首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parathion is an insecticide of a group of highly toxic organophosphorus compounds. To investigate the dissipation and toxicological impact of parathion [O,O-diethyl O-(4-nitrophenyl) phosphorothioate] and its highly toxic metabolite, paraoxon, soil laboratory experiments were conducted in columns during a 19-d experiment under variably saturated conditions. Water and pesticide transport, sorption, and biodegradation of parathion were measured in three soil pools (soluble phase, weakly and strongly sorbed phases) using C-labeled pesticide. The effects of parathion and its metabolite on the mobility of soil nematodes were observed and then modeled with an effective variable, which combined pesticide concentration and time of application. Results showed that parathion was highly sorbed and slowly degraded to a mixture of metabolites. The parent compound and its metabolites remained located in the top 0.06-m soil layer. A kinetic model describing the sorption, biodegradation, and allocation into different soil pools of parathion and its metabolites was coupled with heat and water transport equations to predict the fate of parathion in soil. Simulated results were in agreement with experimental data, showing that the products remained in the upper soil layers even in the case of long-term (11-mo) simulation. The strongly sorbed fraction may be regarded as a pesticide reservoir that regularly provides pesticide to the weakly sorbed phase, and then, liquid phase, respectively. From both modeling and observations, no major toxicological damage of parathion and paraoxon to soil nematodes was found, although some effects on nematodes were possible, but at the soil surface only (0.01- and 0.02-m depth).  相似文献   

2.
To make more responsible decisions regarding risk and to understand disagreements and controversies in risk assessments, it is important to know how and where values are infused into risk assessment and how they are embedded in the conclusions. In this article an attempt is made to disentangle the relationship of science and values in decision-making concerning the deliberate release of genetically modified organisms (GMOs) into the environment. This exercise in applied philosophy of science is based on Helen Longino's contextual empiricism which attempts to reconcile the objectivity of science with its social and cultural construction. Longino distinguishes different levels of research on which values apparently contextual with respect to a given research program can shape the knowledge emerging from that program. Her scheme is applied for locating and identifying the values that affect environment risk assessments of the field experiments with GMOs. The article concludes with some provisional suggestions for the decision process and the role of scientists in it.  相似文献   

3.
The Sequencing Batch Reactor (SBR) system employing activated sludge process is an alternative wastewater treatment technology. A cycle of the conventional SBR system generally consists of five periods, with complete aeration during the React period to oxidize the organic matter and nitrify the ammonium-nitrogen of wastewater. Laboratory-scale reactors were used to evaluate the feasibility of incorporating alternative aerobic-anoxic-aerobic stages within the React period for simultaneous removal of organic matter, N and P. Two cycles of SBR process per day were maintained.Under the operation strategy of 0.75-h fill, 8-h react (with continuous aeration), 3.25-h settle, draw and idle periods, the treatment performance became consistent after running the system for two to four cycles (1–2 days). The percentages of both BOD5 and COD removal were around 94% from Cycle 2 onwards, the BOD5 content dropped from initial 251 mg L−1 to less than 14 mg L−1 in the final effluent. A steady nitrification (about 97%) was obtained from Cycle 4 onwards, with 1 mg NH4+-N L−1 and 25 mg NO3-N L−1 present in the final effluent. This suggested that the time required for SBR system to acclimate and reach an equilibrium state was relatively short when compared with the time needed for continuous flow activated sludge system. The findings also show that 4-h aeration during the react period was long enough to achieve more than 90% nitrification. With the incorporation of a 3-h anoxic stage after the initial 4-h aeration of the react period, a satisfactory denitrification process was observed, with nitrate level dropped from 27 to around 8 mg L−1 within 3 h. The second aeration stage did not cause significant change in wastewater nitrogen content. The wastewater phosphate content declined rapidly during the initial 4-h aeration and P-release was not observed during the anoxic stage. A slight reduction of P was found in the second aeration stage suggesting that more P-uptake occurred in this stage. A 12-h cyclic SBR system with the incorporation of 4-h aerobic, 3-h anoxic and final 1-h aerobic stages into the 8-h react period was demonstrated to be able to remove C, N and P simultaneously.  相似文献   

