首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The East Gate Disposal Yard (EGDY) at Fort Lewis is the source of a large trichloroethene (TCE) plume at this military installation. Source reduction using thermal treatment was applied using electrical resistance heating. A total of about 5,800 kg of TCE‐equivalent volatile organic compounds (VOCs; TCE and dichloroethene) was extracted during thermal treatment of the three zones selected for source reduction. Pretreatment groundwater TCE concentrations were measured up to 100 ppm. Posttreatment groundwater TCE concentrations within the treatment zones averaged less than 100 ppb. Posttreatment soil TCE concentrations decreased by over 96 percent compared to pretreatment soil concentrations. The overall contaminant flux from EGDY was reduced by an estimated 60 to 90 percent by the source reduction effort. The traditional and new techniques for site characterization and remediation performance monitoring applied at EGDY provide insight for installing, operating, monitoring, and assessing thermal treatment. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
A sulfuric acid leak in 1988 at a chloroethene‐contaminated groundwater site at the Naval Air Station Pensacola has resulted in a long‐term record of the behavior of chloroethene contaminants at low pH and a unique opportunity to assess the potential impact of source area treatment technologies, which involve acidification of the groundwater environment (e.g., Fenton's‐based in situ chemical oxidation), on downgradient natural attenuation processes. The greater than 75 percent decrease in trichloroethene (TCE) concentrations and the shift in contaminant composition toward predominantly reduced daughter products (dichloroethene [DCE] and vinyl chloride [VC]) that were observed along a 30‐m groundwater flow path characterized by highly acidic conditions (pH = 3.5 ± 0.4) demonstrated that chloroethene reductive dechlorination can continue to be efficient under persistent acidic conditions. The detection of Dehalococcoides‐type bacteria within the sulfuric acid/chloroethene co‐contaminant plume was consistent with biotic chloroethene reductive dechlorination. Microcosm studies conducted with 14C‐TCE and 14C‐VC confirmed biotic reductive dechlorination in sediment collected from within the sulfuric acid/chloroethene co‐contaminant plume. Microcosms prepared with sediment from two other locations within the acid plume, however, demonstrated only a limited mineralization to 14CO2 and 14CO, which was attributed to abiotic degradation because no significant differences were observed between experimental and autoclaved control treatments. These results indicated that biotic and abiotic mechanisms contributed to chloroethene attenuation in the acid plume at NAS Pensacola and that remediation techniques involving acidification of the groundwater environment (e.g., Fenton's‐based source area treatment) do not necessarily preclude efficient chloroethene degradation. © 2007 Wiley Periodicals, Inc.  相似文献   

3.
Residual dense nonaqueous phase liquid (DNAPL) composed of trichloroethene (TCE) was identified in a deeper interval of an overburden groundwater system at a manufacturing facility located in northern New England. Site hydrostratigraphy is characterized by two laterally continuous and transmissive zones consisting of fully‐saturated fine sand with silt and clay. The primary DNAPL source was identified as a former dry well with secondary contributions from a proximal aboveground TCE storage tank. A single additive‐injection mobilization in 2001 utilizing a food‐grade injectate formulated with waste dairy product and inactive yeast enhanced residual TCE DNAPL destruction in situ by stimulating biotic reductive dechlorination. The baseline TCE concentration was detected up to 97,400 μg/L in the deeper interval of the overburden groundwater system, and enhanced reductive dechlorination (ERD) achieved >99 percent reduction in TCE concentrations in groundwater over nine years with no evidence of sustained rebound. TCE concentrations have remained nondetect below 2.0 μg/L for the last five consecutive sampling rounds between 2013 and 2015. ERD utilizing a food‐grade injectate is a green remediation technology that has destroyed residual DNAPL at the site and achieved similar results at other residual DNAPL sites during both pilot‐ and full‐scale applications. ©2016 Wiley Periodicals, Inc.  相似文献   

