首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A mixture of pyrethroids plus organophosphates was assessed for their potential effects on lipid peroxidation, the antioxidant defense system and lactate dehydrogenase (LDH) in rat kidney in vitro. Various insecticide concentrations were incubated with kidney homogenate at 37°C for different incubation times. Treatment with fenitothion (FNT) plus lambda-cyhalothrin (LC) caused a significant induction (P < 0.05) in thiobarbituric acid reactive substances (TBARS), which might be associated to decreased levels of reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) activities and protein content in rat kidney. However, a significant induction of lactate dehydrogenase (LDH) activity was observed. The effect was concentration and time dependent. It can be concluded that depletion of GSH might indicate that reactive oxygen species (ROS) could be involved in the toxic effects of FNT plus LC which lead to marked perturbations in antioxidant defense system.  相似文献   

2.
A mixture of pyrethroids plus organophosphates was assessed for their potential effects on lipid peroxidation, the antioxidant defense system and lactate dehydrogenase (LDH) in rat kidney in vitro. Various insecticide concentrations were incubated with kidney homogenate at 37°C for different incubation times. Treatment with fenitothion (FNT) plus lambda-cyhalothrin (LC) caused a significant induction (P < 0.05) in thiobarbituric acid reactive substances (TBARS), which might be associated to decreased levels of reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) activities and protein content in rat kidney. However, a significant induction of lactate dehydrogenase (LDH) activity was observed. The effect was concentration and time dependent. It can be concluded that depletion of GSH might indicate that reactive oxygen species (ROS) could be involved in the toxic effects of FNT plus LC which lead to marked perturbations in antioxidant defense system.  相似文献   

3.
Li F  Ji L  Luo Y  Oh K 《Chemosphere》2007,67(1):13-19
With Carassius auratus, one of the main economic fish species in Eastern China as test material, this paper studied the hydroxyl radical generation and oxidative stress in its liver under the effect of 2,4,6-trichlorophenol (2,4,6-TCP). Different doses of 2,4,6-TCP were injected intraperitoneally into the fishes, and the Electron paramagnetic resonance (EPR) spectra of hepatic free radicals, activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-s-transferase (GST), levels of reduced glutathione (GSH) and oxidized glutathione (GSSG), and malondialdehyde (MDA) contents were determined 24h after injection. The results showed that under the effects of 2,4,6-TCP, the generation of free radical that was considered to be hydroxyl radical increased significantly, the activities of antioxidant enzymes decreased, with CAT most strongly affected and followed by SOD and GST, the GSH level decreased significantly while GSSG level had little difference, resulting in a decreased GSH/GSSG ratio, and the MDA content increased significantly. All the test parameters showed that C. auratus was subjected to oxidative stress and damage when exposed to 2,4,6-TCP.  相似文献   

4.
The joint action of pyrethroids, lambda-cyhalothrin (LC) in combination with organophosphates, fenitrothione (FNT) on antioxidant defense system and lipid peroxidation biomarkers in rat testes was studied. The results suggest that incubation of testes homogenate with different concentrations of insecticide mixture for different time intervals significantly decreased the activity of antioxidant enzymes, like glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT), and the level of reduced glutathione (GSH). In addition, a significant inhibition in transaminases (AST, ALT), phosphatases (AcP, AlP) activity and protein content were observed. On the other hand, FNT plus LC increased the cellular lipid peroxidation (LPO) level and the activity of lactate dehydrogenase (LDH). In conclusion, the use of insecticides mixture might cause marked oxidative damage in a concentration and time-dependent manner.  相似文献   

5.
Wu H  Zhang R  Liu J  Guo Y  Ma E 《Chemosphere》2011,83(4):599-604
The study was undertaken to evaluate the effects of malathion and chlorpyrifos on acetylcholinesterase (AChE), esterase (EST) activity and antioxidant system after topical application with different concentration to Oxya chinensis. The results showed that malathion and chlorpyrifos inhibited EST, AChE activity and increased malondialdehyde (MDA) contents. A change in superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GR) activity combined with reduced glutathione (GSH) and total glutathione (tGSH) contents was found in O. chinensis after malathion and chlorpyrifos treatments. Malathion and chlorpyrifos increased SOD and CAT activity compared with the control. With the concentrations increasing, SOD and CAT activity showed the similar tendency, namely, SOD and CAT activity increased at the lower concentrations and decreased at the higher concentrations. The results showed that malathion and chlorpyrifos decreased significantly GR activity. GST and GPx activity at the studied concentrations of chlorpyrifos was lower than that of the control. However, no significance was observed. GPx and GST activity in malathion treated grasshoppers showed a biphasic response with an initial increase followed by a decline in its activity. Malathion and chlorpyrifos decreased GSH contents and the ratio of GSH/GSSG. The present findings indicated that the toxicity of malathion and chlorpyrifos might be associated with oxidative stress.  相似文献   

