首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article outlines conceptual and methodological issues that must be confronted in developing a sound scientific basis for investigating cumulative effects on freshwater wetlands. We are particularly concerned with: (1) effects expressed at temporal and spatial scales beyond those of the individual disturbance, specific project, or single wetland, that is, effects occurring at the watershed or regional landscape level; and (2) the scientific (technical) component of the overall assessment process. Our aim is to lay the foundation for a research program to develop methods to quantify cumulative effects of wetland loss or degradation on the functioning of interacting systems of wetlands. Toward that goal we: (1) define the concept of cumulative effects in terms that permit scientific investigation of effects; (2) distinguish the scientific component of cumulative impact analysis from other aspects of the assessment process; (3) define critical scientific issues in assessing cumulative effects on wetlands; and (4) set up a hypothetical and generic structure for measuring cumulative effects on the functioning of wetlands as landscape systems.We provide a generic framework for evaluating cumulative effects on three basic wetland landscape functions: flood storage, water quality, and life support. Critical scientific issues include appropriate delineations of scales, identification of threshold responses, and the influence on different functions of wetland size, shape, and position in the landscape.The contribution of a particular wetland to landscape function within watersheds or regions will be determined by its intrinsic characteristics, e.g., size, morphometry, type, percent organic matter in the sediments, and hydrologic regime, and by extrinsic factors, i.e., the wetland's context in the landscape mosaic. Any cumulative effects evaluation must take into account the relationship between these intrinsic and extrinsic attributes and overall landscape function. We use the magnitude of exchanges among component wetlands in a watershed or larger landscape as the basis for defining the geographic boundaries of the assessment. The time scales of recovery for processes controlling particular wetland functions determine temporal boundaries. Landscape-level measures are proposed for each function.  相似文献   

2.
We evaluate two 10-year-old mitigation bank wetlands in central Ohio, one created and one with restored and enhanced components, by analysis of vegetation characteristics and by comparison of the year-10 vegetation and macroinvertebrate communities with reference wetlands. To assess different measures of wetland development, we compare the prevalence of native hydrophytes with an index of floristic quality and we evaluate the predictability of these parameters in year 10, given 5 years of data. Results show that the mitigation wetlands in this study meet vegetation performance criteria of native hydrophyte establishment by year 5 and maintain these characteristics through year 10. Species richness and floristic quality, as well as vegetative similarity with reference wetlands, differ among mitigation wetlands in year 1 and also in their rate of change during the first 10 years. The prevalence of native hydrophytes is reasonably predictable by year 10, but 5 years of monitoring is not sufficient to predict future trends of floristic quality in either the created or restored wetland. By year 10, macroinvertebrate taxa richness does not statistically differ among these wetlands, but mitigation wetlands differ from reference sites by tolerance index and by trophic guild dominance. The created wetland herbivore biomass is significantly smaller than its reference, whereas detritivore biomass is significantly greater in the created wetland and smaller in the restored wetland as compared with respective reference wetlands. These analyses illustrate differences in measures of wetland performance and contrast the monitoring duration necessary for legal compliance with the duration required for development of more complex indicators of ecosystem integrity.  相似文献   

3.
The US Army Corps of Engineers often requires wetland creation or restoration as compensation for wetlands damaged during development. These wetlands are typically monitored postconstruction to determine the level of compliance with respect to site-specific performance standards. However, defining appropriate goals and measuring success of restorations has proven difficult. We reviewed monitoring information for 76 wetlands constructed between 1992 and 2002 to summarize the performance criteria used to measure progress, assess compliance with those criteria, and, finally, to evaluate the appropriateness of those criteria. Goals were overwhelmingly focused on plant communities. Attributes used to assess the quality of restored plant communities, including percent native species and the Floristic Quality Index, increased over time but were apparently unrelated to the number of species planted. Compliance frequencies varied depending on site goals; sites often failed to comply with criteria related to survival of planted vegetation or requirements that dominant plant species should not be exotic or weedy, whereas criteria related to the establishment of cover by vegetation or by wetland-dependent plants were often met. Judgment of a site’s success or failure was largely a function of the goals set for the site. Some performance criteria were too lenient to be of value in distinguishing failed from successful sites, whereas other criteria were unachievable without more intensive site management. More appropriate goals could be devised for restored wetlands by basing performance standards on past performance of similar restorations, identifying consistent temporal trends in attributes of restored sites, and using natural wetlands as references.  相似文献   

