首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
In June and July 2001, the Massachusetts Department of Environmental Protection (MassDEP) installed a permeable reactive barrier (PRB) to treat a groundwater plume of chlorinated solvents migrating from an electronics manufacturer in Needham, Massachusetts, toward the Town of Wellesley's Rosemary Valley wellfield. The primary contaminant of concern at the site is trichloroethene (TCE), which at the time had a maximum average concentration of approximately 300 micrograms per liter directly upgradient of the PRB. The PRB is composed of a mix of granular zero‐valent iron (ZVI) filings and sand with a pure‐iron thickness design along its length between 0.5 and 1.7 feet. The PRB was designed to intercept the entire overburden plume; a previous study had indicated that the contaminant flux in the bedrock was negligible. Groundwater samples have been collected from monitoring wells upgradient and downgradient of the PRB on a quarterly basis since installation of the PRB. Inorganic parameters, such as oxidation/reduction potential, dissolved oxygen, and pH, are also measured to determine stabilization during the sampling process. Review of the analytical data indicates that the PRB is significantly reducing TCE concentrations along its length. However, in two discrete locations, TCE concentrations show little decrease in the downgradient monitoring wells, particularly in the deep overburden. Data available for review include the organic and inorganic analytical data, slug test results from nearby bedrock and overburden wells, and upgradient and downgradient groundwater‐level information. These data aid in refining the conceptual site model for the PRB, evaluating its performance, and provide clues as to the reasons for the PRB's underperformance in certain locations. © 2008 Wiley Periodicals, Inc.  相似文献   

2.
Permeable reactive barriers made of zero‐valent iron (ZVI PRBs) have become a prominent remediation technology in addressing groundwater contamination by chlorinated solvents. Many ZVI PRBs have been installed across the United States, some as research projects, some at the pilot scale, and many at full scale. As a passive and in situ remediation technology, ZVI PRBs have many attractive features and advantages over other approaches to groundwater remediation. Ten ZVI PRBs installed in California were evaluated for their performance. Of those ten, three are discussed in greater detail to illustrate the complexities that arise when quantifying the performance of ZVI PRBs, and to provide comment on the national debate concerning the downgradient effects of source‐zone removal or treatment on plumes of contaminated groundwater. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
In June 2001, the Massachusetts Department of Environmental Protection (DEP) installed a permeable reactive barrier (PRB) within a roadway in Needham, Massachusetts, to treat a plume of chlorinated solvents migrating toward two public water‐supply wells located in the adjacent town of Wellesley, Massachusetts. The solvents originated from an electronics manufacturer located approximately 2,300 feet upgradient of the roadway and 5,200 feet upgradient of the public supply wells. Chlorinated solvents, primarily trichloroethene (TCE), had migrated past the roadway to within 300 feet of the public supply wells. Two contaminant transport models prepared by the DEP's design contractor and the EPA indicated that the plume would reach the well field if no response actions were taken. To mitigate the future impact to the municipal well field, the DEP decided to install a PRB composed of zero‐valent granular iron across the path of the plume along Central Avenue in Needham. Though several dozen PRBs have been installed at sites worldwide and the technology is no longer considered innovative, the application of the technology in a roadway that receives 17,000 vehicles per day within a residential neighborhood is unique and presented difficulties not typically associated with PRB installations. The Needham PRB was also one of the first zero‐valent iron PRBs installed using the slurry trench method to treat chlorinated compounds. © 2002 Wiley Periodicals, Inc.  相似文献   

4.
An in situ bioremediation (ISB) pilot study, using whey powder as an electron donor, is being performed at Site 19, Edwards Air Force Base, California, to treat groundwater contaminated with trichloroethene (TCE) via anaerobic reductive dechlorination. Challenging site features include a fractured granitic aquifer, complex geochemistry, and limited biological capacity for reductive dechlorination. ISB was conducted in two phases with Phase I including one‐and‐a‐half years of biostimulation only using whey powder and Phase II including biostimulation with buffered whey powder and bioaugmentation. Results of Phase I demonstrated effective distribution of whey during injections resulting in depletion of high concentrations of sulfate and methanogenesis, but acid production due to whey fermentation and limited buffering capacity of the aquifer resulted in undesirable impacts to pH. In addition, cis‐1,2‐dichloroethene (cis‐1,2‐DCE) stall was observed, which correlated to the unsuccessful growth of native Dehalococcoides populations. Therefore, Phase II included the successful buffering of whey powder using bicarbonate, which mitigated negative pH effects. In addition, bioaugmentation resulted in successful transport of Dehalococcoides populations to greater than 50 feet away from the injection point four months after inoculation. A concomitant depletion of accumulated cis‐1,2‐DCE was observed at all wells affected by bioaugmented Dehalococcoides. © 2008 Wiley Periodicals, Inc.  相似文献   