6.
Santos TG  Martinez CB 《Chemosphere》2012,89(9):1118-1125
The effects of Atrazine, an herbicide used worldwide and considered as a potential contaminant in aquatic environments, were assessed on the Neotropical fish Prochilodus lineatus acutely (24 and 48 h) exposed to 2 or 10 μg L−1 of atrazine by using a set of biochemical and genetic biomarkers. The following parameters were measured in the liver: activity of the biotransformation enzymes ethoxyresorufin-O-deethylase (EROD) and glutathione S transferase (GST), antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), content of reduced glutathione (GSH), generation of reactive oxygen species (ROS) and occurrence of lipid peroxidation (LPO); in brain and muscle the activity of acetylcholinesterase (AChE) and DNA damage (comet assay) on erythrocytes, gills and liver cells. A general decreasing trend on the biotransformation and antioxidant enzymes was observed in the liver of P. lineatus exposed to atrazine; except for GR, all the other antioxidant enzymes (SOD, CAT and GPx) and biotransformation enzymes (EROD and GST) showed inhibited activity. Changes in muscle or brain AChE were not detected. DNA damage was observed in the different cell types of fish exposed to the herbicide, and it was probably not from oxidative origin, since no increase in ROS generation and LPO was detected in the liver. These results show that atrazine behaves as enzyme inhibitor, impairing hepatic metabolism, and produces genotoxic damage to different cell types of P. lineatus.  相似文献   

7.
The aim of this study was to characterize biomarker responses in three-spined sticklebacks exposed to prochloraz (Pcz). For this purpose, adult sticklebacks were exposed for 2 weeks to prochloraz at 0, 10, 50, 100 and 500 μg/L prior to one week of depuration in clean water. At days 7, 14 and 21, several hepatic biomarkers were measured including 7-ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), glutathione peroxidase (GPx), catalase (CAT), total glutathione (GSH) content and thiobarbituric acid reactive substances (TBARS). Pcz induced a transient increase of antioxidant enzymes and a depletion of glutathione content during the first 7 days of exposure. This study showed that EROD activity and antioxidants were disrupted in a transient manner. GST was rapidly induced in a dose-dependent manner and this induction was persistent and observed also after depuration. GST appeared as a valuable biomarker to assess the exposure to Pcz.  相似文献   

8.
The aim of this study was to characterize biomarker responses in three-spined sticklebacks exposed to prochloraz (Pcz). For this purpose, adult sticklebacks were exposed for 2 weeks to prochloraz at 0, 10, 50, 100 and 500 microg/L prior to one week of depuration in clean water. At days 7, 14 and 21, several hepatic biomarkers were measured including 7-ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), glutathione peroxidase (GPx), catalase (CAT), total glutathione (GSH) content and thiobarbituric acid reactive substances (TBARS). Pcz induced a transient increase of antioxidant enzymes and a depletion of glutathione content during the first 7 days of exposure. This study showed that EROD activity and antioxidants were disrupted in a transient manner. GST was rapidly induced in a dose-dependent manner and this induction was persistent and observed also after depuration. GST appeared as a valuable biomarker to assess the exposure to Pcz.  相似文献   

9.
In this study, the green-lipped mussel, Perna viridis (L.), was exposed to two concentrations of benzo[a]pyrene (B[a]P) (0.3 microg l(-1); 3 microg l(-1)) and two concentrations of Aroclor 1254 (0.5 microg l(-1); 5 microg l(-1)). In addition, a mixture of the contaminants was used (0.3 microg l(-1) B[a]P+0.5 microg l(-1) Aroclor 1254; 3 microg l(-1) B[a]P+5 microg l(-1) Aroclor 1254). All concentrations were nominal. A suite of enzymes [glutathione S transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR)], glutathione (GSH) level and lipid peroxidation (LPO) in the mussel gill and hepatopancreas were monitored over 18 days. CAT and GSH in gill tissue were positively correlated with concentration of Aroclor 1254. Activity of hepatic GST and SOD was significantly related to body burden of Aroclor 1254. LPO, GR and GPx in gill and hepatopancreas and hepatic GST were positively correlated with B[a]P concentration. The results indicate the importance of using biomarkers specific to the type of contaminant(s) that are likely to be present. Controlled laboratory experiments, such as this study, are useful in ascertaining biomarkers suitable for use with complex contaminant mixtures in the marine environment.  相似文献   

10.

