首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Estimates of the emissions of ammonia have previously concentrated on animal husbandry sources from agricultural systems. Animal husbandry sources still constitute the major fraction of emissions of ammonia, but we have also considered the potential magnitude of other 'minor' sources, which may include coal combustion, waste incineration, road vehicles, sewage treatment plants, fertiliser manufacture and application, vegetation senescence and crop emissions, domestic pets, and human sources. Where possible, a provisional estimate of UK emissions from each of these sources is given. It is concluded that the potential magnitude of emissions from these 'minor' sources may make a significant contribution to the total emissions of ammonia to the atmosphere. On the basis of the available data, and the application of a range of emission factors to the UK situation, an additional annual emission potential lying in the range of approximately 80-140 ktonne year(-1) over and above that from animal husbandry has been calculated. The uncertainties in the emission estimates and instances in which a better resolution of sources is required are discussed. The emission factors used for animals in various inventories are reviewed and applied to the main UK agricultural animal populations. By using this approach, estimates of emissions from these sources range between 113 and 647 ktonne year(-1), which illustrates the uncertainties involved. It is suggested that our knowledge of the sources of ammonia, and their distribution, is far from complete.  相似文献   

2.
Many farms have unroofed concrete yards used by livestock. These concrete yards have received little attention as sources of gaseous emissions. From 1997 to 1999 measurements were made of emissions of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) from 11 concrete yards used by livestock. A postal survey was carried out to assess the areas of yards on farms in England and Wales to enable the measurements to be scaled up to estimate national emissions. Using the results of this study NH3-N emissions from farm concrete yards were calculated to be ca. 35×103 t annually. This is 13% of the current estimated total NH3-N emission from UK livestock. Concrete yards were an insignificant source of N2O and CH4 which were both <0.01% of current estimates of agricultural emissions.  相似文献   

3.
Managing ammonia emissions from livestock production in Europe   总被引:4,自引:0,他引:4  
Around 75% of European ammonia (NH(3)) emissions come from livestock production. Emissions occur at all stages of manure management: from buildings housing livestock; during manure storage; following manure application to land; and from urine deposited by livestock on pastures during grazing. Ammoniacal nitrogen (total ammoniacal-nitrogen, TAN) in livestock excreta is the main source of NH(3). At each stage of manure management TAN may be lost, mainly as NH(3), and the remainder passed to the next stage. Hence, measures to reduce NH(3) emissions at the various stages of manure management are interdependent, and the accumulative reduction achieved by combinations of measures is not simply additive. This TAN-flow concept enables rapid and easy estimation of the consequences of NH(3) abatement at one stage of manure management (upstream) on NH(3) emissions at later stages (downstream), and gives unbiased assessment of the most cost-effective measures. We conclude that rapid incorporation of manures into arable land is one of the most cost-effective measures to reduce NH(3) emissions, while covering manure stores and applying slurry by band spreader or injection are more cost-effective than measures to reduce emissions from buildings. These measures are likely to rank highly in most European countries.  相似文献   

4.
Knowledge of the sources and distribution of ammonia (NH3) emissions underpins our understanding of the nitrogen budget. Research has focused on quantifying NH3 emissions from anthropogenic sources, whilst those from natural sources have received little attention internationally. Seabirds excrete large quantities of nitrogen, making seabird colonies a major natural source of NH3. Ammonia emissions from each UK seabird species were estimated and combined with population distribution data to model their spatial distribution. Total NH3 emissions from UK seabirds were estimated at 2.7 kt per year. Seabird emissions are concentrated in remote parts of the UK where anthropogenic emissions are small, so that seabirds often represent the main source of NH3 emissions in these areas. Seabird NH3 emissions were found to have increased by 34% since the 1970s. This corresponds to population changes which may be influenced by human activities, showing that even this natural source can be anthropogenically modified.  相似文献   