4.
The chlorinated volatile organic compounds (CVOCs), tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1‐trichloroethane (1,1,1‐TCA), often found as commingled contaminants of concern (COCs) in groundwater, can degrade via a variety of biotic and abiotic reductive pathways. In situ remediation of a groundwater contaminant source area containing commingled 1,1,1‐TCA, PCE, and TCE was conducted using a combined remedy/treatment train approach. The first step was to create geochemically reducing conditions in the source area to degrade the CVOCs to lesser chlorinated CVOCs (i.e., 1,1‐dichloroethane [1,1‐DCA], 1,1‐dichlorethene [1,1‐DCE], cis‐1,2‐dichoroethene [cis‐1,2‐DCE], and vinyl chloride [VC]) via enhanced reductive dechlorination (ERD). Carbon substrates were injected to create microbial‐induced geochemically reducing conditions. An abiotic reductant (zero‐valent iron [ZVI]) was also used to further degrade the CVOCs, minimizing the generation of 1,1‐DCE and VC, and co‐precipitate temporarily mobilized metals. An in situ aerobic zone was created downgradient of the treatment zone through the injection of oxygen. Remaining CVOC degradation products and temporarily mobilized metals (e.g., iron and manganese) resulting from the geochemically reducing conditions were then allowed to migrate through the aerobic zone. Within the aerobic zone, the lesser chlorinated CVOCs were oxidized and the solubilized metals were precipitated out of solution. The injection of a combination of carbon substrates and ZVI into the groundwater system at the site studied herein resulted in the generation of a geochemically reducing subsurface treatment zone that has lasted for more than 4.5 years. Mass concentrations of total CVOCs were degraded within the treatment zone, with near complete transformation of chlorinated ethenes and a more than 90 percent reduction of CVOC mass concentrations. Production of VC and 1,1‐DCE has been minimized through the combined effects of abiotic and biological processes. CVOC concentrations have declined over time and temporarily mobilized metals are precipitating out of the dissolved phase. Precipitation of the dissolved metals was mitigated using the in situ oxygenation system, also resulting in a return to aerobic conditions in downgradient groundwater. Chloroethane (CA) is the dominant CVOC degradation product within the treatment zone and downgradient of the treatment zone, and it is expected to continue to aerobically degrade over time. CA did not accumulate within and near the aerobic oxygenation zone. The expectations for the remediation system are: (1) the concentrations of CVOCs (primarily in the form of CA) will continue to degrade; (2) total organic carbon concentrations will continue to decline to pre‐remediation levels; and, (3) the groundwater geochemistry will experience an overall trend of transitioning from reducing back to pre‐remediation mildly oxidizing conditions within and downgradient of the treatment zone.  相似文献   

5.
In situ treatability studies are being conducted to evaluate various in situ technologies to manage groundwater contamination at the NASA Marshall Space Flight Center in Huntsville, Alabama. The focus of these studies is to evaluate remediation options for contaminated (mostly aerobic) groundwater occurring within the basal portion of a clayey residuum called the rubble zone. The tension‐saturated media and unsaturated media lying above the rubble zone are also being treated where they make up a significant component of the contaminant mass. An in situ chemical reduction field pilot test was implemented (following bench‐scale tests) during July and August 2000. The test involved the injection of zero‐valent iron powder in slurry form, using the FeroxSM process patented by ARS Technologies, Inc. The pilot test focused on trichloroethene (TCE)‐contaminated groundwater within the rubble zone. Maximum pre‐injection concentrations of about 72,800 micrograms per liter (μg/l) were observed and no secondary sources are believed to exist beneath the area. The potential presence of unexploded ordnance forced an implementation strategy where source area injections were completed, as feasible, followed by overlapping injections in a down gradient alignment to create a permeable reactive zone for groundwater migration. Eight post‐injection rounds of groundwater performance monitoring were completed. The results are encouraging, in terms of predicted responses and decreasing trends in contaminant levels. © 2003 Wiley Periodicals, Inc.  相似文献   