In this study, crucian carp (Carassius auratus) was exposed to the increasing concentrations of municipal sewage treatment plant effluent (MSTPE) for 15 days, and the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and acetylcholinesterase (AChE), together with the contents of malondialdehyde (MDA) and glutathione (GSH) in the liver of C. auratus were investigated. Moreover, the integrated biomarker response (IBR) approach was applied to assess the adverse effects of MSTPE in freshwater. The aim of the study was to provide an effective biological indicator for evaluating the toxicity effects and ecological risks of MSTPE in the freshwater environment quantitatively. Results showed that MSTPE could cause oxidative damage to the liver of C. auratus, which reflected through the increasing MDA content over the exposure period. MSTPE also led to the biochemical responses of antioxidant defense in C. auratus liver, such as the enhancement of SOD, CAT, and GPx activities, as well as the inhibition of AChE activity and GSH content. It was found that MDA, SOD, GPx, and GSH could be used as the biomarkers for reflecting the adverse effects of MSTPE in the receiving freshwater on the 12th day of exposure. A significant increase of IBR values was observed as the increasing concentration of MSTPE, and the IBR values presented a significant positive correlation (r?=?0.891, P?<?0.05) with the increasing concentrations of MSTPE, indicating that IBR approach is a promising tool for assessing the toxicity effects of MSTPE in environmental freshwater.

  相似文献   

11.
Zhang J  Shen H  Wang X  Wu J  Xue Y 《Chemosphere》2004,55(2):167-174
There were few reports on the antioxidant response of aquatic organisms exposed to 2,4-dichlorophenol (2,4-DCP). This research explored the hepatic antioxidant responses of fish to long-term exposure of 2,4-DCP for the first time. Freshwater fish Carassius auratus were chosen as experimental animals. The fish were exposed to six different concentrations of 2,4-DCP (0.005-1.0 mg/l) for 40 days and then liver tissues were separated for determination. As shown from the results, 40 days afterwards, the activities of catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GPx) and the content of oxidized glutathione (GSSG) were induced significantly on the whole compared to control group; superoxide dismutase (SOD) responded to 2,4-DCP exposure at only 0.005 mg/l; the content of reduced glutathione (GSH) was suppressed continuously except Group 7; the activity of glutathione reductase was inhibited initially and then restored to control level from Group 4 on; glutathione S-transferase had only slight responses in Groups 3 and 4. Total glutathione (tGSH) and GSH/GSSG ratio were also calculated to analyze the occurrence of oxidative stress. Besides, good dose-effect relations, which cover most of the exposure concentration range, were found between 2,4-DCP level and CAT activity, GSSG content, Se-GPx activity, respectively. In conclusion, SOD and Se-GPx may be potential early biomarkers of 2,4-DCP contamination in aquatic ecosystems, and further studies will be necessary.  相似文献   

12.
Concentrations of heavy metals (Cu, Ni, Zn, Cd and Pb) were measured in sediments, water and liver and kidney tissues of three Indian major carps (Labeo rohita, Catla catla and Cirrhinus cirrhosus), belonging to two different weight groups (250 and 500 g), collected from ponds at two different sites (Nalban bheri and Diamond Harbour). The tissues were analysed for the levels of different antioxidant defence systems such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GRd), glutathione S-transferase (GST), glutathione (GSH) and malondialdehyde (MDA). Concentrations of all the metals were significantly higher (P < 0.05) in sediment, water and the tissues from Nalban bheri compared to those in Diamond Harbour. Metal concentrations were the lowest in C. cirrhosus, which increased with an increase in fish weight, and the liver accumulated higher amount of metals than the kidney. Activities of all enzymatic and non-enzymatic antioxidant parameters except GPx and GRd were significantly higher (P < 0.05) in the tissues from Nalban bheri than those in Diamond Harbour. Significant multicollinearity was found in the values of SOD, CAT, GST, GRd, GPx and MDA with Pb, Cu and Ni in all three fish species at Nalban and with Cd in L. rohita and C. catla. Principal component analysis results revealed that stress response in a polluted site was directly regulated by an amalgamation of GSH profile and the levels of MDA in a synchronized manner. The study indicated a tissue-specific and species-specific difference for heavy metal-induced oxidative stress response in fish and a correlation between different heavy metals and individual oxidative stress markers.  相似文献   