4.
MEA solutions were subjected to oxidative degradation at both low and high gas rates. Solutions were degraded with 100 mL/min of 98%O2/2%CO2 with mass transfer achieved by vortexing. Solutions were analyzed for degradation products by IC and HPLC. In a parallel apparatus 7.5 L/min of 15%O2/2%CO2 was sparged through solution, with additional mass transfer achieved by vortexing. A Fourier Transform Infrared (FTIR) analyzer collected continuous gas-phase data on volatile products.Hydroxyethyl-formamide (HEF) and hydroxyethylimidazole (HEI) are the major liquid-phase oxidation products. In the presence of Fe2+ and Cu2+, HEF, HEI, and MEA losses increase by a factor of 3 compared to Fe2+ alone. Cr3+ and Ni2+, two metals present in stainless steel alloys, resulted in MEA losses that are 55% greater. In terms of oxidative degradation potential (greatest to lowest): Cu2+ > Cr3+/Ni2+ > Fe2+ > V5+.Inhibitor A reduces the formation of known products by 90% when catalyzed by Fe2+ and Cu2+ and by 99% with Cr3+/Ni2+. Inhibitor B reduces product rates by 97% and MEA losses by 75%, while a 100:1 ratio of EDTA to Fe2+ completely inhibits oxidation.  相似文献   

5.
Toxic organic dyes released into aquatic sources as a result of industrial activities pose a significant threat to the environment. The removal of such dyes from water sources is a challenging task in the context of environmental emergencies. In this present effort, the strontium ferrite nanoparticles were synthesized by coprecipitation followed by a calcination method and is applied for photocatalytic degradation of such organic dyes. The ferrite nanoparticles were characterized by FTIR, XRD, VSM, SEM-EDX, TEM, and HR-TEM studies. In the existence of H2O2 under visible light, the catalyst performs efficient degradation of aniline blue (AB) and methyl violet (MV) dyes in a remarkably short interval of time. The superparamagnetic performance of the catalyst was confirmed by VSM, and thus it can be easily recovered from the degraded dye by applying an external magnet. The Fenton mechanism justifies the elevated rate of photo degradation, which generates hydroxyl and perhydroxyl radicals in the progress of the reaction.  相似文献   

6.
In this study, porous calcite materials are hydrothermally treated at 200 °C using powder compacts consisting of calcite and glasses composed of silica-rich soda-lime. After treatment, the glasses are converted into calcium aluminosilicate hydrates, such as zeolite phases, which increase their strength. The porosity and morphology of new deposits of hydrothermally solidified materials depend up on the chemical composition of glass. The use of calcite and glass in the hydrothermal treatment plays an important role in the solidification of calcite without thermal decomposition.  相似文献   

7.
Metam-sodium had become the most heavily used soil fumigant in recent years as the deadline approached for methyl bromide to phase out in January 2005. After application, metam-sodium decomposes rapidly to methyl isothiocyanate (MITC), a highly toxic compound capable of killing a wide spectrum of soil-borne pests. Inhalation risk of MITC ranked high among airborne agricultural pesticides in California. Information about off-gassing intensity and percentage of emission is essential for exposure risk assessment and mitigation measures, but is limited, especially for new application methods such as drip chemigation. Air concentrations of MITC were monitored around a field treated with metam-sodium through surface drip irrigation system. The field was tarped with plastic films before the chemigation. The air concentrations at receptor locations were simulated for the period of air monitoring with the Industrial Source Complex (ISC3) Dispersion Model, and soil flux density of MITC at various periods after chemigation was estimated through a back-calculation procedure. The estimated soil flux density of MITC showed a diurnal pattern, with the daytime flux stronger than nighttime. However, the average air concentration at nighttime was higher than that at daytime. Soil flux density peaked at 4.30 microg m-2 s-1 in the first 12-h period after chemigation, then declined with time. The MITC emission percentage in the first 60-h was 2.65% of applied mass, of which 57% occurred in the first 24-h after chemigation. The study indicated that the tarped bed drip application method of metam-sodium had a relatively good control of MITC emission from soil.  相似文献   