6.
When used in combination with source management strategies, monitored natural attenuation (MNA) is likely to be a technically feasible remediation option if the contaminant persistence time along the flow path is less than (a) the transport time to the compliance point and (b) the time available for groundwater remediation objectives to be achieved. Biodegradation is often the most significant natural attenuation process for benzene, toluene, ethylbenzene, and xylenes (BTEX) in groundwater. While BTEX transport rates increase with groundwater velocity, examination of data obtained from the published literature for seven sites undergoing MNA revealed significant positive correlations between groundwater velocity and first‐order biodegradation rates for toluene (r = 0.83, P < 0.05), ethylbenzene (r = 0.93, P < 0.01), m‐ and p‐xylene (r = 0.96, P < 0.01), and o‐xylene (r = 0.78, P < 0.05). This is attributed to increased dispersion at higher velocities leading to more mixing of electron acceptors with the contaminant plume. There was no positive correlation between groundwater velocity and first‐order biodegradation rates for benzene due to noise in the relationship caused by variations in (a) the concentrations of electron acceptors in the uncontaminated groundwater and (b) the proportions of benzene in the total BTEX concentration in the source area. A regression model of the relationship between groundwater velocity and the first‐order biodegradation rate can be used to delineate operating windows for groundwater velocity within which the contaminant persistence time is less than the transport and remediation times for a given source concentration, target concentration, distance to compliance point, retardation factor, and remediation time. The operating windows can provide decision makers with a rapid indication of whether MNA is likely to be a technically feasible remediation option at a given site. © 2005 Wiley Periodicals, Inc.  相似文献   

7.
Historic mineral ore processing operations at the former Cyprus Foote Mineral Site located in East Whiteland Township, Pennsylvania, have resulted in the creation of an approximately 10,000‐foot‐long off‐site groundwater plume impacted with lithium and bromate. The plume emanating from the site is impacting the groundwater quality of downgradient private residences. As an early part of the remedial implementation, the private residences were provided with public water connections while the source control efforts were being designed and implemented. Bromate and lithium have recently emerged as groundwater contaminants subjected to increased regulatory scrutiny. This is evidenced in a recently lowered Federal Maximum Contaminant Level (MCL) for bromate of 0.010 milligrams per liter and a Medium‐Specific Concentration (MSC) of 0.005 mg/L for lithium recently proposed by the Pennsylvania Department of Environmental Protection (PADEP) for all groundwater within the Commonwealth. Elevated concentrations for bromate and lithium were detected above the Proposed Remediation Goals (PRGs) for the site, MCLs, and MSCs at a distance of 7,300 feet and 9,200 feet from the source area, respectively. To reduce the contaminant concentrations within the groundwater plume, which will ultimately result in a regressing plume, and to enable the Brownfield redevelopment of this Superfund site, auger‐based, in situ soil stabilization (ISS) with depths of up to 75 feet below ground surface (bgs) was selected as the remedy. The remedial implementation required the temporary removal and relocation of over 100,000 cubic yards of overburden to expose the lithium‐bearing tailings prior to treatment. Using customized 90‐foot‐long, 9‐foot‐diameter augers attached to cranes and drilling platforms, ancillary support excavators, and approximately 21,000 tons of reagent; 2,019 ISS columns were advanced to depths ranging from 10 to 74 feet bgs. This resulted in the creation of an in situ low‐permeablity 117,045‐yd3 “quasi‐monolith,” which encompasses a lateral extent of approximately three acres. The integration of a comprehensive ISS design with a comprehensive long‐term groundwater‐monitoring plan ensured the success of the ISS implementation and will enable a continued evaluation of the off‐site groundwater quality. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
A study was conducted to evaluate the efficacy of PHOSter® technology for treating groundwater contaminated with trichloroethene (TCE) at Edwards Air Force Base, California. The technology consists of injecting a gaseous mixture of air, methane, and nutrients into groundwater with the objective of stimulating the growth of methanotrophs, a naturally occurring microbial group that is capable of catalyzing the aerobic degradation of chlorinated solvents into nontoxic products. Injection operations were performed at one well for a period of three months. Six monitoring wells were utilized for groundwater and wellhead vapor monitoring and for groundwater and microbial sampling. In the five monitoring wells located within 44 feet of the injection well, the following results were observed: dissolved oxygen concentrations increased to a range between 6 and 8 milligrams per liter (μg/L); the biomass of target microbial groups increased by one to five orders of magnitude; and TCE concentrations decreased by an average of 92 percent, and to below the California primary maximum contaminant level (MCL; 5 micrograms per liter [µg/L]) in the well closest to the injection well. © 2008 Wiley Periodicals, Inc. *
  • 1 This article is a U.S. Government work and, as such, is in the public domain of the United States of America.
  •   相似文献   

