首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For a pilot-scale application, pH control in the treatment of highly contaminated dye industrial wastewater containing metallic compounds as the main pollutants has been investigated with a method using adaptive heuristic criticism control (AHCC). Subsequent experimentation on between 12 and 18 l of the wastewater was carried out using statistical experimental design methodology to evaluate the effects of three critical factors: slaked lime (calcium hydroxide, Ca(OH)(2)) concentration, iron chloride (FeCl(3)) concentration and wastewater volume. With these critical factors, the wastewater treatment process is modeled as an appropriate quadratic cost function of the turbidity of the clarified water. The model is optimized with Rosenbrock's method. Response surface topology of the wastewater treatment is given in terms of optimal concentrations of lime water and FeCl(3) and optimal wastewater volume at pH 11.  相似文献   

2.
This paper presents industrial experience of process identification, monitoring, and control in a full-scale wastewater treatment plant. The objectives of this study were (1) to apply and compare different process-identification methods of proportional-integral-derivative (PID) autotuning for stable dissolved oxygen (DO) control, (2) to implement a process monitoring method that estimates the respiration rate simultaneously during the process-identification step, and (3) to propose a simple set-point decision algorithm for determining the appropriate set point of the DO controller for optimal operation of the aeration basin. The proposed method was evaluated in the industrial wastewater treatment facility of an iron- and steel-making plant. Among the process-identification methods, the control signal of the controller's set-point change was best for identifying low-frequency information and enhancing the robustness to low-frequency disturbances. Combined automatic control and set-point decision method reduced the total electricity consumption by 5% and the electricity cost by 15% compared to the fixed gain PID controller, when considering only the surface aerators. Moreover, as a result of improved control performance, the fluctuation of effluent quality decreased and overall effluent water quality was better.  相似文献   

3.
Dye wastewater is one of the most difficult to treat. There has been exhaustive research on biosorption of dye wastewater. It is evolving as an attractive option to supplement conventional treatment processes. This paper examines various biosorbents such as fungi, bacteria, algae, chitosan and peat, which are capable of decolorizing dye wastewaters; discusses various mechanism involved, the effects of various factors influencing dye wastewater decolorization and reviews pretreatment methods for increasing the biosorption capacity of the adsorbents. The paper examines the mismatch between strong scientific progress in the field of biosorption and lack of commercialization of research.  相似文献   

4.
This study investigated the efficiency of electrocoagulation in removing color from synthetic and real textile wastewater. Two representative dye molecules were selected for the synthetic dye wastewater: a blue reactive dye (Reactive Blue 140) and a disperse dye (Disperse Red 1). The electrochemical technique showed satisfactory color removal efficiency and reliable performance in treating both individual and mixed dye types. The removal efficiency and energy consumption data showed that, for a given current density, iron was superior to aluminum in treating both the reactive dye and the disperse dye. With an initial dye concentration of 100 mg L?1, the energy cost in achieving >95% color removal was on the order of 1 kWh m?3 for both dyes. The effect of changing the initial pH of the samples on the removal efficiency and energy consumption was also studied. It was found that the design parameters used for the synthetic wastewater were less effective for treatment of real textile wastewater, with 1 in 5 tests on real wastewater failing.  相似文献   

5.
彭建兰  张英堂 《环境技术》2009,27(6):23-25,35
PID算法是一个广泛应用于工业控制的算法,但它对大惯性、大延迟、多变量的湿热交变控制系统实现精确控温控湿显得较为困难。本文介绍了一种基于模糊控制规则的积分分离模糊PID控制器,当系统调节开始时由于系统误差较大,系统的控制主要由模糊PD控制来实现;当系统误差较小时加入积分控制环节,系统切换为模糊PID控制,并将其应用于高温湿热试验系统控制,结果表明这种方法比普通PID控制精度高、超调量小,特别是对大范围温湿的变化具有更好的适应性和稳定性。  相似文献   

6.
Prediction of construction cost of wastewater treatment facilities could be influential for the economic feasibility of various levels of water pollution control programs. However, construction cost estimation is difficult to precisely evaluate in an uncertain environment and measured quantities are always burdened with different types of cost structures. Therefore, an understanding of the previous development of wastewater treatment plants and of the related construction cost structures of those facilities becomes essential for dealing with an effective regional water pollution control program. But deviations between the observed values and the estimated values are supposed to be due to measurement errors only in the conventional regression models. The inherent uncertainties of the underlying cost structure, where the human estimation is influential, are rarely explored. This paper is designed to recast a well-known problem of construction cost estimation for both domestic and industrial wastewater treatment plants via a comparative framework. Comparisons were made for three technologies of regression analyses, including the conventional least squares regression method, the fuzzy linear regression method, and the newly derived fuzzy goal regression method. The case study, incorporating a complete database with 48 domestic wastewater treatment plants and 29 industrial wastewater treatment plants being collected in Taiwan, implements such a cost estimation procedure in an uncertain environment. Given that the fuzzy structure in regression estimation may account for the inherent human complexity in cost estimation, the fuzzy goal regression method does exhibit more robust results in terms of some criteria. Moderate economy of scale exists in constructing both the domestic and industrial wastewater treatment plants. Findings indicate that the optimal size of a domestic wastewater treatment plant is approximately equivalent to 15,000 m3/day (CMD) and higher in Taiwan. Yet the optimal size of an industrial wastewater treatment plant could fall in between 6000 CMD and 20,000 CMD.  相似文献   

