首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Yu TY  Lin YC  Chang LF 《Chemosphere》2000,41(3):399-407
The maximum incremental reactivity (MIR) scale was chosen as a practical index for quantifying ozone-forming impacts. The integer linear and nonlinear programming techniques were employed as the optimization method to maximize MIR and volatile organic compound (VOC) reductions, and minimize ozone's marginal cost with varied control costs. Mobile vehicles were divided into nine categories according to the demands of decision makers and the distinctive features of local circumstance in metro-Taipei. The emission factor (EF) and vehicle kilometers traveled (VKT) of each kind of vehicle were estimated by MOBILE5B model via native parameters and questionnaires. Compressed natural gas (CNG) and inspection and maintenance (I/M) were the alternative control programs for buses and touring buses; liquefied petroleum gas (LPG), I/M, methanol, electrical vehicle (EV) were for taxis and low duty gasoline vehicles. EV, methanol, and I/M were the possible control methods for two-stroke and four-stroke engine motorcycles; I/M programs for low-duty diesel trucks, heavy-duty diesel trucks, and low-duty gasoline trucks. The results include the emission ratios of specific vehicle to all vehicles, the best combination of abated measures based on different objectives, and the marginal cost for ozone and VOC with varied control costs.  相似文献   

2.
To provide a scientific basis for the selection and use of continuous monitors for exposure and/or health effects studies, and for compliance and episode measurements at strategic locations in the State of New Jersey, we evaluated the performance of seven continuous fine particulate matter (PM2.5) monitors in the present study. Gravimetric samplers, as reference methods, were collocated with realtime instruments in both laboratory and field tests. The results of intercomparison of real-time monitors showed that the two nephelometers used in this study correlated extremely well (r2 approximately 0.97), and two tapered element oscillating monitors (TEOM 1400 and TEOM filter dynamics measurement system [FDMS]) correlated well (r2 > 0.85), whereas two beta gauges displayed a weaker correlation (r2 < 0.6). During a summertime controlled (laboratory) evaluation, the measurements made with the gravimetric method correlated well with the 24-hr integrated measurements made with the real-time monitors. The SidePak nephelometer overestimated the particle concentration by a factor of approximately 3.4 compared with the gravimetric method. During a summertime field evaluation, the TEOM FDMS monitor reported approximately 30% higher mass concentration than the Federal Reference Method (FRM); and the difference could be explained by the loss of semi-volatile materials from the FRM sampler. Results also demonstrated that 24-hr average PM2.5 mass concentrations measured by beta gauges and TEOM (50 degrees C) in winter correlated well with the integrated gravimetric method. Seasonal differences were observed in the performance of the TEOM (50 degrees C) monitor in measuring the particle mass attributed to the higher semi-volatile material loss in the winter weather. In applying the realtime particulate matter monitoring data into Air Quality Index (AQI) reporting, the Conroy method and the 8-hr end-hour average method were both found to be suitable.  相似文献   

3.
ABSTRACT

Road traffic is one of the main sources of particulate matter (PM) in the atmosphere. Despite its importance, there are significant challenges in the quantitative evaluation of its contribution to airborne concentrations. In order to propose effective mitigation scenarios, the proportions of PM traffic emissions, whether they are exhaust or non-exhaust emissions, should be evaluated for any given geographical location. In this work, we report on the first study to evaluate particulate matter emissions from all registered heavy duty diesel vehicles in Qatar. The study was applied to an active traffic zone in urban Doha. Dust samples were collected and characterized for their shape and size distribution. It was found that the particle size ranged from few to 600 μm with the dominance of small size fraction (less than 100 μm). In-situ elemental composition analysis was conducted for side and main roads traffic dust, and compared with non-traffic PM. The results were used for the evaluation of the enrichment factor and preliminary source apportionment. The enrichment factor of anthropogenic elements amounted to 350. The traffic source based on sulfur elemental fingerprint was almost 5 times higher in main roads compared with the samples from non-traffic locations. Moreover, PM exhaust and non-exhaust emissions (tyre wear, brake wear and road dust resuspension) were evaluated. It was found that the majority of the dust was generated from tyre wear with 33% followed by road dust resuspension (31%), brake wear (19%) and then exhaust emissions with 17%. The low contribution of exhaust PM10 emissions was due to the fact that the majority of the registered vehicle models were recently made and equipped with efficient exhaust PM reduction technologies.