4.
Wang X  Yu J  Zhou D  Dong H  Li Y  Lin Q  Guan B  Wang Y 《Environmental management》2012,49(2):325-333
In this study, we compared ecological characteristics of wetland vegetation in a series of restoration projects that were carried out in the wetlands of Yellow River Delta. The investigated characteristics include plant composition structure, species diversity and community similarity in three kinds of Phragmites australis wetlands, i.e. restored P. australis wetlands (R1, R2, R3 and R4: restored in 2002, 2005, 2007 and 2009, respectively), natural P. australis wetland (N) and degraded P. australis wetland (D) to assess the process of wetlands restoration. The coverage of the R1 was 99%, which was similar to natural wetland. Among all studied wetlands, the highest and lowest stem density was observed in R1 and R2, respectively, Plant height and stem diameter show the same trend as N > R2 > R1 > R3 > D > R4. Species diversity of restored P. australis wetlands became closed to natural wetland. Both species richness and Shannon–Wiener index had similar tendency: increased first and then decreased with restored time. The highest species richness and species diversity were observed in R2, while the lowest values of those parameters were found in natural P. australis wetland. Similarity indexes between restored wetlands and natural wetland increased with the restoration time, but they were still less than 50%. The results indicate that the vegetation of P. australis wetlands has experienced a great improvement after several years’ restoration, and it is feasible to restored degraded P. australis wetlands by pouring fresh water into those wetlands in the Yellow River Delta. However, it is notable that costal degraded P. australis wetland in this region may take years to decades to reach the status of natural wetland.  相似文献   

5.
Hydrogeomorphic (HGM) functional assessment models were used to assess whether function in created wetlands of two ages (1 year old and >12 years old) was equivalent to that of natural (reference) mainstem floodplain wetlands. Reference wetlands scored higher than both created age classes for providing energy dissipation and short-term surface water storage. Reference wetlands scored higher in maintaining native plant community and structure than 1-year-old sites, and 12-year-old wetlands scored higher than reference sites for providing vertebrate habitat structure. Analysis of individual model variables showed that reference wetlands had greater vegetative biomass and higher soil organic matter content than both created wetland age classes. Created wetlands were farther from natural wetlands and had smaller mean forest patch sizes within a 1-km-radius circle around the site than did the reference sites, indicating less hydrologic connectivity. Created wetlands also had less microtopographic variation than reference wetlands. The 1-year-old created sites were placed in landscape settings with greater land use diversity and road density than reference sites. The 12-year-old sites had a higher gradient and a higher percentage of their surrounding area in urban land use. These results show that the created wetlands were significantly structurally different (if not functionally so) from reference wetlands even after 12 years. The most profound differences were in hydrology and the characteristics of the surrounding landscape. More attention needs to be focused on placing created wetlands in appropriate settings to encourage proper hydrodynamics, eliminate habitat fragmentation, and minimize the effects of stressors to the site.  相似文献   

6.
The goal of wetland creation is to produce an artificial wetland that functions as a natural wetland. Studies comparing created wetlands to similarly aged natural wetlands provide important information about creation techniques and their improvement so as to attain that goal. We hypothesized that differences in sediment phosphorus accretion, deposition, and chemistry between created and natural wetlands in the Atchafalaya Delta, Louisiana, USA were a function of creation technique and natural river processes. Sediment deposition was determined with feldspar marker horizons located in created and natural wetlands belonging to three age classes (<3, 5-10, and 15-20 yr old). Phosphorus fractions were measured in these deposited sediments and in suspended and bedload sediment from the Atchafalaya River. Bedload sediment had significantly lower iron- and aluminum-bound, reductant-soluble, and total phosphorus than suspended sediment due to its high sand percentage. This result indicates that wetlands artificially created in the Atchafalaya Delta using bedload sediment will initially differ from natural wetlands of the same age. Even so, similarities between the mudflat stratum of the <1- to 3-yr-old created wetland and the mudflat stratum of the 15- to 20-yr-old natural wetland support the contention that created wetlands in the Atchafalaya Delta can develop natural characteristics through the deposition of river suspended sediment. Differences between three created wetland strata, the 15- to 20-yr-old willow stratum and the <1- to 3-yr-old willow and mixed marsh strata, and their natural counterparts were linked to design elements of the created wetlands that prevented the direct deposition of the river's suspended sediment.  相似文献   