    9.
    Simulation of back‐diffusion remediation timeframe for thin silt/clay layers, or when contaminant degradation is occurring, typically requires the use of a numerical model. Given the centimeter‐scale vertical grid spacing required to represent diffusion‐dominated transport, simulation of back‐diffusion in a 3‐D model may be computationally prohibitive. Use of a local 1‐D model domain approach for simulating back‐diffusion is demonstrated to have advantages but is limited to only some applications. Incorporation of a local domain approach for simulating back‐diffusion in a new model, In Situ Remediation‐MT3DMS (ISR‐MT3DMS) is validated based on a benchmark with MT3DMS and comparisons with a highly discretized finite difference numerical model. The approach used to estimate the vertical hydrodynamic dispersion coefficient is shown to have a significant influence on the simulated flux into and out of silt/clay layers in early time periods. Previously documented back‐diffusion at a Florida site is modeled for the purpose of evaluating the sensitivity of the back‐diffusion controlled remediation timeframe to various site characteristics. A base case simulation with a clay lens having a thickness of 0.2 m and a length of 100 m indicates that even after 99.96 percent aqueous TCE removal from the clay lens, the down‐gradient concentrations still exceed the MCL in groundwater monitoring wells. This shows that partial mass reduction from a NAPL source zone via in situ treatment may have little benefit for the long‐term management of contaminated sites, given that back‐diffusion will sustain a groundwater plume for a long period of time. Back‐diffusion model input parameters that have the greatest influence on remediation timeframe and thus may warrant more attention during field investigations, include the thickness of silt/clay lenses, retardation coefficient representing sorbed mass in silt/clay, and the groundwater velocity in adjacent higher permeability zones. Therefore, pump‐and‐treat systems implemented for the purpose of providing containment may have an additional benefit of reducing back‐diffusion remediation timeframe due to enhanced transverse advective fluxes at the sand/clay interface. Remediation timeframes are also moderately sensitive to the length of the silt/clay layers and transverse vertical dispersivity, but are less sensitive to degradation rates within silt/clay, contaminant solubility, contact time, tortuosity coefficient, and monitoring well‐screen length for the scenarios examined. ©2015 Wiley Periodicals, Inc.  相似文献   

    10.
    Two adjacent automotive component manufacturers in Japan had concentrations of trichloroethene (TCE) and perchloroethene (PCE) in soils and groundwater beneath their plants. One of the manufacturers extensively used these solvents in its processes, while the adjacent manufacturer had no documentation of solvent use. The conceptual site model (CSM) initially involved a single source that migrated from one building to under the adjacent building. Further, because low concentrations of daughter products (e.g., cis‐1,2‐dichloroethene; 3.6 to 840 micrograms per liter [μg/L]) were detected in groundwater, the CSM did not consider intrinsic degradation to be a significant fate mechanism. With this interpretation, the initial remedial design involved both source treatment and perimeter groundwater control to prevent offsite migration of the solvents in groundwater. Identifying whether intrinsic degradation was occurring and could be quantified represented a means of eliminating this costly and potentially redundant component. Further, incorporating intrinsic degradation into the remediation design would also allow for a more focused source treatment, resulting in further cost savings. Three rounds of sampling and data interpretation applying compound specific isotope analysis (CSIA) were used to refine the CSM. The first sampling round involved three‐dimensional CSIA (13C, 37Cl, and 2H), while the second two rounds involved 13C only, focusing on degradation over time. For the May 2012 sampling, δ13C for PCE ranged from –31‰ to –29.6 ‰ and for TCE ranged from –30.4‰ to –28.3‰; showing similar values. δ2H for TCE ranged from 581‰ to 629‰, indicating a manufactured TCE rather than that resulting from dehalogenation processes from PCE. However, mixing of manufactured TCE with that resulting from degraded PCE cannot be ruled out. Because of the similar δ13C ratios for PCE and TCE, and 37Cl data for PCE and TCE, fractionation and enrichment factors could not be relied upon. Fractionation patterns were evaluated using graphical methods to trace TCE to the source location to better focus the locations for steam injection. Graphical methods were also used to define the degradation mechanism and from this, incorporate intrinsic degradation processes into the remedial design, eliminating the need for a costly perimeter pump and treat system. ©2015 Wiley Periodicals, Inc.  相似文献   