Implication: This study reports on the first results related to the evaluation of PM emission from all registered diesel heavy duty vehicles in Qatar. In-situ XRF elemental analysis from main, side roads as well as non-traffic dust samples was conducted. Several characterization techniques were implemented and the results show that the majority of the dust was generated from tyre wear, followed by road dust resuspension and then brake wear; whereas exhaust emissions were tremendously reduced since the majority of the registered vehicle models were recently made and equipped with efficient exhaust PM reduction technologies. This implies that policy makers should place stringent measures on old vehicle license renewals and encourage the use of metro and public transportation.  相似文献   

4.
Abrasive blasting was performed in enclosed conditions to evaluate the effect of blast pressure, feed rate and surface contamination on Total Particulate Matter (TPM) emission factors for copper slag. Stack sampling methods were used to collect uncontrolled TPM. Emission factors were calculated as grams of TPM emitted per pound of copper slag used (g/lb) and grams of TPM emitted per square foot of area cleaned (g/sq.ft). Emission factor models were developed to study variation of TPM emission factors with pressure, feed rate and surface contamination. These models can be used to reduce emissions by selecting optimum operating condition as well as to determine emission factors at any operating conditions, within the tested range, for copper slag.  相似文献   

5.
A numerical particulate matter (PM) measurement model is developed to characterize and evaluate PM sampling methods. Simulations are conducted using the model to evaluate currently widely used PM samplers, including Federal Reference Method (FRM) samplers. The simulations show that current PM samplers are very vulnerable to both changes in measurement target (i.e., natural variability of particle size distribution) and the sampler's design, manufacturing, and operating conditions, potentially resulting in significant errors in the monitoring data. The numerical model is used in conjunction with two types of commercially available PM monitoring devices to form a Comprehensive Particulate Matter Monitoring System (CPMMS). The first type of device can be any mass-based PM monitor with a well-defined sampling efficiency curve. The second type of device is one capable of measuring particle size distribution with a reasonably good relative accuracy between size categories but not necessarily accurate in measuring absolute mass concentrations. This study shows that CPMMS can produce much higher quality PM monitoring data than the current PM samplers under the same conditions. In addition, unlike past and current PM monitoring data such as total suspended particulates, coarse PM (PM10), fine PM (PM2.5), etc., the CPMMS monitoring data will survive changes in PM regulatory definition. A new concept, dosimetry-based PM metrics and standards, is proposed to define ambient PM level based on the deposition fraction of particles in the human respiratory tract. The dosimetry-based PM metrics is more meaningful because it correlates the ambient PM level with the portion that can be deposited in the respiratory tract without an arbitrary cutoff particle diameter. CPMMS makes dosimetry-based PM metrics and standards feasible.  相似文献   

6.
Natural emissions adopted in current regional air quality modeling are updated to better describe natural background ozone and PM concentrations for North America. The revised natural emissions include organosulfur from the ocean, NO from lightning, sea salt, biogenic secondary organic aerosol (SOA) precursors, and pre-industrial levels of background methane. The model algorithm for SOA formation was also revised. Natural background ozone concentrations increase by up to 4 ppb in annual average over the southeastern US and Gulf of Mexico due to added NO from lightning while the revised biogenic emissions produced less ozone in the central and western US. Natural PM2.5 concentrations generally increased with the revised natural emissions. Future year (2018) simulations were conducted for several anthropogenic emission reduction scenarios to assess the impact of the revised natural emissions on anthropogenic emission control strategies. Overall, the revised natural emissions did not significantly alter the ozone responses to the emissions reductions in 2018. With revised natural emissions, ozone concentrations were slightly less sensitive to reducing NOx in the southeastern US than with the current natural emissions due to higher NO from lightning. The revised natural emissions have little impact on modeled PM2.5 responses to anthropogenic emission reductions. However, there are substantial uncertainties in current representations of natural sources in air quality models and we recommend that further study is needed to refine these representations.  相似文献   