13.
Azinphos-methyl is an organophosphate insecticide used for pest control on a number of food crops in many parts of the world. The oligochaete Lumbriculus variegatus and pigmented and non-pigmented specimens of the gastropod Biomphalaria glabrata are freshwater invertebrates that have been recommended for contamination studies. Recently, it has been shown that L. variegatus worms exhibit a higher cholinesterase (ChE) activity and a greater sensitivity to in vivo ChE inhibition by azinphos-methyl than pigmented B. glabrata snails. The aims of the present study were (1) to investigate if, in addition to its anticholinesterase action, azinphos-methyl has also pro-oxidant activity in L. variegatus and B. glabrata, and (2) to examine if species that are highly susceptible to the neurotoxic effects of organophosphates also suffer a greater degree of oxidative stress. Therefore, total glutathione (t-GSH) levels and activities of cholinesterase (ChE), superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glucose 6-phosphate dehydrogenase (G6PDH) were measured in the whole body soft tissue of organisms exposed for 48 and 96 h to a level of azinphos-methyl that produces 50% of inhibition on ChE. Results showed different patterns of antioxidant responses between the gastropods and the oligochaetes, and even between the two phenotypes of gastropods: (1) in exposed L. variegatus t-GSH levels increased and CAT and SOD activities decreased with respect to control organisms, (2) in pigmented gastropods, SOD decreased while CAT transiently diminished, and (3) in non-pigmented gastropods, SOD activity showed a biphasic response. GST and G6PDH were not altered by azinphos-methyl exposure. Of note, t-GSH levels were 4-fold times higher in L. variegatus than in both phenotypes of B. glabrata. This may suggest that GSH could play a more important role in antioxidant defense in L. variegatus than in B. glabrata.  相似文献   

14.
Cadmium, like many other pollutants, is nondegradable and can be accumulated by Lymantria dispar at a level that affects fitness components, physiology, and development, which could indicate presence of environment pollution by heavy metals. The cadmium effect on fitness-related traits in the third, fourth, fifth, and sixth instar of L. dispar L. was determined. Furthermore, activities of the following antioxidative defense components after the larvae had been fed on the artificial cadmium-supplemented diet (50 μg Cd/g dry food) were assessed: superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX), total glutathione amount (GSH), glutathione-S-transferase (GST), glutathione reductase (GR), and the amount of free sulfhydryl (SH) groups. Statistically significant delay of development in the fourth, fifth, and sixth instar and decrease of the larval mass in the third and fourth instar were estimated after the exposure to cadmium through food in comparison to the control. There were no changes in SOD activity of cadmium-treated larvae. Significantly lower CAT, APOX, and GR activities were recorded in the third, fifth, and in the third instar, respectively. At the same time, higher activity was recorded in the sixth instar, while GST activity was higher in the third. GSH content was significantly lower during all instars after treatment but the amount of SH groups was higher in older larvae. The strategy of antioxidative defense and the adjustment or modulation of fitness-related traits in presence of cadmium was dependent on the age of larvae in L. dispar, which might be used in early metal risk assessment in Lepidoptera and other insects.  相似文献   