    11.
    EOS, or emulsified oil substrate, was used to stimulate anaerobic biodegradation of trichloroethene (TCE) and tetrachloroethene (PCE) at a former Army‐owned manufacturing facility located in the Piedmont area of North Carolina. Previous use of chlorinated solvents at the facility resulted in soil and groundwater impacts. Ten years of active remediation utilizing soil vacuum extraction and air sparging (SVE/AS) were largely ineffective in reducing the TCE/PCE plume. In 2002, the Army authorized preparation of an amended Remedial Action Plan (RAP) to evaluate in situ bioremediation methods to remediate TCE in groundwater. The RAP evaluated eight groundwater remediation technologies and recommended EOS as the preferred bioremediation alternative for the site. Eight wells were drilled within the 100 × 100 feet area believed to be the primary source area for the TCE plume. In a first injection phase, dilute EOS emulsion was injected into half of the wells. Distribution of the carbon substrate through the treatment zone was enhanced by pumping the four wells that were not injected and recirculating the extracted water through the injection wells. The process was repeated in a second phase that reversed the injection/extraction well pairs. Overall, 18,480 pounds of EOS were injected and 163,000 gallons of water were recirculated through the source area. Anaerobic groundwater conditions were observed shortly after injection with a corresponding decrease in both PCE and TCE concentrations. Dissolved oxygen, oxidation‐reduction potential, and sulfate concentrations also decreased after injection, while TCE‐degradation products, ferrous iron, and methane concentrations increased. The reduction in TCE allowed the Army to meet the groundwater remediation goals for the site. Approximately 18 months after injection, eight wells were innoculated with a commercially prepared dechlorinating culture (KB‐1) in an attempt to address lingering cis‐1,2‐dichloroethene (cis‐DCE) and vinyl chloride (VC) that continued to be observed in some wells. Dehalococcoides populations increased slightly post‐bioaugmentation. Both cis‐DCE and VC continue to slowly decrease. © 2007 Wiley Periodicals, Inc.  相似文献   

    12.
    This study considered alternative configurations of passive wells equipped with filter cartridges for removing contaminated groundwater. The wells fully penetrated a simulated unconfined aquifer. Both homogeneous and heterogeneous hydraulic conductivity distributions were considered. An initial configuration comprised wells along the downgradient perimeter of a contaminant plume, spaced 0.5 m in the direction transverse to regional groundwater flow. Additional wells near the downgradient tip of the plume prevented off‐site contamination. Alternative configurations had the same number of wells, but some included wells along higher (interior) concentration contours to facilitate quicker removal of the contaminant plume. Results suggest that downgradient configurations generally outperform alternatives, although repositioning a few outer wells near the contaminant source may be effective in some cases. © 2009 Wiley Periodicals, Inc.  相似文献   