7.
In this research, the performance of Polyaluminium Chloride (PAC) and Polyaluminium Chloride sludge (PACS) as coagulants for acid red 119 (AR119) dye removal from aqueous solutions were compared. The sample of PACS was collected from "Baba Sheikh Ali" water treatment plant (Isfahan, Iran) where PAC is used as a coagulant in the coagulation/flocculation process. A response surface methodology was applied to evaluate the simple and combined effects of the operating variables including initial pH, coagulant dosage and initial dye concentration and to optimize the operating conditions of the treatment process. Results reveal that the optimal conditions for dye removal were initial pH 3.42, coagulant dosage of 4.55 g dried PACS/L and initial dye concentration of 140 mg/L for PACS, while the optimal initial pH, coagulant dosage and initial dye concentration for PAC were 3.8, 57 mg/L and 140 mg/L, respectively. Under these optimal values of process parameters, the dye removal efficiency of 94.1% and 95.25% was observed for PACS and PAC, respectively. Although lower amount of PAC in comparison with PACS was needed for specific dye removal, the reuse of PACS as a low-cost material can offer some advantages such as high efficiency for AR119 dye removal and economic savings on overall water and wastewater treatment plant operation costs.  相似文献   

8.
Chitosan (a biopolymer) is an aminopolysaccharide that can be used for the treatment of colored solutions by coagulation–flocculation (as an alternative to more conventional processes such as sorption). Acid Blue 92 (a sulfonic dye) was selected as a model dye for verifying chitosan's ability to treat textile wastewater. A preliminary experiment demonstrated that chitosan was more efficient at color removal in tap water than in demineralized water, and that a substantially lower concentration of chitosan could be used with tap water. Dye removal reached up to 99% under optimum concentration; i.e., in terms of the acidic solutions and the stoichiometric ratio between the amine groups of the biopolymer and the sulfonic groups in the dye. The flocs were recovered and the dye was efficiently removed using alkaline solutions (0.001–1 M NaOH solutions) and the biopolymer, re-dissolved in acetic acid solution, was reused in a further treatment cycle.  相似文献   

9.
纤维转盘过滤技术在城市污水深度处理中的应用   总被引:3,自引:0,他引:3  
纤维转盘过滤作为一种污水深度处理新技术,比传统的砂滤具有革新性的原理和结构改进,在实现连续过滤的情况下可稳定去除SS,大幅降低运行成本,全面提高过滤效率,在我国城市污水一级A排放等污水深度处理领域应用前景广阔。  相似文献   

10.
染料废水脱色的物理化学处理技术   总被引:2,自引:0,他引:2  
染料废水目前主要的脱色方法有吸附、混凝、氧化还原和生化法.活性炭吸附适用于低浓度的染料废水处理.聚硅硫酸铁混凝效果与Fe/SiO4摩尔比和pH值相关.氢氧化镁可有效去除印染废水中的直接红染料.有机絮凝剂往往需要和其它药剂复配.氧化法脱色率大,但成本高昂,且受染料废水的组成、氧化性及pH值影响.还原法药剂价格低廉,但还原降解产物具有毒性,必须经过二次处理.生物法成本较低,又受制于染料的生物降解性.因此发展多种手段联合应用已是当前染料废水处理的研究方向.  相似文献   

11.
Summary This study is carried out to propose an appropriate treatment technology for wastewater discharged from a flavor production factory. Industrial wastewater discharged from this factory ranges between 50–70 m3/d with an average value of 60 m3/d. The major source of pollution in this factory is due to cleaning of the vessels therefore the treatment has been carried out on the end-of pipe wastewater. The wastewater is characterized by high values of COD, BOD, TSS and Oil and grease 4646, 2298, 1790 and 626 mg/l respectively. Primary sedimentation of the wastewater for four hours reduced the COD, BOD, TSS and Oil and grease by 43, 47, 80 and 74%, respectively. For the treatment of the produced wastewater, the biological treatment process such as activated sludge, rotating biological contactor (RBC), up-flow anaerobic sludge bed reactor (UASB) have been selected. The results from each treatment process proved to be efficient for the treatment of such wastewater. The treated wastewater characteristics are in compliance with the Egyptian law which regulates the discharge of industrial wastewater to the sewerage system. The RBC was selected and installed by the factory as it has the advantage of low operating and maintenance costs. The factory RBC performance was monitored; characteristics of the treated effluent in terms of oil and grease, COD, BOD and TSS were 27, 362, 139 and 95 mg/l, respectively.  相似文献   