15.
Ahmad I  Pacheco M  Santos MA 《Chemosphere》2006,65(6):952-962
Pateira de Fermentelos (PF) is a natural freshwater wetland in the central region of Portugal. In the last decade, the introduction of agricultural chemicals, heavy metals, domestic wastes, as well as eutrophication and incorrect utility of resources resulted in an increased water pollution. The present research work was carried out to check the various oxidative stress biomarker responses in European eel (Anguilla anguilla L.) gill, kidney and liver due to this complex water pollution. Eels were caged and plunged at five different PF sites (A-E) for 48h. A reference site (R) was also selected at the river spring where no industrial contamination should be detected. Lipid peroxidation (LPO), catalase (CAT), glutathione peroxidase (GPX), glutathione S-transferase (GST) and reduced glutathione (GSH) were the oxidative stress biomarkers studied. In gill, site A exposure induced a significant GST activity increase and site B exposure induced CAT activity increase when compared to R. Site C exposure showed a significant CAT and GPX activity increase. Data concerning site D exposure were not determined due to cage disappearance. Site E exposure displayed a significant CAT and GST activity increase. In kidney, site A exposure induced a significant CAT and GPX decrease as well as a GST increase. Site B exposure showed a significant decrease in GPX activity and GSH content. However, site C exposure demonstrated a significant increase in CAT and a decrease in GPX. Site E exposure showed a significant decrease in GPX and increase in GST. In liver, site A exposure showed a significant GST activity decrease as well as GSH content increase. Site B exposure showed a significant CAT, GST and LPO decrease. Site C exposure showed only GST activity decrease, while site E exposure induced a significant increase in GPX. These investigation findings provide a rational use of oxidative stress biomarkers in freshwater ecosystem pollution biomonitoring using caged fish, and the first attempt reported in Portugal as a study of this particular watercourse under the previous conditions. The presence of pollutants in the PF water was denunciated even without a clear relation to the main pollution source distance. The organ specificity was evident for each parameter but without a clear pattern.  相似文献   

16.
The redox cycling of heavy metals as well as their interactions with organic pollutants is a major contributor to the oxidative stress resulting from aquatic pollution. Therefore, in order to evaluate beta-naphthoflavone (BNF), Cu and BNF/Cu-induced oxidative stress with single and subsequent exposures, research was carried out in European eel (Anguilla anguilla L.). Eel gill and kidney oxidative stress biomarker responses such as lipid peroxidation (LPO), glutathione peroxidase (GPX), catalase (CAT), glutathione S-transferase (GST) and total reduced glutathione (GSH) to a single 24 h exposure to two copper concentrations (Cu-1 microM, 2.5 microM) and BNF (2.7 microM) with or without 24 h BNF (2.7 microM) pre-exposure were investigated. Cu exposure alone showed a significant gill GST increase at the lowest concentration and GSH content decrease for the highest concentration. Double BNF exposure in gill demonstrated a significant increase in LPO, CAT, GPX and GST, as well as a decrease in GSH content. However, in sequential BNF/Cu exposures, only the highest Cu concentration exhibited a significant increase in LPO and GSH as well as a decrease in GPX (vs. BNF + CW). In kidney, Cu exposure alone showed a significant CAT and GSH contents decrease for both concentrations, and at highest concentration in GPX; as well as GST increase at the lowest concentration. Double BNF exposure showed a significant increase in LPO and GST. Nevertheless, in sequential BNF/Cu exposures, both concentrations exhibited a significant increase in LPO and decrease in GSH contents. Moreover, LPO was also increased significantly in comparison to BNF+CW and the equivalent Cu exposures without BNF pre-exposure. Concerning GPX, a significant increase was observed at highest Cu concentration. In GST, a significant decrease at the lowest Cu concentration and increase at the highest Cu concentration was observed. Summarizing, a simple copper or BNF exposures have no ability to induce LPO in both gill and kidney. However, double BNF exposure induced LPO in both organs and sequential BNF/Cu exposures potentiated the risk of peroxidative damage occurrence in both organs. BNF/Cu interference on antioxidant responses differs between the studied organs. In gill, antagonistic effects were denoted with probable reflex in terms of peroxidative damage increase. In kidney, BNF pre-exposure prevented CAT and GPX inhibition by copper; though, no advantage of this effect was perceptible as defence against LPO generation. Considering BNF as a surrogate for a PAH and the detected interactions with copper, as well as the likelihood that these effects would be observed in polluted ecosystems, current results demonstrate their relevance to actual ecological exposures contributing to a better knowledge on oxidative stress mechanisms in fish.  相似文献   