8.
A novel process for a simultaneous removal of ammonia and organics was developed on the basis of ion exchange and biological reactions. From batch experiments, it was found out that NH4+ could be removed effectively by combining cation exchange and biological nitrification showing 0.98 mg N/m2?s of a maximum flux. On the other hand, the removal of NO3 was 3.5 times faster than NH4+ and the maximum flux was calculated to be 3.4 mg N/m2?s. The systems for NH4+ and NO3 removal were combined for establishing the IEBR process. When the process was operated in a continuous mode, approximately 95.8% of NH4+ was removed showing an average flux of 0.22 mg N/m2·s. The removal efficiency of total nitrogen was calculated as 94.5% whereas that of organics was 99.5%. It was concluded that the IEBR process would be effectively used for a simultaneous removal of NH4+ and organics.  相似文献   

9.
To date, non-food vegetable oil has been considered as the primary source for biodiesel production. Rubber seed oil has high acid value (34 mgKOH/g) and can be used for biodiesel synthesis. The purpose of this study was to investigate esterification of fatty acid, which derived from rubber seed oil, in a plug flow reactor system at high temperature and low methanol consumption. Response surface methodology was applied for design experiment and optimization of esterification reaction. Temperature, methanol consumption, and sulfuric acid were chosen as variables to examine their influence in a conversion to methyl ester. At 140°C, at 5:1 methanol to fatty acid ratio (by mole), H2SO4 1.5 (%v/w), and space time 20 min, the conversion to methyl ester attained 98.2%. Fourier transform infrared spectroscopy (FTIR) and gas chromatography-Mass spectrometry (GC-MS) were used for analysis and to confirm the formation of methyl ester. Methyl ester was characterized for biodiesel fuel properties in accordance to ASTM standard.  相似文献   

10.
Piggeries are known for their nuisance odors, creating problems for workers and nearby residents. Chemical substances that contribute to these odors include sulfurous organic compounds, hydrogen sulfide, phenols and indoles, ammonia, volatile amines, and volatile fatty acids. In this work, daily mean concentrations of ammonia (NH3) and hydrogen sulfide (H2S) were measured by hand-held devices. Measurements were taken in several places within the facility (farrowing to finishing rooms). Hydrogen sulfide concentration was found to be 40 to 50 times higher than the human odor threshold value in the nursery and fattening room, resulting in strong nuisance odors. Ammonia concentrations ranged from 2 to 18 mL m(-3) and also contributed to the total odor nuisance. Emission data from various chambers of the pig farm were used with the dispersion model AERMOD to determine the odor nuisance caused due to the presence of H2S and NH3 to receptors at various distances from the facility. Because just a few seconds of exposure can cause an odor nuisance, a "peak-to-mean" ratio was used to predict the maximum odor concentrations. Several scenarios were examined using the modified AERMOD program, taking into account the complex terrain around the pig farm.  相似文献   