5.
Changes in ecosystem function at Rocky Mountain National Park (RMNP) are occurring because of emissions of nitrogen and sulfate species along the Front Range of the Colorado Rocky Mountains, as well as sources farther east and west. The nitrogen compounds include both oxidized and reduced nitrogen. A year-long monitoring program of various oxidized and reduced nitrogen species was initiated to better understand their origins as well as the complex chemistry occurring during transport from source to receptor. Specifically, the goals of the study were to characterize the atmospheric concentrations of nitrogen species in gaseous, particulate, and aqueous phases (precipitation and clouds) along the east and west sides of the Continental Divide; identify the relative contributions to atmospheric nitrogen species in RMNP from within and outside of the state of Colorado; identify the relative contributions to atmospheric nitrogen species in RMNP from emission sources along the Colorado Front Range versus other areas within Colorado; and identify the relative contributions to atmospheric nitrogen species from mobile sources, agricultural activities, and large and small point sources within the state of Colorado. Measured ammonia concentrations are combined with modeled releases of conservative tracers from ammonia source regions around the United States to apportion ammonia to its respective sources, using receptor modeling tools.

Implications: Increased deposition of nitrogen in RMNP has been demonstrated to contribute to a number of important ecosystem changes. The rate of deposition of nitrogen compounds in RMNP has crossed a crucial threshold called the “critical load.” This means that changes are occurring to park ecosystems and that these changes may soon reach a point where they are difficult or impossible to reverse. Several key issues need attention to develop an effective strategy for protecting park resources from adverse impacts of elevated nitrogen deposition. These include determining the importance of previously unquantified nitrogen inputs within the park and identification of important nitrogen sources and transport pathways.  相似文献   

6.
Ammonia emission from grassland and livestock production systems in the UK   总被引:3,自引:0,他引:3  
Emissions of ammonia were measured from livestock excreta and fertilisers applied to grass swards, from grazed paddocks, from decomposing grass herbage and from an animal house containing dairy cows. Emissions from urine, dung, slurry and fertilisers were determined using a system of wind tunnels with each tunnel covering an area of 1 m(2). Emissions from grazed swards were determined using a micrometeorological mass balance method. From the results of these measurements, together with other published information, an inventory for ammonia emissions has been calculated for grassland and livestock production systems over the UK as a whole. It is estimated that emissions from grassland and cattle and sheep production amount to about 230 kt NH(3)-N annually, while emissions from pig and poultry production amount to about 40 kt and 80 kt NH(3)-N, respectively.  相似文献   

7.
Ammonia in the environment: from ancient times to the present   总被引:3,自引:0,他引:3  
Recent research on atmospheric ammonia has made good progress in quantifying sources/sinks and environmental impacts. This paper reviews the achievements and places them in their historical context. It considers the role of ammonia in the development of agricultural science and air chemistry, showing how these arose out of foundations in 18th century chemistry and medieval alchemy, and then identifies the original environmental sources from which the ancients obtained ammonia. Ammonia is revealed as a compound of key human interest through the centuries, with a central role played by sal ammoniac in alchemy and the emergence of modern science. The review highlights how recent environmental research has emphasized volatilization sources of ammonia. Conversely, the historical records emphasize the role of high-temperature sources, including dung burning, coal burning, naturally burning coal seams and volcanoes. Present estimates of ammonia emissions from these sources are based on few measurements, which should be a future priority.  相似文献   

8.
Gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere. In addition, it is a major component of total reactive nitrogen. The largest source of NH3 emissions is agriculture, including animal husbandry and NH3-based fertilizer applications. Other sources of NH3 include industrial processes, vehicular emissions and volatilization from soils and oceans. Recent studies have indicated that NH3 emissions have been increasing over the last few decades on a global scale. This is a concern because NH3 plays a significant role in the formation of atmospheric particulate matter, visibility degradation and atmospheric deposition of nitrogen to sensitive ecosystems. Thus, the increase in NH3 emissions negatively influences environmental and public health as well as climate change. For these reasons, it is important to have a clear understanding of the sources, deposition and atmospheric behaviour of NH3. Over the last two decades, a number of research papers have addressed pertinent issues related to NH3 emissions into the atmosphere at global, regional and local scales. This review article integrates the knowledge available on atmospheric NH3 from the literature in a systematic manner, describes the environmental implications of unabated NH3 emissions and provides a scientific basis for developing effective control strategies for NH3.  相似文献   