12.
A reliable model for any wastewater treatment plant is essential in order to provide a tool for predicting its performance and to form a basis for controlling the operation of the process. This would minimize the operation costs and assess the stability of environmental balance. This process is complex and attains a high degree of nonlinearity due to the presence of bio-organic constituents that are difficult to model using mechanistic approaches. Predicting the plant operational parameters using conventional experimental techniques is also a time consuming step and is an obstacle in the way of efficient control of such processes. In this work, an artificial neural network (ANN) black-box modeling approach was used to acquire the knowledge base of a real wastewater plant and then used as a process model. The study signifies that the ANNs are capable of capturing the plant operation characteristics with a good degree of accuracy. A computer model is developed that incorporates the trained ANN plant model. The developed program is implemented and validated using plant-scale data obtained from a local wastewater treatment plant, namely the Doha West wastewater treatment plant (WWTP). It is used as a valuable performance assessment tool for plant operators and decision makers. The ANN model provided accurate predictions of the effluent stream, in terms of biological oxygen demand (BOD), chemical oxygen demand (COD) and total suspended solids (TSS) when using COD as an input in the crude supply stream. It can be said that the ANN predictions based on three crude supply inputs together, namely BOD, COD and TSS, resulted in better ANN predictions when using only one crude supply input. Graphical user interface representation of the ANN for the Doha West WWTP data is performed and presented.  相似文献   

13.
李剑波 《四川环境》2011,30(2):83-87
二沉池的运行状况对整个污水处理系统的处理效果有重要影响。沉淀池的处理效果与沉淀池内水流特性密切相关。传统的沉淀池设计基于理想沉淀池假设和静置沉淀实验,对沉淀池内的水流特性考虑不多,设计参数选择范围宽,经验性强,不能保证沉淀池内的泥水分离和浓缩效果。计算流体力学是一种较为成熟的数值模拟技术,已广泛应用于水处理构筑物在设计条件下的内部水流特性和行为的研究,为预测沉淀池的运行状况和结构改进的效果提供了有效手段。本文对沉淀池内的水流特性和流体力学在沉淀池研究中的应用进行了描述。  相似文献   

14.
活性炭膜处理工业废水的试验研究   总被引:2,自引:0,他引:2  
将活性炭膜与常规弹性材料同时作为生物接触氧化处理工艺的填料,分别加装在相同条件的两套接触氧化池中,采用生物接触氧化处理工艺,在同样的条件下处理工业废水,经过对试验数据的对比分析得出:以活性炭膜为填料,处理废水的能力更强,净化效果更好。  相似文献   

15.
Epichlorohydrin-dimethylamine polymers with different intrinsic viscosity (η) and cationicity (τ) were synthesized. The flocculation performance and mechanism of these polymers in the removal of the reactive and disperse dyes from synthetic wastewater was investigated in terms of flocculation dynamics and color removal efficiency. The polymer flocculation efficiency was compared with that of polyaluminum chloride (PAC) and a composite flocculant based on polyaluminum chloride-epichlorohydrin-dimethylamine polyamine. The results showed that epichlorohydrin-dimethylamine polymer was effective over a pH range of 2–10 for the reactive and disperse dye removal (Reactive Brilliant Red and Disperse Yellow dyes). Epichlorohydrin-dimethylamine polymer with the highest η and τ gave the best reactive dye removal efficiency, and its adsorption-bridging and electric neutralization ability played important roles in the flocculation process. The higher the η viscosity of the epichlorohydrin-dimethylamine polymer, the better the flocculation performance of epichlorohydrin-dimethylamine polyamine, and stronger adsorption-bridging ability was obtained for removing the disperse dye from dyeing wastewaters. Epichlorohydrin-dimethylamine polymer achieved better decolorization performance when used together with PAC.  相似文献   

16.
Although the application of complex integrated models to wastewater systems is useful, it is often difficult to implement and not always suitable for the design of new systems or for their rehabilitation. Integrated simple approaches that allow assessing the environmental performance of urban wastewater systems may be advantageous, especially during the initial phases of the system planning process. This paper presents an original, straightforward approach that can be used for planning, design and operation of urban wastewater systems. The INtegrated Simplified Approach (INSA) combines the concepts of performance indicators with mass balances and can be applied to wastewater systems as a management support tool, particularly in situations where there is lack of data, economic limitations or time constraints. The INSA was applied to the Algés-Alcantara wastewater system to evaluate its environmental performance and to simulate the individual or combined impact of the rehabilitation measures proposed, thus defining their priority. The results clearly indicate that, despite the investment already made upgrading the wastewater treatment plant (WWTP), the proposed interventions must be implemented to ensure an acceptable environmental performance of the system. In addition, the results demonstrate the significant pollution loads present in stormwater, frequently higher than the pollution loads discharged into receiving waters during dry weather.  相似文献   