11.
Soil is one of the main non-renewable natural resources in the world. In the Valencian Community (Mediterranean coast of Spain), it is especially important because agriculture and forest biomass exploitation are two of the main economic activities in the region. More than 44% of the total area is under agriculture and 52% is forested. The frequently arid or semi-arid climate with rainfall concentrated in few events, usually in the autumn and spring, scarcity of vegetation cover, and eroded and shallow soils in several areas lead to soil degradation processes. These processes, mainly water erosion and salinization, can be intense in many locations within the Valencian Community. Evaluation of soil degradation on a regional scale is important because degradation is incompatible with sustainable development. Policy makers involved in land use planning require tools to evaluate soil degradation so they can go on to develop measures aimed at protecting and conserving soils. In this study, a methodology to evaluate physical, chemical and biological soil degradation in a GIS-based approach was developed for the Valencian Community on a 1/200,000 scale. The information used in this study was obtained from two different sources: (i) a soil survey with more than 850 soil profiles sampled within the Valencian Community, and (ii) the environmental information implemented in the Geo-scientific map of the Valencian Community digitised on an Arc/Info GIS. Maps of physical, chemical and biological soil degradation in the Valencian Community on a 1/200,000 scale were obtained using the methodology devised. These maps can be used to make a cost-effective evaluation of soil degradation on a regional scale. Around 29% of the area corresponding to the Valencian Community is affected by high to very high physical soil degradation, 36% by high to very high biological degradation, and 6% by high to very high chemical degradation. It is, therefore, necessary to draw up legislation and to establish the policy framework for actions focused on preventing soil degradation and conserving its productive potential.  相似文献   

12.
CO2 and SO2 are some of the main polluting gases emitted into atmosphere in combustion processes using fossil fuel for energy production. The former is one of the major contributors to build-up the greenhouse effect implicated in global climate change and the latter produces acid rain. Oxy-fuel combustion is a technology, which consists in burning the fuel with a mix of pure O2 and recirculated CO2. With this technology the CO2 concentration in the flue gas may be enriched up to 95%, becoming possible an easy CO2 recovery. In addition, oxy-fuel combustion in fluidized beds allows in situ desulfurization of combustion gases by supplying calcium based sorbent.In this work, the effect of the principal operation variables affecting the sulfation reaction rate in fluidized bed reactors (temperature, CO2 partial pressure, SO2 concentration and particle size) under typical oxy-fuel combustion conditions have been analyzed in a batch fluidized bed reactor using a limestone as sorbent. It has been observed that sulfur retention can be carried out by direct sulfation of the CaCO3 or by sulfation of the CaO (indirect sulfation) formed by CaCO3 calcination. Direct sulfation and indirect sulfation operating conditions depended on the temperature and CO2 partial pressure. The rate of direct sulfation rose with temperature and the rate of indirect sulfation for long reaction times decreased with temperature. An increase in the CO2 partial pressure had a negative influence on the sulfation conversion reached by the limestone due to a higher temperature was needed to work in conditions of indirect sulfation. Thus, it is expected that the optimum temperature for sulfur retention in oxy-fuel combustion in fluidized bed reactors be about 925–950 °C. Sulfation reaction rate rose with decreasing sorbent particle size and increasing SO2 concentration.  相似文献   

13.
Although the benefits of dam construction are numerous, particularly in the context of climate change and growing global demand for electricity, recent experience has shown that many dams have serious negative environmental, human, and political consequences. Despite an extensive literature documenting the benefits and costs of dams from a single disciplinary perspective, few studies have simultaneously evaluated the distribution of biophysical, socio-economic, and geopolitical implications of dams. To meet the simultaneous demands for water, energy, and environmental protection well into the future, a broader view of dams is needed. We thus propose a new tool for evaluating the relative costs and benefits of dam construction based on multi-objective planning techniques. The Integrative Dam Assessment Modeling (IDAM) tool is designed to integrate biophysical, socio-economic, and geopolitical perspectives into a single cost/benefit analysis of dam construction. Each of 27 different impacts of dam construction is evaluated both objectively (e.g., flood protection, as measured by RYI years) and subjectively (i.e., the valuation of said flood protection) by a team of decision-makers. By providing a visual representation of the various costs and benefits associated with two or more dams, the IDAM tool allows decision-makers to evaluate alternatives and to articulate priorities associated with a dam project, making the decision process about dams more informed and more transparent. For all of these reasons, we believe that the IDAM tool represents an important evolutionary step in dam evaluation.  相似文献   