9.
在分析盐河淮阴段氨氮污染的特征后,对氨氮的来源进行了研究。结果表明,畜牧业和农业面源都是比较显著的氨氮污染源,但未经集中式污水处理厂处理的生活污水,则成为盐河淮阴段最重要的氨氮污染源。  相似文献   

10.
The southeastern portion of North Carolina features a dense crop and animal agricultural region; previous research suggests that this agricultural presence emits a significant portion of the state's nitrogen (i.e., oxides of nitrogen and ammonia) emissions. These findings indicate that transporting air over this region can affect nitrogen concentrations in precipitation at sites as far as 50 mi away. The study combined nitrate nitrogen isotope data with back-trajectory analysis to examine the relationship between regional nitrogen emission estimates independent of pollutant concentration information. In 2004, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to determine potential sources of nitrogen in rainwater collected at an urban receptor site in Raleigh, NC. The delta 15N isotope ratio signatures of each sample were used to further differentiate between sources of the rainwater nitrate. This study examined the importance of pollution sources, including animal agricultural activity, and meteorology on rainfall chemistry as well as the implications in fine particulate matter (PM2.5) formation. Samples that transited the dense crop and animal (swine) agricultural region of east-southeastern North Carolina (i.e., the source region) had lower delta 15N isotope ratios in the nitrate ion (average = -2.1 +/- 1.7 per thousand) than those from a counterpart nonagricultural region (average = 0.1 +/- 3 per thousand.) An increase in PM2.5 concentrations in the urban receptor site (yearly average = 15.1 +/- 5.8 microg/m3) was also found to correspond to air transport over the dense agricultural region relative to air that was not subjected to such transport (yearly average = 11.7 +/- 5.8 microg/m3).  相似文献   

11.
A local ammonia (NH3) inventory for a 5x5 km area in central England was developed, to investigate the variability of emissions, deposition and impacts of NH3 at a field scale, as well as to assess the validity of the UK 5-km grid inventory. Input data were available for the study area for 1993 and 1996 on a field by field basis, allowing NH3 emissions to be calculated for each individual field, separately for livestock grazing, livestock housing and manure storage, landspreading of manures and fertiliser N application to crops and grassland. An existing atmospheric transport model was modified and applied to model air concentrations and deposition of NH3 at a fine spatial resolution (50 m grid). From the mapped deposition estimates and land cover information, critical loads and exceedances were derived. to study the implications of local variability for regional NH3 impacts assessments. The results show that the most extreme local variability in NH3 emissions, deposition and impacts is linked to housing and storage losses. However, landspreading of manures and intensive cattle grazing are other important area sources, which vary substantially in the landscape. Overall, the range of predicted emissions from agricultural land within the study area is 0-2000 kg N ha(-1) year(-1) in 1993 and 0-8000 kg N ha(-1) year(-1) in 1996, respectively, with the peak at a poultry farm located in the study area. On average, the estimated field level NH3 emissions over the study area closely match the emission for the equivalent 5-km grid square in the national inventory for 1996. Deposition and expected impacts are highly spatially variable, with the edges of woodland and small "islands" of semi-natural vegetation in intensive agricultural areas being most at risk from enhanced deposition. Conversely the centres of larger nature reserves receive less deposition than average. As a consequence of this local variability it is concluded that national assessments at the 5 km grid level underestimate the occurrence of critical loads exceedances due to NH3 in agricultural landscapes.  相似文献   