7.
Monitoring of particulate matter outdoors   总被引:6,自引:0,他引:6  
  相似文献   

8.
The particle size distributions (PSDs) of particulate matter (PM) in the downwind plume from simulated sources of a cotton gin were analyzed to determine the impact of PM settling on PM monitoring. The PSD of PM in a plume varies as a function of gravitational settling. Gravitational settling has a greater impact on the downwind PSD from sources with PSDs having larger mass median diameters (MMDs). The change in PSD is a function of the source PSD of emitted PM, wind speed, and downwind distance. Both MMD and geometric standard deviation (GSD) in the downwind plume decrease with an increase in downwind distance and source MMD. The larger the source MMD, the greater the change in the downwind MMD and GSD. Also, the greater the distance from the source to the sampler, the greater the change in the downwind MMD and GSD. Variations of the PSD in the downwind plume significantly impact PM10 sampling errors associated with the U.S. Environmental Protection Agency (EPA) PM10 samplers. For the emission sources with MMD > 10 microm, the PM10 oversampling rate increases with an increase in downwind distance caused by the decrease of GSD of the PSD in the downwind plume. Gravitational settling of particles does not help reduce the oversampling problems associated with the EPA PM10 sampler. Furthermore, oversampling rates decrease with an increase of the wind speed.  相似文献   

9.
Modeling exposure to particulate matter   总被引:2,自引:0,他引:2  
Exposure assessment, a component of risk assessment, links sources of pollution with health effects. Exposure models are scientific tools used to gain insights into the processes affecting exposure assessment. The purpose of this paper is to review the process and methodology of estimating inhalation exposure to particulate matter (PM) using various types of models. Three types of models are discussed in the paper. Indirect type of models are physical models that employ inventories of outdoor and indoor sources and their emission rates to identify major sources contributing to exposure to PM, and use fate and transport and indoor air quality models to estimate PM concentrations at receptor sites. PM concentrations and time spent by a subject at each receptor site are input variables to the conventional exposure model that estimates the desired exposure levels. Direct type models use measured exposure or exposure concentrations in conjunction with information obtained from questionnaires to formulate exposure regression models. Stochastic models use exposure measurements, estimates can also be used, to formulate exposure population distributions and investigate associated uncertainty and variability. Since models developed using databases from western countries are not necessarily applicable in developing countries, the difference in requirements among western and developing countries is highlighted in the paper. Employment of exposure modeling methods in developing countries requires development of local information. Such information includes local outdoor and indoor source inventories, local or regional meteorological conditions, adjustment of indoor models to reflect local building construction conditions, and use of questionnaires to obtain local time budget and activity patterns of the subject population.  相似文献   