14.
Summary Because of the alarming rate of increase in population all over tropical Africa, and the consequent need to grow more food, several writers have suggested the practice of continuous or permanent cultivation in place of the traditional bush fallowing system. This suggestion has been made without recognising the natural vulnerability of tropical soils and the associated problems of actual soil degradation, especially in situations where fertilizer inputs are limited. This study examines the effects of different land use practices on actual soil degradation in a part of Kwara State, Nigeria. This involves comparing the physical and chemical properties of the soils in areas under continuous cultivation, fallow and forests, and using the technique of factor analysis to isolate indices which best describe these phenomena. The results show that the main effects of continuous cultivation in the area examined were to increase the acidity of the soil, that soil organic matter content was likely to double after 10 years of fallow conditions, and that continuous cultivation was capable of reducing the cation-exchange capacity of soils by at least one-third.In general, the soils of the area of study display marked variability, especially with respect to their chemical properties. This is mainly due to variations in soil organic matter content, which in itself is due to differences in agricultural land use practices. Factor analysis of the soil properties generated four main indices of actual soil degradation, of which organic matter is the most important. Some implications of the results are examined, particularly in relation to generating an awareness of actual soil degradation and land use planning.Dr J. Oluwole Ameyan, the senior author, is on the staff of the University of Ilorin. Mr O. Ogidiolu is at the Department of Geography, Ondo State University, Ado-Ekiti, Nigeria.  相似文献   

15.
Terbuthylazine [N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine] degradation pathways in agricultural soils were evaluated by following the appearance and mobility of its main transformation products: dealkylated and hydroxylated derivatives. Three experimental degradation studies in open field were performed in different hydraulic conditions: constant hydraulic head on topsoil, achieved to simulate the highest-risk situation for the aquifer, intermittent artificial precipitation to simulate a medium-risk situation; and natural precipitation to reproduce the lowest-risk condition. Concentrations of terbuthylazine transformation products derived from dealkylation and hydroxylation reactions were measured in leachates and soil samples collected during the three experiments. Desethylterbuthylazine (DET) and deethylterbuthylazine-2-hydroxide [DETH; 4-amino-6-terbutylamino-(1,3,5)-triazine-2-OH] were found to be the highest-leaching compounds and therefore can be considered as potential pollutants for aquifer contamination.  相似文献   

16.
The Montreal Protocol on Substances that Deplete the Ozone Layer requires developed countries to phaseout methyl bromide production and non-quarantine uses by 2005 and developing countries to do the same by 2015. Exemptions to phaseout have been significant in slowing the process of abatement; many countries have applied for exemptions for some uses, partly on grounds that phaseout is economically infeasible. Data on the US strawberry market are used to investigate grower costs arising from substitution away from methyl bromide, the impact of trends in and characteristics of the demand for fresh strawberries, and characteristics of trade with countries not yet required to eliminate use of the compound. It appears that actual net costs to growers will be much smaller than the simple increase in production costs cited in the US nomination for exemption.  相似文献   

17.
A significant amount of mineral aggregates are used in constructing, rehabilitating and maintaining roads. As local (nearby) quarries get exhausted, aggregates need to be hauled from sources that are at ever-greater distances. Hence, over time the cost of trucking as well as the amount of emissions generated by trucking increases with a decrease of local natural aggregate stocks. The objectives of this study are to construct and utilize a system dynamics model of the depletion of a stock of natural aggregates due to pavement construction and maintenance, and determine the effect of using local and nonlocal aggregates, recycling and project cancellation (slowing growth) on the paving of roads. Long-term simulations are carried out with available aggregate stock, trucking distance and cost data. The quality of roads and a sustainability score, based on engineering, economic and environmental factors (emissions) are evaluated for different scenarios. An optimal combination of the use of local and nonlocal recycled aggregates, recycling and project cancellation is recommended. The proposed system dynamics model could be utilized by agencies to plan for the proper utilization of aggregate resources for road development and maintenance/rehabilitation projects.  相似文献   