7.
The United States Environmental Protection Agency (USEPA) Region V Clean Lakes Program employs artificial and modified natural wetlands in an effort to improve the water quality of selected lakes. We examined use of wetlands at seven lake sites and evaluated the physical and institutional means by which wetland projects are implemented and managed, relative to USEPA program goals and expert recommendations on the use of wetlands for water quality improvement. Management practices recommended by wetlands experts addressed water level and retention, sheet flow, nutrient removal, chemical treatment, ecological and effectiveness monitoring, and resource enhancement. Institutional characteristics recommended included local monitoring, regulation, and enforcement and shared responsibilities among jurisdictions. Institutional and ecological objectives of the National Clean Lakes Program were met to some degree at every site. Social objectives were achieved to a lesser extent. Wetland protection mechanisms and appropriate institutional decentralization were present at all sites. Optimal management techniques were employed to varying degrees at each site, but most projects lack adequate monitoring to determine adverse ecological impacts and effectiveness of pollutant removal and do not extensively address needs for recreation and wildlife habitat. There is evidence that the wetland projects are contributing to improved lake water quality; however, more emphasis needs to be placed on wetland protection and long-term project evaluation.  相似文献   

8.
9.
The main goal of the present study was to develop an ecological integrity index for littoral wetland management and conservation in semiarid Mediterranean areas that have been highly impacted by agriculture, including the selection of pressure and state indicators at landscape and wetlands scales that reflect the status, condition, and trends of wetlands ecosystems. We used a causality framework based on the relationship between pressure of anthropogenic activities and the ecological state of wetlands and their catchments, integrating environmental, biologic, economic, and social issues. From the application of 51 indicators in 7 littoral wetlands in the southeastern Iberian Peninsula, we selected 12 indicators (5 at catchment scale and 7 at wetland scale) to constitute the ecological integrity index proposed. The potential nitrogen export per area at catchment scale and the potential relative nitrogen export from the area surrounding the wetlands were the best pressure single predictors of state indicators with a causal relationship with environmental meaning. Wetlands in catchments with more agriculture had less ecological integrity than those in less impacted areas. A wide riparian zone in some wetlands acts as a buffer area, diminishing the effects of intensive agriculture. The index of ecological integrity developed here has a number of essential characteristics that make it a useful tool for ecosystem managers and decision-makers. The index can be used to (1) assess and control ecological integrity, (2) diagnose probable causes of ecological impairment, (3) establish criteria for protecting and restoring wetland ecosystems, and (4) integrate catchment management. Published online  相似文献   

10.
The effects of permitting decisions made under Section 404 of the Clean Water Act for which compensatory mitigation was required were examined. Information was compiled on permits issued in Oregon (January 1977–January 1987) and Washington (1980–1986). Data on the type of project permitted, wetland impacted, and mitigation project were collected and analyzed. The records of the Portland and Seattle District Offices of the US Army Corps of Engineers and of Environmental Protection Agency Region X were the primary sources of information. The 58 permits issued during the years of concern in Oregon document impacts to 82 wetlands and the creation of 80. The total area of wetland impacted was 74 ha while 42 ha were created, resulting in a net loss of 32 ha or 43%. The 35 permits issued in Washington document impacts to 72 wetlands and the creation of 52. The total area of wetland impacted was 61 ha while 45 ha were created, resulting in a net loss of 16 ha or 26%. In both states, the number of permits requiring compensation increased with time. The area of the impacted and created wetlands tended to be ≤0.40 ha. Permitted activity occurred primarily west of the Cascade Mountains and in the vicinity of urban centers. Estuarine and palustrine wetlands were impacted and created most frequently. The wetland types created most often were not always the same as those impacted; therefore, local gains and losses of certain types occurred. In both states the greatest net loss in area was in freshwater marshes. This study illustrates how Section 404 permit data might be used in managing a regional wetland resource. However, because the data readily available were either incomplete or of poor quality, the process of gathering information was very labor intensive. Since similar analyses would be useful to resource managers and scientists from other areas, development of an up-to-date standardized data base is recommended.  相似文献   

11.
We developed an approach for inventorying wetland resources, assessing their condition, and determining restoration potential in a watershed context. This article outlines how this approach can be developed into a Wetland Monitoring Matrix (WMM) that can help resource management agencies make regulatory and nonregulatory decisions. The WMM can be embedded in a standard planning process (Wetlands, Wildlife, and Watershed Assessment Techniques for Evaluation and Restoration, or W3ATER) involving the setting of objectives, assessing the condition of the resource, prioritizing watersheds or sites, implementing projects, and evaluating progress. To that process we have added the concepts of reference, hydrogeomorphic (HGM) classification, and prioritization for protection and restoration by triage or adaptive management. Three levels of effort are possible, increasing in detail and diagnostic reliability as data collection shifts from remote sensing to intensive sampling on the ground. Of key importance is the use of a consistent set of monitoring protocols for conducting condition assessments, designing restoration and creation projects, and evaluating the performance of mitigation projects; the same variables are measured regardless of the intended use of the data. This approach can be tailored to any region by establishing a reference set of wetlands organized by HGM subclasses, prioritizing watersheds and individual wetlands, and implementing consistent monitoring protocols. Application of the approach is illustrated with examples from wetlands and streams of the Spring Creek Watershed in central Pennsylvania, USA.  相似文献   

