共查询到20条相似文献,搜索用时 15 毫秒
1.
基于支持向量机的煤与瓦斯突出预测研究 总被引:1,自引:0,他引:1
为准确预测矿井煤与瓦斯突出的危险性,针对煤与瓦斯突出样本的不足从一定程度上制约了基于知识的方法在煤与瓦斯突出预测中的应用这一问题,利用支持向量机在小样本情况下具有较强识别能力的特点,提出了煤与瓦斯突出的支持向量机预测方法。对煤与瓦斯突出影响因素进行灰关联分析,提取特征向量。选用典型突出矿井的煤与瓦斯突出实例作为学习样本,以云南恩洪煤矿的突出实例作为预测样本,将支持向量机预测结果与其他预测结果进行对比。结果表明支持向量机模型能够满足煤与瓦斯突出预测的要求。 相似文献
2.
煤与瓦斯突出预测的支持向量机(SVM)模型 总被引:2,自引:4,他引:2
基于支持向量机(SVM)分类算法,考虑影响煤与瓦斯突出的主要因素,建立了煤与瓦斯突出预测的SVM模型。该模型选取开采深度、瓦斯压力、瓦斯放散初速度、煤的坚固性系数以及地质破坏程度5个指标作为模型输入量,同时将煤与瓦斯突出程度划分为无突出、小型突出、中型突出和大型突出4个等级,进而使其评判结果更为细化。以实测数据作为学习样本进行训练,建立相应判别函数对待判样本进行预测。通过算例分析,表明该模型的方法对煤与瓦斯突出预测的合理性与有效性,可以在实际工程中推广。 相似文献
3.
一种新型的矿井突水分析与预测的支持向量机模型 总被引:2,自引:0,他引:2
针对矿井突水样本数少,信息不完整的特点,提出了矿井突水分析的线性核H-SVMs模型。推导模型的理论推广误差公式,设计自顶向下基于SVM最大间隔逐层分类构造H-SVMs的新方法,并应用于实际的矿井突水预测。实验结果表明,线性核H-SVMs模型结构简单、泛化能力强,不仅能很好地预测矿井突水,而且其层次结构能正确反映突水的等级关系,各判别函数的法向量还可以指示各突水影响因素的权重,通过判决函数能有效分析突水影响因素并提取突水预测规则,为矿井突水预测提供了新的方法。 相似文献
4.
为了对煤层瓦斯含量进行准确预测,应用支持向量回归机(SVR)理论建立煤层瓦斯含量预测模型,结合现场实测数据利用支持向量机(SVM)工具箱进行模型的求解及预测,并从均方根误差、希尔不等系数和平均绝对百分误差3个不同误差指标与人工神经网络预测模型进行比较分析。研究结果表明:SVR模型其预测精度及可行性高于神经网络模型,而且运算快,实时性较好,用于煤层瓦斯含量的预测较理想,具有良好的应用前景,可以为煤矿瓦斯防治提供理论依据。 相似文献
5.
王成武 《中国安全科学学报》2011,21(4)
为对室内轰燃进行准确预测,针对室内轰燃样本的不足在一定程度上制约了其应用,为此运用SVM技术构建室内轰燃预测的数学模型。在小样本条件下,应用工具软件LIBSVM进行仿真,并将SVM模型预测结果和人工神经网络预测结果进行对比。结果显示,SVM技术能较好地解决小样本和模型预测精确度之间的矛盾,SVM模型其预测精度及可行性高于神经网络模型。实例表明,由于室内火灾受多种因素影响,传统的预测方法存在一定的局限性,而SVM模型预测法预测的结果与试验结果比较一致。 相似文献
6.
城市地下综合管廊一旦发生火灾,会对城市造成很大的经济损失和社会影响。考虑到火灾的快速发展和综合管廊狭长受限的特殊空间结构,迫切需要一套准确、实时的火灾温度预测系统辅助消防救援人员制定决策和指导消防行动。建立了5种不同火源位置的地下综合管廊电缆火灾数值模型,结合支持向量机(SVM),根据火源位置、热释放速率、火灾发生时间以及待测点与火源之间的相对位置关系开发了一种数据驱动的温度实时预测模型,实现了地下管廊火灾场景内的纵向温度预测,提出了在火源附近数据结构的优化方案,提高了火源附近的预测准确度。该方法在预测性能和预测时间方面取得了优异的性能,展示了人工智能在火灾预测应用中的优越表现和发展前景。 相似文献
7.