    13.
    Mechanical blending of contaminated soil with amendments has recently reemerged as an important treatment technology. From its original application using large‐diameter augers in the early 1990s to the current use of rotary drum blenders, soil blending is being used as an alternative to other remediation technologies like amendment injection and soil vapor and groundwater extraction. Shallow (approximately 10 m below ground surface [bgs] or less) soil blending also offers an alternative to excavation and disposal. Soil blending has been used to remediate a site with various contaminants including, but not limited to, chlorinated solvents, petroleum, and metals. The types of soils susceptible to soil blending vary from sands and gravels to silts and clays to fractured rock and combinations of all of these. The types of amendments blended include oxidants, reducing agents, biological enhancements, and stabilizing amendments. Soil blending systems deliver the power to the mixing head to adequately mix the soil and amendment to enhance remediation effectiveness. Since long‐term contamination is often a result of heterogeneously distributed residual contaminant in localized source zones that are difficult to access, the typical aim of soil blending is to homogenize the soil while effectively distributing amendment to these zones made accessible by blending. By effectively homogenizing the soil, however, soil blending will increase the void ratio and disrupt the shear strength and bearing capacity of the soil so an important component of a soil blending technology is proper recovery of these geotechnical parameters. This can be achieved by using well‐known soil improvement techniques such as amending all or a portion of the blended area with Portland cement or lime. Several case studies of soil blending treatments of different contaminants and amendments in various soil types are provided.  相似文献   

    14.
    1,4‐Dioxane, a common co‐contaminant with chlorinated solvents, is present in groundwater at Site 24 at Vandenberg Air Force Base in California. Historical use of chlorinated solvents resulted in concentrations of 1,4‐dioxane in groundwater up to approximately 2,000 μg/L. Starting in 2013, an in situ propane biosparge system operation demonstrated reductions in 1,4‐dioxane concentrations in groundwater. The work detailed herein extends the efforts of the first field demonstration to a second phase and confirms the biodegradation mechanism via use of stable isotope probing (SIP). After two months of operation, 1,4‐dioxane concentrations decreased approximately 45 to 83 percent at monitoring locations in the test area. The results of the SIP confirmed 13C‐enriched 1,4‐dioxane was transformed into dissolved inorganic carbon (suggesting mineralization to carbon dioxide) and incorporated into microbial biomass (likely attributed to metabolic uptake of biotransformation intermediates or of carbon dioxide).  ©2016 Wiley Periodicals, Inc.  相似文献   

    15.
    The chlorinated solvent stabilizer 1,4‐dioxane (DX) has become an unexpected and recalcitrant groundwater contaminant at many sites across the United States. Chemical characteristics of DX, such as miscibility and low sorption potential, enable it to migrate at least as far as the chlorinated solvent from which it often originates. This mobility and recalcitrance has challenged remediation professionals to redesign existing treatment systems and monitoring networks to accommodate widespread contamination. Furthermore, remediation technologies commonly applied to chlorinated solvent co‐contaminants, such as extraction and air stripping or in situ enhanced reductive dechlorination, are relatively ineffective on DX removal. These difficulties in treatment have required the industry to identify, develop, and demonstrate new and innovative technologies and approaches for both ex situ and in situ treatment of this emerging contaminant. Great strides have been made over the past decade in the development and testing of remediation technologies for removal or destruction of DX in groundwater. This article briefly summarizes the fate and transport characteristics of DX that make it difficult to treat, and presents technologies that have been demonstrated to be applicable to groundwater treatment at the field scale.  ©2016 Wiley Periodicals, Inc.  相似文献   

    16.
    In 1981, the Arizona Department of Health Services (ADHS) discovered groundwater contamination by solvents and chromium at the Phoenix Goodyear Airport (PGA), just outside the city of Phoenix. ADHS and the U.S. EPA sampled the site for the next two years, finding that eighteen of their wells were contaminated with trichloroethene (TCE), six exceeding ADHS's action level of five micrograms per liter (μg/l). In 1983, the PGA site was added to the National Priorities List, and, in 1984, EPA began a $3 million remedial investigation, focusing on soils and groundwater. This article discusses how that investigation inspired the authors to develop a stream-lined evaluation method for PGA's volatile organic compounds (VOCs), the process for establishing VOC cleanup levels, and the $26 million of remediation work needed to be done at the site. The heart of this effort is a computer program called VLEACH, loosely standing for VOC-LEACHing, which anticipates the influence of VOCs on PGA's groundwater, even as remediation proceeds.  相似文献   