12.
Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.  相似文献   

13.
Wetlands are one of the most important watershed microtopographic features that affect hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models such as the Soil and Water Assessment Tool (SWAT), enhanced by the hydrologic equivalent wetland (HEW) concept developed by Wang [Wang, X., Yang, W., Melesse, A.M., 2008. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 51 (1), 55–72.], can be a best resort. However, there is a serious lack of information about simulated effects using this kind of integrated modeling approach. The objective of this study was to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota. The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes and wetland characteristics (e.g., size and morphology) to be accurately represented in the models. The loss of the first 10–20% of the wetlands in the Minnesota study area would drastically increase the peak discharge and loadings of sediment, total phosphorus (TP), and total nitrogen (TN). On the other hand, the justifiable reductions of the peak discharge and loadings of sediment, TP, and TN in the Manitoba study area may require that 50–80% of the lost wetlands be restored. Further, the comparison between the predicted restoration and conservation effects revealed that wetland conservation seems to deserve a higher priority while both wetland conservation and restoration may be equally important.  相似文献   

14.
In a climate of limited resources, it is often necessary to prioritize restoration efforts geographically. The synoptic approach is an ecologically based tool for geographic prioritization of wetland protection and restoration efforts. The approach was specifically designed to incorporate best professional judgment in cases where information and resources are otherwise limited. Synoptic assessments calculate indices for functional criteria in subunits (watersheds, counties, etc.) of a region and then rank the subunits. Ranks can be visualized in region-scale maps which enable managers to identify areas where efforts optimize functional performance on a regional scale. In this paper, we develop a conceptual model for prioritizing watersheds whose wetlands can be restored to reduce total sediment yield at the watershed outlet. The conceptual model is designed to rank watersheds but not individual wetlands within a watershed. The synoptic approach is valid for applying the sediment yield reduction model because there is high demand for prioritizing disturbed wetlands for restoration, but there is limited, quantitative, accurate information available with which to make decisions. Furthermore, the cost of creating a comprehensive database is prohibitively high. Finally, because the model will be used for planning purposes, and, specifically, for prioritizing based on multiple decisions rather than optimizing a single decision, the consequence of prioritization errors is low. Model results cannot be treated as scientific findings. The conclusions of an assessment are based on judgement, but this judgement is guided by scientific principles and a general understanding of relevant ecological processes. The conceptual model was developed as the first step towards prioritizing of wetland restoration for sediment yield reduction in US EPA Region 4.  相似文献   

15.
Water quality in streams is dependent on landscape metrics at catchment and wetland scales. A study was undertaken to evaluate the correlation between landscape metrics, namely patch density and area, shape, heterogeneity, aggregation, connectivity, land-use ratio, and water quality variables (salinity, nutrients, sediments, alkalinity, other potential pollutants and pH) in the agricultural areas of a semiarid Mediterranean region dominated by irrigated farmlands (NE Spain). The study also aims to develop wetland construction criteria in agricultural catchments. The percentage of arable land and landscape homogeneity (low value of Simpson index) are significantly correlated with salinity (r(2) = 0.72) and NO(3)-N variables (r(2) = 0.49) at catchment scale. The number of stock farms was correlated (Spearman's corr. = 0.60; p < 0.01) with TP concentration in stream water. The relative abundance of wetlands and the aggregation of its patches influence salinity variables at wetland scale (r(2) = 0.59 for Na(+) and K(+) concentrations). The number and aggregation of wetland patches are closely correlated to the landscape complexity of catchments, measured as patch density (r(2) = 0.69), patch size (r(2) = 0.53), and landscape heterogeneity (r(2) = 0.62). These results suggest that more effective results in water quality improvement would be achieved if we acted at both catchment and wetland scales, especially reducing landscape homogeneity and creating numerous wetlands scattered throughout the catchment. A set of guidelines for planners and decision makers is provided for future agricultural developments or to improve existing ones.  相似文献   