10.
Characterization of particulate matter for three sites in Kuwait   总被引:1,自引:0,他引:1  
Many studies have shown strong associations between particulate matter (PM) levels and a variety of health outcomes, leading to changes in air quality standards in many regions, especially the United States and Europe. Kuwait, a desert country located on the Persian Gulf, has a large petroleum industry with associated industrial and urban land uses. It was marked by environmental destruction from the 1990 Iraqi invasion and subsequent oil fires. A detailed particle characterization study was conducted over 12 months in 2004-2005 at three sites simultaneously with an additional 6 months at one of the sites. Two sites were in urban areas (central and southern) and one in a remote desert location (northern). This paper reports the concentrations of particles less than 10 microm in diameter (PM10) and fine PM (PM2.5), as well as fine particle nitrate, sulfate, elemental carbon (EC), organic carbon (OC), and elements measured at the three sites. Mean annual concentrations for PM10 ranged from 66 to 93 microg/m3 across the three sites, exceeding the World Health Organization (WHO) air quality guidelines for PM10 of 20 microg/m3. The arithmetic mean PM2.5 concentrations varied from 38 and 37 microg/m3 at the central and southern sites, respectively, to 31 microg/m3 at the northern site. All sites had mean PM2.5 concentrations more than double the U.S. National Ambient Air Quality Standard (NAAQS) for PM2.5. Coarse particles comprised 50-60% of PM10. The high levels of PM10 and large fraction of coarse particles comprising PM10 are partially explained by the resuspension of dust and soil from the desert crust. However, EC, OC, and most of the elements were significantly higher at the urbanized sites, compared with the more remote northern site, indicating significant pollutant contributions from local mobile and stationary sources. The particulate levels in this study are high enough to generate substantial health impacts and present opportunities for improving public health by reducing airborne PM.  相似文献   

11.
The intake fraction (iF) has been defined as the integrated incremental intake of a pollutant released from a source category or region summed over all exposed individuals. In this study we evaluated the iFs in the population of Europe for emissions of anthropogenic primary fine particulate matter (PM2.5) from sources in Europe, with a more detailed analysis of the iF from Finnish sources. Parameters for calculating the iFs include the emission strengths, the predicted atmospheric concentrations, European population data, and the average breathing rate per person. Emissions for the whole of Europe and Finland were based on the inventories of the European Monitoring and Evaluation Programme (EMEP) and the Finnish Regional Emission Scenario (FRES) model, respectively. The atmospheric dispersion of primary PM2.5 was computed using the regional-scale dispersion model SILAM. The iFs from Finnish sources were also computed separately for six emission source categories. The iFs corresponding to the primary PM2.5 emissions from the European countries for the whole population of Europe were generally highest for the densely populated Western European countries, second highest for the Eastern and Southern European countries, and lowest for the Northern European and Baltic countries. For the entire European population, the iF values varied from the lowest value of 0.31 per million for emissions from Cyprus, to the highest value of 4.42 per million for emissions from Belgium. These results depend on the regional distribution of the population and the prevailing long-term meteorological conditions. Regarding Finnish primary PM2.5 emissions, the iF was highest for traffic emissions (0.68 per million) and lowest for major power plant emissions (0.50 per million). The results provide new information that can be used to find the most cost-efficient emission abatement strategies and policies.  相似文献   

12.
Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.  相似文献   

13.
Environmental Science and Pollution Research - Air pollution is an important cause of non-communicable diseases globally with particulate matter (PM) as one of the main air pollutants. PM is...  相似文献   

14.
Version 4.10s of the comprehensive air-quality model with extensions (CAMx) photochemical grid model has been developed, which includes two options for representing particulate matter (PM) size distribution: (1) a two-section representation that consists of fine (PM2.5) and coarse (PM2.5-10) modes that has no interactions between the sections and assumes all of the secondary PM is fine; and (2) a multisectional representation that divides the PM size distribution into N sections (e.g., N = 10) and simulates the mass transfer between sections because of coagulation, accumulation, evaporation, and other processes. The model was applied to Southern California using the two-section and multisection representation of PM size distribution, and we found that allowing secondary PM to grow into the coarse mode had a substantial effect on PM concentration estimates. CAMx was then applied to the Western United States for the 1996 annual period with a 36-km grid resolution using both the two-section and multisection PM representation. The Community Multiscale Air Quality (CMAQ) and Regional Modeling for Aerosol and Deposition (REMSAD) models were also applied to the 1996 annual period. Similar model performance was exhibited by the four models across the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network monitoring networks. All four of the models exhibited fairly low annual bias for secondary PM sulfate and nitrate but with a winter overestimation and summer underestimation bias. The CAMx multisectional model estimated that coarse mode secondary sulfate and nitrate typically contribute <10% of the total sulfate and nitrate when averaged across the more rural IMPROVE monitoring network.  相似文献   