5.
The influence of aqueous‐ and mineral‐phase iron on royal demolition explosive (RDX) destruction has been previously investigated in theoretical settings and bench‐scale tests by various practitioners. The feasible use of in situ redox manipulation to create reactive Fe(II) is contingent upon the aquifer containing enough iron oxides and iron‐bearing clay minerals for the treated zone to remain effective. The following is a summary of a bench‐scale assessment of this relationship using aquifer material from an ongoing groundwater remediation effort at the Iowa Army Ammunition Plant (IAAP). A bench‐scale study was designed to determine the relative contributions of the biotic and iron‐mediated abiotic degradation processes to the net decrease in RDX observed at the site using saturated aquifer samples collected from within the RDX plume. Sterilized samples with a sufficient stoichiometric excess of both soluble and mineral‐phase iron reduced concentrations of RDX in both the soil and water fractions to the same extent as the samples containing native biota. These results indicate that in situ, abiotic degradation of RDX is feasible in areas unsuitable to biotic degradation processes, yielding an additional alternative for in situ RDX remediation. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
At many sites, long‐term monitoring (LTM) programs include metals as chemicals of concern, although they may not be site‐related contaminants and their detected concentrations may be natural. At other sites, active remediation of organic contaminants in groundwater results in changes to local geochemical conditions that affect metal concentrations. Metals should be carefully considered at both types of sites, even if they are not primary contaminants of concern. Geochemical evaluation can be performed at LTM sites to determine if the monitored metals reflect naturally high background and, hence, can be removed from the analytical program. Geochemical evaluation can also be performed pre‐ and post‐treatment at active remediation sites to document the effects of organics remediation on metals and identify the processes controlling metal concentrations. Examples from both types of sites are presented in this article. © 2008 Wiley Periodicals, Inc.  相似文献   

7.
A conceptual approach of a novel application of in‐situ thermal processes that would either use a steam injection process or a steam/surfactant injection process was considered to remediate petroleum contaminated sediment residing in an abandoned canal. Laboratory tests were conducted in an attempt to volatilize or mobilize contaminants of concern (selected polycyclic aromatic hydrocarbons [PAHs]) from the contaminated sediment into a phase that could be physically removed. The processes were operated above ambient temperature and pressure in an attempt to increase the removal of the contaminants of concern from the sediment. The ability of both the steam injection process and the steam/surfactant process to remove PAHs from the sediment was considered ineffective; as only two of the seventeen selected PAHs (naphthalene and C1 naphthalene) were associated with a percentage mass reduction greater than 34% for both treatments (four trials). The steam/surfactant injection process generally resulted in higher reductions than the steam injection process, but had larger variances within the two trials using the treatment type. This preliminary evaluation suggests that steam‐based injection processes for removing petroleum contamination from this canal sediment, using the surfactants selected, equipment set‐up, and operating conditions studied, would be considered ineffective. © 2010 Wiley Periodicals, Inc. *
  • 1 This article is a U.S. Government work and, as such, is in the public domain of the United States of America.
  •   相似文献   

    8.
    Pressure‐pulse injection tools are widely used in the oil and gas extraction industry to increase well production yields; however, they have been sparingly used in the environmental industry. These injection tools work by applying a pressure pulse to the subsurface that can open subsurface pore throats in unconsolidated material, increasing yields or increasing a radius of influence from a substrate injection. Collection trenches at an industrial site were installed to increase recovery of No. 2 fuel oil in the subsurface and maintain hydraulic control of the contaminant plume. However, after operating for seven years, significant reduction in recovery was observed. Diminished recovery was attributed to biofouling, iron fouling, and/or excessive scaling. A pilot test was conducted in 2009 to determine if a pressure‐pulse injection tool could be used to inject an antifouling agent and rehabilitate two of the site collection trenches. The pilot test was successful in increasing the transmissivity of both trenches, with an order‐of‐magnitude increase in groundwater recovery at Collection Trench 1 and a 50 percent increase in recovery at Collection Trench 2. The trench rehabilitation using the pressure‐pulse injection tool was conducted at two other site collection trenches in 2010 with similar success and is now proposed as part of regular maintenance of the trenches on an as‐needed basis. © 2011 Wiley Periodicals, Inc.  相似文献   

    9.
    Journal of Material Cycles and Waste Management - Compost Supply–Demand (CSD) dynamics is one of the important aspects to consider when assessing composting plants’ sustainability....  相似文献   

    10.
    A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil‐gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert‐butyl ether concentrations have decreased in groundwater. Interpolations of free‐phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on‐site, even in a noncontaminated control area. All four Populus clones survived well at the site. © 2014 Wiley Periodicals, Inc.*  相似文献   

    11.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号