基于支持向量机的入侵检测研究 总被引:1,自引:1,他引:1
根据入侵检测和支持向量机的特点,提出基于最小二乘支持向量机异常检测方法,并建立基于支持向量机入侵检测的模型,对网络数据进行采集,提取特征,进行分类,分辨正常的数据和异常的数据。并在KDD CUP'99标准入侵检测数据集上进行实验,选取data_10_percent子集,把该数据集中的41个属性作为特征,将该子集最后一个属性label属性为:back,ipsweep,neptun,ports-weep和normal各200个数据进行测试。实证表明:该方法能获得较高检测率和较低误警率。 相似文献
8.
基于差异进化支持向量机的坑外土体沉降预测 总被引:1,自引:0,他引:1
就用支持向量机(SVM)预测基坑外土体沉降而言,通过差异进化(DE)算法构造适合的决策函数十分重要。在确定坑外土体沉降函数的基本形式下,进行参数反演。后将得到的解析式作为SVM的决策函数,再进行核函数转换,从而使SVM的曲线拟合更加快速,预测更加准确。对大连地铁湾家车站基坑坑外土体的沉降数据的分析及预测的结果表明,使用SVM-DE算法在计算数据量、计算消耗时间和预测精度方面优于2种方法单独使用。 相似文献
9.
根据定量构效关系(QSPR)原理,研究自燃点(AIT)与其分子结构间的内在定量关系。以265种有机化合物作为样本集,随机选择238种作为训练集,27种作为测试集,用遗传算法(GA)进行变量选择,分别建立多元线性回归(MLR)模型和支持向量机(SVM)模型研究有机物的自燃点与其分子结构间的关系。通过分析,发现造成模型预测效果不佳的原因是试验数据本身存在问题。通过对2个模型的比较,结果为GA-SVM模型明显优于GA-MLR模型,说明自燃点与其分子结构间具有很强的非线性关系。 相似文献
10.
针对边坡稳定性影响因素复杂,传统的稳定性分析存在计算量大、计算过程复杂的问题,提出了边坡稳定性的支持向量机预测方法。分析了边坡稳定性的影响因素,选择影响边坡稳定性的边坡重度、内聚力、摩擦角、边坡角、边坡高度、孔隙压力比6项指标为特征向量。并运行该方法对典型边坡实例进行了预测,预测结果与边坡稳定性实际状态及其它方法预测结果相吻合,表明了支持向量机在边坡稳定性预测中的可靠性和有效性。 相似文献
11.
为减少施工升降机事故,分析36起施工升降机事故调查报告,采用Rasmussen社会系统层次模型,建立施工升降机安全风险管理框架;在梳理各层次事故致因因素基础上,通过信息提取、加工与整合,构建施工升降机事故AcciMap模型;根据模型中信息流的传递途径,制定施工升降机安全风险管理体系。结果表明:施工升降机事故AcciMap模型可展示由深到浅层次间致因因素的影响路径,根据人机环管层循环信息流的戴明环管理方法,得到施工升降机施工的具体管控内容。 相似文献
12.
针对瓦斯涌出传统的线性预测方法存在的问题,根据瓦斯涌出时间序列固有的确定性和非线性,利用混沌动力系统的相空间延迟坐标重构理论,结合基于机器学习理论的支持向量机(SVM),建立基于SVM理论的瓦斯涌出混沌时间序列预测模型。经Ⅱ1024回采工作面瓦斯涌出时间序列仿真计算,仿真结果显示该预测模型具有比传统的回归方法更好的泛化能力,预测方法具有很高的预测精度。同时,该模型具有以往传统机器学习的瓦斯涌出预测模型建立简便、训练速度快等优点。由于充分考虑瓦斯涌出时间序列的混沌性,并利用SVM预测的优良特性,使得预测更科学。 相似文献
13.
为了实现多环芳烃(PAHs)毒性的有效预测,提出应用定量构效技术对多环芳烃的空气-正辛醇分配系数(KOA)和致癌性进行预测。应用分子描述符和试验值确立构效关系,采用支持向量机算法(SVM)和人工神经网络算法(ANN)分别建立了PAHs的KOA回归预测模型和致癌性分类预测模型。利用网格划分(GS)、遗传算法(GA)、粒子群算法(PSO)对SVM进行参数寻优。应用均方误差(MSE)、拟合决定系数R2和分类准确率(Accuracy)分别对模型进行了验证与评价。结果表明,最佳回归预测模型GS-SVR的MSE为0.059 7,R2为0.913 0;最佳分类预测模型GA-SVC的Accuracy为95%。研究表明:应用SVM所建两种模型的稳定性和预测能力都优于应用ANN建立的模型;参数优化后模型的稳定性和预测能力得到了提高。 相似文献
14.