17.
The current study investigated oxidative stress parameters (enzymes activities, metallothionein content and lipid peroxidation) in freshwater fish, Oreochromis niloticus, tilapia exposure to Monjolinho River (in 4 months of year: January, April, July and November). One critical site in Monjolinho River (site B) was assessed in comparison to a reference site (site A). Water pH and oxygen concentration was lower than that recommended by CONAMA (Brazilian National Environmental Committee), resolution 357/2005 for protection of aquatic communities, and ammonium and the metals Cu, Zn, Mn and Fe (on all months) concentrations were higher than the maximum concentration recommended. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were significantly decreased in liver and muscle in tilapia from Monjolinho River, throughout the year, in relation to reference except in gills that SOD activity increased. Glutathione S-transferase (GST) activity was significantly increased in liver of the tilapia from Monjolinho River in all sites, in relation to reference except in gills that GST activity increased in July and decreased in November, suggesting that GST activity could be induced to neutralize the pollutants toxicity. On the other hand, GST activity was significantly decreased in white muscle indicating a toxic effect of pollutants, resulting in a decreased ability of tilapia to perform defense reactions associated to GSTs. The decrease of catalase (CAT) activity in gills of the O. niloticus together with the increase of SOD activity, could explain the increased lipid peroxidation (LPO) level in this organ. Metallothionein levels in liver and gills were significantly high in all sites. Results indicate that the exposure to metals caused severe damage to tissues; despite the consensually assumed antioxidant induction as a sign of exposure to contaminants the effects seem in part to be mediated by suppression of antioxidant system with SOD, CAT and GPx as potential candidates for tissues toxicity biomarkers of pollutants.  相似文献   

18.
This study was undertaken to determine the redox balance in the developing brain after exposure to acrylamide (ACR), a potent neurotoxin. The studies were performed using an in ovo chick embryo model. The antioxidant enzymes SOD, GPx, CAT, and reduced glutathione (GSH) were used as indicators of the redox balance. Eggs were injected with ACR doses of 40 mg kg?1 egg mass (2.4 mg egg?1) on embryonic day 17 (E17). The activity of the antioxidant enzymes and the concentration of GSH were measured at E17, E18, and E19 in the medulla oblongata, cerebrum, cerebellum, and optic lobe. The results indicated a significant decrease in the GSH concentrations in the optic lobe (E19, E20) and cerebrum (E20) of embryos exposed to ACR. The activities of SOD and GPx were significantly increased in the majority of the examined structures after injection of ACR. CAT activity was completely inhibited in the brains of the embryos exposed to ACR compared to that in the brains of the control embryos. Thus, we concluded that ACR exerts a significant influence on the redox balance in the developing brain by impacting the activity of antioxidant enzymes and the levels of GSH.  相似文献   

19.
Effects of three different doses of endosulfan respectively designated as low, medium and high on cytochrome P450(Cyt.P450), glutathione S-transferase(GST) activity and glutathione content (GSH) of hepatic and extra hepatic tissues of rat were determined after 24 hours of treatment. Endosulfan caused induction of cyt. P450 in liver, lung and brain at all the three doses tested while in kidney, spleen and heart either induction or reduction took place and was unrelated with dosages of endosulfan. Similarly, GST activity significantly changed in extra hepatic tissues while liver GST activity did not record any significant alteration under the experimental conditions. The GSH content also showed changes (increase/decrease) unrelated to endosulfan dosages in different organs. Thus, the effects varied with organ and dosages. As these metabolic parameters are involved in biotransformation of many endogenous molecules as well, the study may throw some light on physiological disturbances due to changes in metabolizing system on one side and organ specificity in toxic action of endosulfan on the other.  相似文献   

20.
Xing H  Li S  Wang Z  Gao X  Xu S  Wang X 《Chemosphere》2012,88(4):377-383
We investigated oxidative stress response and histopathological changes in the brain and kidney of the common carp after a 40-d exposure to CPF and ATR, alone or in combination, and a 20-d recovery. Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities and malondialdehyde (MDA) content were measured using standard assays. Our results indicated that exposure to ATR, CPF or a combination of the two for 40 d induced significant changes in antioxidant enzyme (SOD, CAT and GSH-Px) activities and MDA content in the brain and kidney of the common carp. Pathological changes included tissue damage that was more severe with increased of exposure dose. To our knowledge, this is the first report to study oxidative stress and histopathological effects caused by subchronic exposure to ATR, CPF and ATR/CPF combination on common carp. The information presented in this study may be helpful to understanding the mechanisms of ATR-, CPF- and ATR/CPF combination-induced oxidative stress in fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号