15.
Recent developments in scanning electron microscopy (SEM) have produced tabletop instruments capable of reasonable imaging resolution at less cost compared to conventional equipment. Combining the SEM with energy dispersive spectroscopy (EDS) allows the possibility of elemental analysis through detection of X-rays emitted from interaction between individual particles and the SEM electron beam, revealing their atomic composition. It’s well known that exposure to inhalable particulate matter (PM) poses health risks and routine monitoring of the chemical content of these has been realized. Exposure information is of a general character but by combining the chemical build-up of monitored particles and knowledge of their inherent health effects will allow better risk assessment. An analysis technique using a tabletop SEM with EDS is demonstrated on particles collected onto nucleopore filters from urban, industrial and rural areas. Detailed characterization of the instruments analysis capabilities as applied to PM are described.  相似文献   

16.
The aims of this study were to determine the particulate matter with aerodynamic diameters > or = 2.5 microm (PM2.5) and 2.5-10 microm (PM10-2.5) exposure levels of drivers and to analyze the proportion of elemental carbon (EC) and organic carbon (OC) in PM2.5 in Bangkok, Thailand. Four bus routes were selected. Measurements were conducted over 10 days in August (rainy season) 2008 and 8 days in January (dry season) 2009. The mean PM2.5 exposure level of the Tuk-tuk drivers was 86 microg/m3 in August and 198 microg/m3 in January. The mean for the non-air-conditioned bus drivers was 63 microg/m3 in August and 125 microg/m3 in January. The PM2.5 and PM10-2.5 exposure levels of the drivers in January were approximately twice as high as those in August. The proportion of total carbon (TC) in PM2.5 to the PM2.5 level in August (0.97 +/- 0.28 microg/m3) was higher than in January (0.65 +/- 0.13 microg/m3). The proportion of OC in the TC of the PM2.5 in August (0.51 +/- 0.08 microg/m3) was similar to that in January (0.65 +/- 0.07 microg/m3). The TC exposure by PM25 in January (81 +/- 30 microg/m3) remained higher than in August (56-21 microg/m3). The mean level of OC in the PM2.5 was 29 +/- 13 microg/m3 in August and 50 +/- 24 microg/m3 in January. In conclusion, the PM exposure level in Bangkok drivers was higher than that in the general environment, which was already high, and it varied with the seasons and vehicle type. This study also demonstrated that the major component of the PM was carbon, likely derived from vehicles.  相似文献   

17.
In-stack condensible particulate matter measurements and issues   总被引:5,自引:0,他引:5  
Particulate matter (PM) emitted from fossil fuel-fired units can be classified as either filterable or condensible PM. Condensible PM typically is not measured because federal and most state regulations do not require sources to do so. To determine the magnitude of condensible PM emissions relative to filterable PM emissions and to better understand condensible PM measurement issues, a review and analysis of actual U.S. Environmental Protection Agency (EPA) Method 202 (for in-stack condensible PM10) and EPA Method 201/201A (for in-stack filterable PM10) results were conducted. Methods 202 and 201/201A results for several coal-burning boilers showed that the condensible PM, on average, comprises approximately three-fourths (76%) of the total PM10 stack emissions. Methods 202 and 201/201A results for oil- and natural gas-fired boilers showed that the condensible PM, on average, comprises 50% of the total PM10 stack emissions. Methods 202 and 201/201A results for oil-, natural gas-, and kerosene-fired combustion turbines showed that the condensible PM, on average, comprises 69% of the total PM10 stack emissions. Based on these limited measurements, condensible PM can make a significant contribution to total PM10 emissions for fossil fuel-fired units. A positive bias (indicating more condensible PM than is actually emitted) may exist in the measured data due to the conversion of dissolved sulfur dioxide to sulfate compounds in the sampling procedure. In addition, these Method 202 results confirm that condensible PM, on average, is composed mostly of inorganic matter, regardless of the type of fuel burned.  相似文献   