18.
Acrylamide (AMD), a neurotoxin and suspected carcinogen, is present at concentrations of up to 0.05% in linear anionic polyacrylamide, which is under evaluation as a temporary sealant in unlined irrigation canal systems across the United States. We examined the microbially mediated degradation of AMD and diversity of AMD-degrading microbial physiotypes in the Rocky Ford Highline Canal, Colorado to better constrain the potential fate ofAMD in a canal environment. Microorganisms able to use AMD (500 mg L(-1)) as a sole nitrogen source were relatively abundant (2.3 x 10(3) to 9.4 x 10(3) cells mL(-1) in water and 4.2 x 10(3) to 2.3 x 10(5) cells g(-1) in sediment). Only sediment samples contained microorganisms able to use AMD as a sole carbon source. Acrylamide (up to 100 mg L(-1)) was efficiently removed from amended canal water and sediment slurries under aerobic conditions, but no AMD degradation was observed in abiotic controls. Anaerobic degradation of AMD by nitrate-, sulfate-, and iron-reducing microorganisms was also tested, with nitrate reducers affecting the highest amounts of AMD removal (70.3-85%) after 60 d. All representatives (n=15) from a collection of 256 AMD-degrading microbial isolates from Rocky Ford Highline Canal were closely related to well characterized environmental bacteria capable of facultative nitrate respiration. Our results demonstrate that natural microbial populations within this canal are capable of AMD degradation under aerobic and anaerobic conditions and that this degradation is performed by naturally abundant bacteria likely to be present in other freshwater irrigation canals or similar lotic habitats.  相似文献   

19.
The basic objective of the research work was to study the effect of various blends of Mimusops elangi methyl ester (MEME) on engine performance, combustion, and emission characteristics of a single-cylinder direct-injection compression ignition engine, running at constant speed. The raw oil was extracted from Mimusops elangi seeds through mechanical crusher. The neat MEME was obtained through transesterification process and mixed with diesel in versatile proportions of 10% of MEME (10% MEME–90% Diesel), 20% of MEME(20% MEME–80% Diesel), 30% of MEME(30% MEME–70% Diesel), 40% of MEME(40% MEME–60% Diesel), and 100% MEME on a volume basis. Their properties were validated based on ASTM standards. Experimental investigation revealed that the 20% blend resulted in 4.18%, 5.12% more prominent performance characteristics of brake thermal efficiency, brake specific energy consumption, and superior emission diminution of 5.26% of HC, 16.6% of CO, 6.2% of smoke when compared with base diesel fuel, despite marginal penalty of 5.26% of carbon dioxide and 4.8% of oxides of nitrogen emission at full load condition. Characteristics of combustion parameters like pressure inside the cylinder and rate of the heat released were superior for 20% blend of MEME at the peak load condition.  相似文献   

20.
Spent coffee grounds (SCG) and coffee husks (CH) were evaluated as biofuels, after densification, for energy production. CH represent a specific problem for the coffee industry due to a low calorific value, high ash content, and a very low bulk density. Hence, the energetic potential of SCG (95 wt%)/CH (5 wt%) blend and pure SCG (100%) were examined. The blend of SCG and CH was limited to 5 wt% of CH because of the low bulk density of CH. Therefore, physicochemical and energetic characterizations of the produced pellets were performed. Thermogravimetric analyses were performed under nitrogen and air atmospheres to evaluate the CH behavior in the blend. Characterization study shows that both produced pellets could reach the French Agropellets standard (AQI). Thermal degradation showed that the mean reactivity of the SCG/HC pellets was higher than pure SCG. Then, combustion experiments were performed in a domestic combustor, after modification of the boiler power in order to improve its energetic performances. The presence of CH led to a rise of CO, NOx, VOC’s, and particle emissions. Nevertheless, the performances of the biofuels are almost in agreement the NF EN 12809 standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号