    17.
    In the 1960s, trichloroethene (TCE) was used at what is now designated as Installation Restoration Program Site 32 Cluster at Vandenberg Air Force Base to flush missile engines prior to launch and perhaps for other degreasing activities, resulting in releases of TCE to groundwater. The TCE plume extends approximately 1 kilometer from the previous launch facilities beyond the southwestern end of the site. To limit further migration of TCE and chlorinated degradation by‐products, an in situ, permeable, reactive bioremediation barrier (biobarrier) was designed as a cost‐effective treatment technology to address the TCE plume emanating from the source area. The biobarrier treatment would involve injecting carbon‐based substrate and microbes to achieve reductive dechlorination of volatile organic compounds, such as TCE. Under reducing conditions and in the presence of certain dechlorinating microorganisms, TCE degrades to nontoxic ethene in groundwater. To support the design of the full‐scale biobarrier, a pilot test was conducted to evaluate site conditions and collect pertinent design data. The pilot test results indicated possible substrate delivery difficulties and a smaller radius of influence than had been estimated, which would be used to determine the final biobarrier well spacing. Based on these results, the full‐scale biobarrier design was modified. In January 2010, the biobarrier was implemented at the toe of the source area by adding a fermentable substrate and a dechlorinating microbial culture to the subsurface via an injection well array that spanned the width of the TCE plume. After the injections, the groundwater pH in the injection wells continued to decrease to a level that could be detrimental to the population of Dehalococcoides in the SDC‐9TM culture. In addition, 7 months postinjection, the injection wells could not be sampled due to fouling. Cleaning was required to restore their functions. Bioassay and polymerase chain reaction analyses were conducted, as well as titration tests, to assess the need for biobarrier amendments in response to the fouling issues and low pH. Additionally, slug tests were performed on three wells to evaluate possible localized differences in hydraulic conductivity within the biobarrier. Based on the test results, the biobarrier was amended with sodium carbonate and inoculated a second time with SDC‐9TM. The aquifer pH was restored, and reductive dechlorination resumed in the treatment zone, evidenced by the reduction in TCE and the increase in degradation products, including ethene. © 2011 Wiley Periodicals, Inc.  相似文献   

    18.
    Using detailed mass balance and simple analytical models, a spreadsheet‐based application (BioBalance) was developed to equip decision makers with a predictive tool that can provide a semiquantitative projection of source‐zone concentrations and provide insight into the long‐term behavior of the associated chlorinated solvent plume. The various models were linked in a toolkit in order to predict the composite impacts of alternative source‐zone remediation technologies and downgradient attenuation processes. Key outputs of BioBalance include estimates of maximum plume size, the time frame for plume stabilization, and an assessment of the sustainability of anaerobic natural attenuation processes. The toolkit also provides spatial and temporal projections of integrated contaminant flux and plume centerline concentrations. Results from model runs of the toolkit indicate that, for sites trying to meet traditional, “final” remedial objectives (e.g., two to three orders of magnitude reduction in concentration with restoration to potable limits), “dispersive” mechanisms (e.g., heterogeneous flow and matrix diffusion) can extend remedial time frames and limit the benefits of source remediation in reducing plume sizes. In these cases, the removal of source mass does not result in a corresponding reduction in the time frame for source remediation or plume stabilization. However, this should not discourage practitioners from implementing source‐depletion technologies, since results from the toolkit demonstrate a variety of measurable benefits of source remediation. Model runs suggest that alternative, “intermediate” performance metrics can improve and clarify source remediation objectives and better monitor and evaluate effectiveness. Suggested intermediate performance metrics include reduction in overall concentrations or mass within the plume, reduction of flux moving within a plume, and reduction in the potential for risk to a receptor or migration of a target concentration of contaminant beyond a site boundary. This article describes the development of two key modules of the toolkit as well as illustrates the value of using intermediate performance metrics to evaluate the performance of a source‐remediation technology. © 2010 Wiley Periodicals, Inc.  相似文献   