17.
Photocatalytic degradation of organic wastes with nanosized titanium dioxide particles has been studied for a long time in order to offer an appropriate method for wastewater treatment, but its practical application is greatly limited by the slow process. In this work, an electrochemically assisted TiO2 photocatalytic system was set-up by combining a TiO2 photocatalytic cell with a three-electrode potentiostatic unit. The composite system revealed high photocatalytic activity towards organic wastes mineralization. After continuous treatment for 0.5 h, the maximum absorption of rhodamine 6G (R-6G) was reduced by more than 90%; chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) of textile dye wastewater (TDW) were decreased by 93.9 and 88.7%, respectively. The biodegradability of TDW was also improved because the COD/BOD5 ratio decreased from 2.1 to 1.2. All these results indicated that the composite system could be used for effective organic wastes mineralization or as a feasible detoxification and color removal pretreatment stage for biological post treatment.  相似文献   

18.
Accelerated expansion of wastewater services to small communities in the Middle East and North Africa (MENA) is essential in order to address serious concerns over water scarcity and pollution in addition to meeting the demand for convenience and protecting public health. Centralized and conventional wastewater systems are currently the preferred choice of planners and decision-makers in MENA. Water and funding are not available to provide these centralized conventional services to small communities. This paper presents an integrated approach to sustainable wastewater management for small communities in MENA under the severe water resources crisis. The approach calls for a paradigm shift from centralized conventional wastewater systems to decentralized wastewater systems. Management of wastewater in MENA should start at home. Wastewater generation should be reduced through a combination of domestic water conservation measures. On-site systems must be improved and monitored to control pollution and to recover water for non-potable water uses. Should the circumstances not allow the use of on-site systems, wastewater should be transported and managed through a community system applying the principles of decentralized wastewater management and using the settled sewers for wastewater transportation where appropriate. This approach will facilitate the accelerated and sustainable extension of environmentally responsible wastewater services to MENA's small communities. It offers great potential for cost reduction, accommodates the necessary domestic water conservation efforts, reduces freshwater inputs in wastewater transportation thus eliminating unnecessary demand on freshwater, reduces associated environmental risks and increases wastewater reuse opportunities.  相似文献   

19.
Wastewater management in small and medium-sized enterprises representing the chemical and food industries was investigated. The results showed that wastewater discharged from an ink-production factory was highly contaminated with organic pollutants. Anaerobic biological treatment followed by chemical coagulation using ferric chloride aided with lime proved to be very effective and produced an effluent that complied with national regulatory standard for wastewater discharge into public sewage network. Also, management of wastewater from a confectionery factory representing the food sector was carried out. Aerobic biological treatment using plastic-packed trickling filter proved to be an effective treatment method. However, application of in-plant control measures alleviated the requirement for the construction of a wastewater treatment plant. The applied pollution prevention and cleaner production measures involved good housekeeping, recovery of spent chocolate, modification of floor cleaning and installation of suction devices for the removal of sugar and starch powders. All improvement measures were documented by cost/benefit analysis.  相似文献   

20.
Sustainability of wastewater treatment technologies   总被引:3,自引:1,他引:2  
A set of indicators that incorporate environmental, societal, and economic sustainability were developed and used to investigate the sustainability of different wastewater treatment technologies, for plant capacities of <5 million gallons per day (MGD) or 18.9 x 10(3) cubic meters (m(3)/day). The technologies evaluated were mechanical (i.e., activated sludge with secondary treatment), lagoon (facultative, anaerobic, and aerobic), and land treatment systems (e.g., slow rate irrigation, rapid infiltration, and overland flow). The economic indicators selected were capital, operation and management, and user costs because they determine the economic affordability of a particular technology to a community. Environmental indicators include energy use, because it indirectly measures resource utilization, and performance of the technology in removing conventional wastewater constituents such as biochemical oxygen demand, ammonia nitrogen, phosphorus, and pathogens. These indicators also determine the reuse potential of the treated wastewater. Societal indicators capture cultural acceptance of the technology through public participation and also measure whether there is improvement in the community from the specific technology through increased job opportunities, better education, or an improved local environment. While selection of a set of indicators is dependent on the geographic and demographic context of a particular community, the overall results of this study show that there are varying degrees of sustainability with each treatment technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号