本文针对中国建筑施工企业安全管理现状,以企业预警管理论和现代施工安全管理理论为指导,结合建筑安全施工的实践与经验,建立基于支持向量机的安全预警模型,构建具有自我调节、自我适应能力的建筑施工安全预警管理体系。根据建筑施工现场的调查,经过分析,应用支持向量机预警模型进行预警研究,通过预警的结果,分析建筑施工现场的安全程度。这为建筑施工现场减少事故的发生提供了一定的参考。 相似文献
15.
支持向量机法在煤与瓦斯突出分析中的应用研究 总被引:2,自引:5,他引:2
通过分析采煤工作面煤与瓦斯涌出量与地质构造指标的对应关系,应用支持向量机(SVM)方法对煤与瓦斯涌出类型及涌出量进行分析。建立两类突出识别的SVM模型、多类型突出识别的H-SVMs模型以及预测瓦斯涌出量的支持向量回归模型。研究结果表明:SVM方法能够很好地对煤与瓦斯突出模式进行识别,所建立的采煤工作面瓦斯涌出量预测模型的精度高于应用BP神经网络预测精度;SVM理论基础严谨,决策函数结构简单,泛化能力强,并且决策函数中的法向量W可以反映突出模式识别的地质结构指标的权重。 相似文献
16.
支持向量机在对非线性复杂问题进行处理的过程中,展现出来的优势特征非常突出,本文针对雾霾天气预测中支持向量机的应用做出了进一步探究,对支持向量机的概念、支持向量机的基本思想、建立雾霾预测模型、预测试验给出了详细的分析。 相似文献
17.
为解决现阶段基于风险分级的安全评价方法仍存在着高维数据处理不当、评价智能化程度不高等问题,创建支持向量机的安全评价模型,利用核函数解决安全评价因子分类问题,粒子群算法(PSO)寻找最适合模型的正则项C,进一步提升安全评价模型的正确率,形成适用高维数据的化工工艺安全评价方法。研究结果表明:该模型与经典支持向量机模型和BP神经网络评价模型相比具有更高的正确率,研究结果对借用机器学习来创新安全评价理论及工程应用具有现实意义及理论价值。 相似文献
18.
针对国内航空公司对于重着陆的判断方法存在的不足,提出采用支持向量机(SVM)建立重着陆的智能诊断模型;分析对重着陆产生影响的相关因素,在力学基础上揭示了重着陆的产生原理;利用快速存取记录器中记录的多个飞行参数的信息,采用B737机型的实际样本数据进行训练和验证。结果表明:该方法能有效判断出是否发生重着陆,其准确率高达92.86%,证明该重着陆智能诊断方法具有较强实际应用价值,为后续研究奠定了基础。 相似文献
19.
湿天然气集输管道系统运行时间长,管道腐蚀严重,失效泄漏事故频发,其系统风险评价面临诸多问题,因而研究其腐蚀率预测有重要意义。基于灰色支持向量机(GSVM)方法,综合考虑管道材质及其各种影响因素,对其进行灰色相关分析,并根据结果选取有较高相关度的影响因子作为输入变量,将腐蚀率作为目标输出函数,建立湿天然气集输管道腐蚀预测模型。并通过实证分析比较,发现用该模型计算出的管道腐蚀率平均相对误差较小,其预测结果与实际值吻合程度较高,使预测精度得到提高。 相似文献
20.
基于相关向量机的飞行安全评价方法 总被引:1,自引:0,他引:1
飞行安全评价有利于预防和减小飞行事故,改善飞行安全管理水平,提高飞行安全决策的合理性和科学性。为提高飞行系统的安全性,提出了基于相关向量机的飞行安全评价方法。首先,引入了贝叶斯框架下学习的相关向量机,并介绍了其基本原理和建模过程,然后,基于系统观点,结合飞行安全的实际情况,从人、装备、环境和管理四方面,确定了影响飞行系统安全的基本要素,建立飞行安全评价指标体系,最后,在飞行安全评价指标体系基础上,构建飞行安全的相关向量机评价模型,它的优点在于,无需分析系统内部诸多因素的关系,并能够自适应调整飞行安全影响要素的权重。实例表明:对于飞行安全评价问题,相关向量机方法构造新颖,应用简便,评价结果也更能反映飞行安全的实际情况。 相似文献