12.
Ammonia, nitrous oxide, and methane emission from animal farming of South, Southeast, and East Asia, in 2000, was estimated at about 4.7 Tg NH3–N, 0.51 Tg N2O–N, and 29.9 Tg CH4, respectively, using the FAO database and countries’ statistic databases as activity data, and emission factors taking account of regional characteristics. Most of these atmospheric components, up to 60–80%, were produced in China and India. Pakistan, Bangladesh, and Indonesia, which were large source countries next to China and India, contributed more than a few percent of total emission of each atmospheric component. The largest emission livestock were cattle whose contribution was considerably high in South, Southeast, and East Asia; more than one-fourth of ammonia and nitrous oxide emissions: more than half of methane emission. The other major livestock for nitrous oxide and ammonia emissions were pigs. For methane emission, buffaloes were second source livestock. To provide spatial distributions of these gases, the emissions of county and district level were allocated into each 0.5° grid by means of the weighting by high-resolution land cover datasets. The regions with considerable high emissions of all components were able to be found at the Ganges delta and the Yellow River basin. The spatial distributions for ammonia and nitrous oxide emissions were similar but had a substantial difference from methane distribution.  相似文献   

13.
Pagans E  Barrena R  Font X  Sánchez A 《Chemosphere》2006,62(9):1534-1542
Ammonia emissions were quantified for the laboratory-scale composting of three typical organic wastes with medium nitrogen content: organic fraction of municipal solid wastes, raw sludge and anaerobically digested sludge; and the composting of two wastes with high nitrogen content: animal by-products from slaughterhouses and partially hydrolysed hair from the leather industry. All the wastes were mixed with the proper amount of bulking agent. Ammonia emitted in the composting of the five wastes investigated revealed a strong dependence on temperature, with a distinct pattern found in ammonia emissions for each waste in the thermophilic first stage of composting (exponential increase of ammonia emitted when increasing temperature) than that of the mesophilic final stage (linear increase of ammonia emissions when increasing temperature). As composting needs high temperatures to ensure the sanitisation of compost and ammonia emissions are one of the main environmental impacts associated to composting and responsible for obtaining compost with a low agronomical quality, it is proposed that sanitisation is conducted after the first stage in large-scale composting facilities by a proper temperature control. CAPSULE: Ammonia emission pattern and correlation with process temperature are presented for the composting process of different organic wastes.  相似文献   

14.
CORINAIR atmospheric emission inventories are frequently used input data for air quality models with a domain situated in Europe. In CORINAIR emission inventories, sources are broken down over 11 major source categories. This paper presents spatial surrogates for the disaggregation of CORINAIR atmospheric emission inventories for input of air pollutants and particulate matter to grid or polygon based air quality model domains inside Europe. The basis for the disaggregation model was the CLC2000 land cover data to which statistical weights were added. Weights were population census data for residential emissions, employment statistics for agricultural and industrial area emissions, livestock statistics for ammonia emissions and annual aircraft movements for emissions realized by air transport. Additional road and off-road network information was used to disaggregate emissions realized by traffic. A comparison of top down produced emission estimates with spatially resolved national emission data for The Netherlands and the United Kingdom gave confidence in the present spatial surrogates as a tool for the top down production of atmospheric emission maps. Explained variance at a spatial resolution of 5 km was >70% for CO, NMVOC and NOx, >60% for PM10 and almost 50% for SO2.  相似文献   

15.

The objective of this research is to discuss the relationship between the growth of livestock and the environmental impact it generates in Colombia. For this, data were extracted from the FAO STAT for the period of 1961 to 2017. The livestock inventory has had a significant growth during the last 50 years. This has generated environmental exposure and the release of carbon, sequestered by continuous deforestation performed in the practice of extensive livestock. Recurring to vector error correction models, we observed the existence of long-term relations between CO2 emissions from dairy cattle and emissions from slaughtered cattle, deforestation, pastures, and forest development. Changes in CO2 emissions from dairy cattle tend to be anticipated by changes in CO2 emissions from the other analyzed sources, which prove how the current investment in dairy cattle results from the accumulated debates in Colombia regarding the different sources of livestock emissions.