18.
Sulphur dioxide (SO2) abatement is attracting wide attention, with its generation increasing rapidly in China. In this paper, we calculate the SO2 rational abatement ratio (SRAR) of 30 regions in China from 1990 to 2005, by applying Data Envelopment Analysis (DEA) based on the regional own production frontier. Results show that, the more developed area is, the lower SRAR is. The eastern, central and western areas have the lowest, medium and highest 1990-2005 average SRAR (22.17%, 46.99% and 58.28%), respectively. Chinese government should emphasise particularly on SO2 abatement in central and western area. More investment in SO2 management, introducing advanced technology as well as popularising clean coal technology are the urgent tasks for central and western area to improve SO2 emission efficiency.  相似文献   

19.
A microanalytical method suitable for the quantitative determination of the sugar anhydride levoglucosan in low-volume samples of atmospheric fine particulate matter (PM) has been developed and validated. The method incorporates two sugar anhydrides as quality control standards. The recovery standard sedoheptulosan (2,7-anhydro-beta-D-altro-heptulopyranose) in 20 microL solvent is added onto samples of the atmospheric fine PM and aged for 1 hr before ultrasonic extraction with ethylacetate/ triethylamine. The extract is reduced in volume, an internal standard is added (1,5-anhydro-D-mannitol), and a portion of the extract is derivatized with 10% by volume N-trimethylsilylimidazole. The derivatized extract is analyzed by gas chromatography/mass spectrometry (GC/MS). The recovery of levoglucosan using this procedure was 69 +/- 6% from five filters amended with 2 microg levoglucosan, and the reproducibility of the assay is 9%. The limit of detection is approximately 0.1 microg/mL, which is equivalent to approximately 3.5 ng/m3 for a 10 L/min sampler or approximately 8.7 ng/m3 for a 4 L/min personal sampler (assuming 24-hr integrated samples). We demonstrated that levoglucosan concentrations in collocated samples (expressed as ng/m3) were identical irrespective of whether samples were collected by PM with aerodynamic diameter < or = 2.5 microm or PM with aerodynamic diameter < or = 10 microm impactors. It was also demonstrated that X-ray fluorescence analysis of samples of atmospheric PM, before levoglucosan determinations, did not alter the levels of levoglucosan.  相似文献   

20.
Assessment of human exposure to ambient particulate matter   总被引:8,自引:0,他引:8  
Recent epidemiological studies have consistently shown that the acute mortality effects of high concentrations of ambient particulate matter (PM), documented in historic air pollution episodes, may also be occurring at the low to moderate concentrations of ambient PM found in modern urban areas. In London in December 1952, the unexpected deaths due to PM exposure could be identified and counted as integers by the coroners. In modern times, the PM-related deaths cannot be as readily identified, and they can only be inferred as fractional average daily increases in mortality rates using sophisticated statistical filtering and analyses of the air quality and mortality data. The causality of the relationship between exposure to ambient PM and acute mortality at these lower modern PM concentrations has been questioned because of a perception that there is little significant correlation in time between the ambient PM concentrations and measured personal exposure to PM from all sources (ambient PM plus indoor-generated PM). This article shows that the critical factor supporting the plausibility of a linear PM mortality relationship is the expected high correlation in time of people's exposure to PM of ambient origin with measured ambient PM concentrations, as used in the epidemiological time series studies. The presence of indoor and personal sources of PM masks this underlying relationship, leading to confusion in the scientific literature about the strong underlying temporal relationship between personal exposure to PM of ambient origin and ambient PM concentration. The authors show that the sources of PM of non-ambient origin operate independently of the ambient PM concentrations, so that the mortality effect of non-ambient PM, if any, must be independent of the effects of the ambient PM exposures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号