    19.
    Old and unlined landfill sites pose a risk to groundwater and surface water resources. While landfill leachate plumes in sandy aquifers have been studied, landfills in clay till settings and their impact on receiving water bodies are not well understood. In addition, methods for quantitatively linking soil and groundwater contamination to surface water pollution are required. This paper presents a method which provides an estimate of the contaminant mass discharge, using a combination of a historical investigation and contaminant mass balance approach. The method works at the screening level and could be part of a risk assessment. The study site was Risby Landfill, an old unlined landfill located in a clay till setting on central Zealand, Denmark. The contaminant mass discharge was determined for three common leachate indicators: chloride, dissolved organic carbon and ammonium. For instance, the mass discharge of chloride from the landfill was 9.4 ton/year and the mass discharge of chloride to the deep limestone aquifer was 1.4 ton/year. This resulted in elevated concentrations of leachate indicators (chloride, dissolved organic carbon and ammonium) in the groundwater. The mass discharge of chloride to the small Risby Stream down gradient of the landfill was approximately 31 kg/year. The contaminant mass balance method worked well for chloride and dissolved organic carbon, but the uncertainties were elevated for ammonium due to substantial spatial variability in the source composition and attenuation processes in the underlying clay till.  相似文献   

    20.
    Methane (CH4) in ecosystems originates from ancient petroleum formed deep within the earth and/or via microbial fermentation of organic carbon and subsequent reduction of carbon dioxide (CO2). Given the complexity of different ecosystems, origins of CH4 present can be difficult to determine. This issue was realized in a situation where an antimethanogenic in situ chemical reduction (ISCR) remedial amendment containing organic carbon plus zero‐valent iron was applied to treat chlorinated solvents in groundwater at a former dry cleaner facility. The technology rapidly and effectively reduced the concentration of tetrachloroethene in groundwater thus meeting project goals without the stoichiometric accumulation of catabolites such as trichloroethene (TCE), cis‐1,2‐dichloroethene, or vinyl chloride and without excessive methanogenesis (e.g., <2 mg/L) in the treated area. However, approximately 9 months after treatment, increased levels of CH4 (from 5 to 10 mg/L) were observed downgradient from the treated area. The applied remedial amendment contained approximately 60% (weight basis) fermentation organic carbon and was therefore a potential source of this CH4. However, there was <500 mg/L total organic carbon in groundwater emanating from the upgradient treatment area which was unlikely sufficient to produce that much CH4. Moreover, the soil gas also contained benzene, toluene, ethylbenzene, and xylenes and other gasoline constituents. These data suggested that the presence of three gasoline/diesel underground storage tanks that were previously closed in place with no active remediation performed could be the source of elevated CH4. Thirdly, there were sewer lines, utilities, multiple gasoline stations, and industrial activities in the immediate area. With an initial assumption that CH4 source(s) could include the ISCR amendment over stimulation of production, gasoline sourced CH4 from nearby leaking lines, or sewage from local fractured pipes, carbon isotope analyses—radiocarbon (Δ14C) and stable carbon (δ13C)—were coupled with CH4 and CO2 concentration data from groundwater samples to determine the origin of respired carbon. The δ13C range for carbon sources respired in the process would be approximately ?26.5‰ to ?33.0‰ for the ISCR amendment and total petroleum hydrocarbons (TPH) residuals, respectively. Δ14C is approximately 0‰ and ?999‰ for the ISCR amendment (young carbon) and TPH (old carbon), respectively. The isotopic signature of respired gasses confirmed that elevated CH4 downgradient of the treated area originated primarily from sewer gasses (or fermentation of liquids released from sewer lines). This study provides an overview of the capability to apply carbon isotope geochemistry to confirmation of remedial protocols and sources of anthropogenic carbon pools that conclusively identify the origin of CH4 in a complex ecosystem undergoing a remedial action.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号