  相似文献   

16.
Ammonia volatilization from livestock manure is one of the most important pathways of nitrogen loss from agricultural cultivated fields. In this paper, we report the measurement of ammonia emission from cattle slurry manure applied to upland in Miyazaki, Japan. It has been determined that after the cattle slurry was sprayed on the upland surface, the emission flux of the first day was 110 microg N ha(-1) s(-1). The loss of NH4(+) -N in the applied slurry was 60% after 5 days following the spraying of cattle slurry.  相似文献   

17.
Current knowledge about the spatial variation of atmospheric nitrogen deposition on a local scale is limited, especially for vegetation with a low canopy. We measured nitrogen deposition on artificial vegetation at variable distances of local nitrogen emitting sources in three nature reserves in the Netherlands, differing in the intensity of agricultural practices in the surroundings. In the nature reserve located in the most intensive agricultural region nitrogen deposition decreased with increasing distance to the local farms, until at a distance of 1500 m from the local nitrogen emitting sources the background level of 15 kg N ha(-1) yr(-1) was reached. No such trend was observed in the other two reserves. Interception was considerably lower than in woodlands and hence affected areas were larger. The results are discussed in relation to the prospects for the conservation or restoration of endangered vegetation types of nutrient-poor soil conditions.  相似文献   

18.
Reduced nitrogen in ecology and the environment   总被引:10,自引:0,他引:10  
Since the beginning of the 19th century humans have increasingly fixed atmospheric nitrogen as ammonia to be used as fertilizer. The fertilizers are necessary to create amino acids and carbohydrates in plants to feed animals and humans. The efficiency with which the fertilizers eventually reach humans is very small: 5-15%, with much of the remainder lost to the environment. The global industrial production of ammonia amounts to 117 Mton NH(3)-Nyear(-1) (for 2004). By comparison, we calculate that anthropogenic emissions of NH(3) to the atmosphere over the lifecycle of industrial NH(3) in agriculture are 45.3 Mton NH(3)-Nyear(-1), about half the industrial production. Once emitted ammonia has a central role in many environmental issues. We expect an increase in fertilizer use through increasing demands for food and biofuels as population increases. Therefore, management of ammonia or abatement is necessary.  相似文献   

19.
Particulate matter (PM) has long been recognized as an air pollutant due to its adverse health and environmental impacts. As emission of PM from agricultural operations is an emerging air quality issue, the Agricultural Particulate Matter Emissions Indicator (APMEI) has been developed to estimate the primary PM contribution to the atmosphere from agricultural operations on Census years and to assess the impact of practices adopted to mitigate these emissions at the soil landscape polygon scale as part of the agri-environmental indicator report series produced by Agriculture and Agri-Food Canada. In the APMEI, PM emissions from animal feeding operations, wind erosion, land preparation, crop harvest, fertilizer and chemical application, grain handling, and pollen were calculated and compared for the Census years of 1981–2006. In this study, we present the results for PM10 and PM2.5, which exclude chemical application and pollen sources as they only contribute to total suspended particles. In 2006, PM emissions from agricultural operations were estimated to be 652.6 kt for PM10 and 158.1 kt for PM2.5. PM emissions from wind erosion and land preparation account for most of PM emissions from agricultural operations in Canada, contributing 82% of PM10 and 76% of PM2.5 in 2006. Results from the APMEI show a strong reduction in PM emissions from agricultural operations between 1981 and 2006, with a decrease of 40% (442.8 kt) for PM10 and 47% (137.7 kt) for PM2.5. This emission reduction is mainly attributed to the adoption of conservation tillage and no-till practices and the reduction in the area of summerfallow land.

Implications: Increasing sustainability in agriculture often means adapting management practices to have a beneficial impact on the environment while maintaining or increasing production and economic benefits. We developed an inventory of primary PM emissions from agriculture in Canada to better quantify the apportionment, spatial distribution, and trends for Census years 1981–2006. We found major reductions of 40% in PM10 and 47% in PM2.5 emissions over the 25-yr period as a co-benefit of increasing carbon sequestration in agricultural soils. Indeed, farmers adopted conservation tillage/no-till practices, increased usage of cover crops, and reduced summerfallow, in order to increase soil organic matter and reduce carbon dioxide emissions, which also reduced primary PM emissions, although the agricultural production increased over the period.  相似文献   

20.
Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 ± 6%, from 640 ± 40 to 400 ± 20 mg kg?1. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environmental Science Technology 2006, 40, 7018–22) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号