16.
/ This paper presents a foundation for improving the risk assessmentprocess for freshwater wetlands. Integrating wetland science, i.e., use of anecosystem-based approach, is the key concept. Each biotic and abiotic wetlandcomponent should be identified and its contribution to ecosystem functionsand societal values determined when deciding whether a stressor poses anunreasonable risk to the sustainability of a particular wetland.Understanding the major external and internal factors that regulate theoperational conditions of wetlands is critical to risk characterization.Determining the linkages between these factors, and how they influence theway stressors affect wetlands, is the basis for an ecosystem approach.Adequate consideration of wetland ecology, hydrology, geomorphology, andsoils can greatly reduce the level of uncertainty associated with riskassessment and lead to more effective risk management. In order to formulateeffective solutions, wetland problems must be considered at watershed,landscape, and ecosystem scales. Application of an ecosystem approach can begreatly facilitated if wetland scientists and risk assessors work together todevelop a common understanding of the principles of both disciplines.KEY WORDS: Ecological risk assessment; Freshwater wetlands;Environmental pollution; Chemical stressors; Physical stressors; Biologicalstressors  相似文献   

17.
A detailed evaluation of past wetland restoration projects in San Francisco Bay was undertaken to determine their present status and degree of success. Many of the projects never reached the level of success purported and others have been plagued by serious problems. On the basis of these findings, it is debatable whether any sites in San Francisco Bay can be described as completed, active, or successful restoration projects at present. In spite of these limited accomplishments, wetland creation and restoration have been adopted in the coastal permit process as mitigation to offset environmental damage or loss of habitat. However, because the technology is still largely experimental, there is no guarantee that man-made wetlands will persist as permanent substitutes for sacrificed natural habitats. Existing permit policies should be reanalyzed to insure that they actually succeed in safeguarding diminishing wetlands resources rather than bartering them away for questionable habitat substitutes. Coastal managers must be more specific about project requirements and goals before approval is granted. Continued research on a regional basis is needed to advance marsh establishment techniques into a proven technology. In the meantime, policies encouraging or allowing quid pro quo exchanges of natural wetlands with man-made replacements should proceed with caution. The technology and management policies used at present are many steps ahead of the needed supporting documentation.  相似文献   

18.
Wetland mitigation is frequently required to compensate for unavoidable impacts to wetlands. Site conditions and landscape context are critical factors influencing the functions that created wetlands perform. We developed a spatial model and used a geographic information system (GIS) to identify suitable locations for wetland mitigation sites. The model used six variables to characterize site conditions: hydrology, soils, historic condition, vegetation cover, adjacent vegetation, and land use. For each variable, a set of suitability scores was developed that indicated the wetland establishment potential for different variable states. Composite suitability scores for individual points on the landscape were determined from the weighted geometric mean of suitability scores for each variable at each point. These composite scores were grouped into five classes and mapped as a wetland mitigation suitability surface with a GIS. Sites with high suitability scores were further evaluated using information on the feasibility of site modification and project cost. This modeling approach could be adapted by planners for use in identifying the suitability of locations as wetland mitigation sites at any site or region.  相似文献   

19.
ABSTRACT

The success of ecological restoration efforts is tightly coupled with the effectiveness of many U.S. environmental policies. Yet scholars have raised questions about the ability of restoration to produce intended results. We use a case study of tidal wetland restoration planning in Oregon to examine how neoliberal environmental governance exercises influence through a set of knowledge politics that produces subpar outcomes. We present three main findings: (1) restoration policies produce a restoration economy based on a conception of wetland as commodity (2) practitioners in this restoration economy exhibit competitive behavior resulting in a piecemeal rather than a landscape approach to restoration; and (3) limited monitoring prevents changes to existing policies. Practitioners offer insight into the challenge of treating wetlands as a commodity and call for more monitoring to challenge the assumptions of hegemonic knowledge practices that reinforce a neoliberal environmental governance regime. The divergent ideas of reflexive practitioners, though not yet manifest as action, show where changes to restoration governance might be possible.  相似文献   

20.
盘锦温地保护、恢复与永续利用研究   总被引:1,自引:0,他引:1  
随着盘锦地区经济的发展和人口的增加,盘锦湿地出现不同程度的退化,主要表现在湿地淡水的短缺,植被的退化;湿地面积减少和湿地受到污染;人类对湿地认识不足,出现人与鸟争食等现象。为了更好地保护湿地,以保持湿地生态系统的完整性、连续性、生物多样性、生态功能性、永续利用性和景区特色性为理念,对盘锦湿地进行保护与规划。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号