance models to the open-top chamber experiments resulted in improved linear regressions between relative yield and ozone uptake compared to earlier stomatal conductance models, both for wheat (r2=0.83) and potato (r2=0.76). The improvement was largest for potato. The relationships with the highest correlation were obtained using a stomatal ozone flux threshold. For both wheat and potato the best performing exposure index was AFst6 (accumulated stomatal flux of ozone above a flux rate threshold of 6 nmol ozone m−2 projected sunlit leaf area, based on hourly values of ozone flux). The results demonstrate that flux-based models are now sufficiently well calibrated to be used with confidence to predict the effects of ozone on yield loss of major arable crops across Europe. Further studies, using innovations in stomatal conductance modelling and plant exposure experimentation, are needed if these models are to be further improved.  相似文献   

16.
The dry deposition velocities and fluxes of ammonia have been estimated from measurements of the vertical gradient of ammonia and micrometeorology above a spruce forest in western Jutland, Denmark. Measurements have been made in seven periods, each lasting about one week and covering all seasons and different meteorological situations. Different deposition characteristics were observed, depending on the ammonia concentration and the relative humidity. At conditions with westerly winds, the wind brings air masses from the North Sea with low concentration levels of ammonia to the site, while at conditions with easterly winds, the air have passed central Jutland with large emission areas. Some of the relatively low deposition velocities or emissions were observed during conditions with low ammonia concentration and westerly winds. These observations might relate to a compensation point of the forest, i.e. an ammonia concentration below which the trees and/or the surface emit ammonia due to an equilibrium with the ammonia inside the needles or on the surface. Emission of ammonia was also observed at relatively high ammonia concentration levels (above 2 μg NH3–N m-3), mainly during one measuring period characterized by easterly winds with dry conditions and high ammonia concentrations, and the emissions might relate to evaporation from ammonia saturated surfaces or emission from mineralization in the forest soil. In general, relatively high net deposition velocities were observed during conditions with relative humidity above 80% or at ammonia concentrations moderate higher than a given (temperature dependent) compensation point. During stable conditions some observations revealed that the gradient above the canopy not necessarily represents the exchange with the canopy.  相似文献   

17.
We designed a new gas exchange system that concurrently measures foliar H2O, O3, and CO2 flux (HOC flux system) while delivering known O3 concentrations. Stomatal responses of three species were tested: snapbean, and seedlings of California black oak (deciduous broadleaf) and blue oak (evergreen broadleaf). Acute O3 exposure (120-250 ppb over an hour) was applied under moderate light and low vapor pressure deficits during near steady state conditions. The rate of stomatal closure was measured when the whole plant was placed in the dark. An adjacent leaf on each plant was also concurrently measured in an O3-free cuvette. Under some conditions, direct measurements and calculated foliar O3 flux were within the same order of magnitude; however, endogenously low gs or O3 exposure-induced depression of gs resulted in an overestimation of calculated O3 fluxes compared with measured O3 fluxes. Sluggish stomata in response to light extinction with concurrent O3 exposure, and incomplete stomatal closure likewise underestimated measured O3 flux.  相似文献   

18.
Relaxed eddy accumulation (REA) measurements of the total gaseous mercury (TGM) flux measurements were taken over a deciduous forest predominantly composed of Red Maple (Acer rubrum L.) during the growing season of 2004 and the second half of the growing season of 2005. The magnitudes of the flux estimates were in the range of published results from other micrometeorological mercury fluxes taken above a tall canopy and larger than estimates from flux chambers. The magnitude and direction of the flux were not static during the growing season. There was a significant trend (p < 0.001), from net deposition of TGM in early summer to net evasion in the late summer and early fall before complete senescence. A growing season atmosphere-canopy total mercury (TGM) compensation point during unstable daytime conditions was estimated at background ambient concentrations (1.41 ng m?3). The trend in the seasonal net TGM flux indicates that long term dry deposition monitoring is needed to accurately estimate mercury loading over a forest ecosystem.  相似文献   

19.
Monitoring of contaminant concentrations, e.g., for the estimation of mass discharge or contaminant degradation rates, often is based on point measurements at observation wells. In addition to the problem, that point measurements may not be spatially representative, a further complication may arise due to the temporal dynamics of groundwater flow, which may cause a concentration measurement to be not temporally representative. This paper presents results from a numerical modeling study focusing on temporal variations of the groundwater flow direction. “Measurements” are obtained from point information representing observation wells installed along control planes using different well frequencies and configurations. Results of the scenario simulations show that temporally variable flow conditions can lead to significant temporal fluctuations of the concentration and thus are a substantial source of uncertainty for point measurements. Temporal variation of point concentration measurements may be as high as the average concentration determined, especially near the plume fringe, even when assuming a homogeneous distribution of the hydraulic conductivity. If a heterogeneous hydraulic conductivity field is present, the concentration variability due to a fluctuating groundwater flow direction varies significantly within the control plane and between the different realizations. Determination of contaminant mass fluxes is also influenced by the temporal variability of the concentration measurement, especially for large spacings of the observation wells. Passive dosimeter sampling is found to be appropriate for evaluating the stationarity of contaminant plumes as well as for estimating average concentrations over time when the plume has fully developed. Representative sampling has to be performed over several periods of groundwater flow fluctuation. For the determination of mass fluxes at heterogeneous sites, however, local fluxes, which may vary considerably along a control plane, have to be accounted for. Here, dosimeter sampling in combination with time integrated local water flux measurements can improve mass flux estimates under dynamic flow conditions.  相似文献   

20.
Ozone (O(3)) flux into Norway spruce (Picea abies) and cembran pine (Pinus cembra) needles was estimated under ambient conditions at six rural sites between 580 and 1950 m a.s.l. We also assessed age-related differences in O(3) flux by examining changes in leaf conductance across the life span of Norway spruce. At the leaf level O(3) flux into the needles was effectively controlled by stomatal conductance and, hence by factors such as temperature, irradiance and humidity, which control stomatal conductance. Seasonal variations in O(3) flux were mainly attributed to the course of the prevailing temperature. During the growing season, however, data have emphasised leaf-air vapour pressure difference as the environmental factor most likely to control stomatal conductance and O(3) flux into the needles. In the sun crown stomatal conductance averaged over the growing season decreased with increasing tree age from 42.0+/-3.5 mmol O(3) m(-2) s(-1) in 17-year-old trees to 7.1+/-1.0 mmol O(3) m(-2) s(-1) in 216-year-old trees, indicating that O(3) concentration in the substomatal cavities is higher in young than in old trees. Independent from tree age stomatal conductance and O(3) flux were approximately 50% lower in shade needles as compared to sun-exposed needles. Stomatal conductance was also greater in the current flush (24+/-5.6 mmol O(3) m(-2) s(-1)) and in 1-year old needles (16+/-4 mmol O(3) m(-2) s(-1)) than in older needle age classes (12+/-1 mmol O(3) m(-2) s(-1), averaged across the four older needle age classes). In trees similar in age (60-65 years old) average O(3) flux into sun needles increased from 0.55+/-0.36 nmol m(-2) s(-1) at the valley floor to 0.9 nmol m(-2) s(-1) in 1950 m a.s.l. Cumulative O(3) uptake during the vegetation period increased from 11.4+/-1.7 mol m(-2) in the valley to 14 mol m(-2) at the alpine timberline. Although stomatal conductance provides the principal limiting factor for O(3) flux, additional field research is necessary in order to improve our understanding concerning the quantitative 'physiological threshold dose' which internally can be active and can have adverse effects of O(3) on forest trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号