共查询到20条相似文献,搜索用时 31 毫秒
1.
Andria K. Salas 《Ecological modelling》2011,222(5):1192-1204
Indirect effects are powerful influences in ecosystems that may maintain species diversity and alter apparent relationships between species in surprising ways. Here, we applied network environ analysis to 50 empirically-based trophic ecosystem models to test the hypothesis that indirect flows dominate direct flows in ecosystem networks. Further, we used Monte Carlo based perturbations to investigate the robustness of these results to potential error in the underlying data. To explain our findings, we further investigated the importance of the microbial food web in recycling energy-matter using components of the Finn Cycling Index and analysis of environ centrality. We found that indirect flows dominate direct flows in 37/50 (74.0%) models. This increases to 31/35 (88.5%) models when we consider only models that have cycling structure and a representation of the microbial food web. The uncertainty analysis reveals that there is less error in the I/D values than the ±5% error introduced into the models, suggesting the results are robust to uncertainty. Our results show that the microbial food web mediates a substantial percentage of cycling in some systems (median = 30.2%), but its role is highly variable in these models, in agreement with the literature. Our results, combined with previous work, strongly suggest that indirect effects are dominant components of activity in ecosystems. 相似文献
2.
The construction of material and energy budgets within ecosystems has long been accomplished via manual calculation. Recently, optimization techniques have been adapted to automate the procedure, but these methods require assumptions that may not square with biological reality. Two algorithms are developed to construct ecosystem budgets under minimal inference. Although the methods do not recapitulate the model used to generate the input data, analysis reveals that the results do not differ statistically from networks that were constructed manually. 相似文献
3.
Mahlon Craig Barber 《Ecological modelling》1978,5(2):125-135
Historic ecosystem resource flow is modeled as a retrospective discrete Markov chain to obtain the expected values and variances of compartmental residence times and numbers of intercompartmental transfers that compartmental standing crops have experienced since their latest entry into the ecosystem. The transition probabilities of the proposed retrospective Markovian model are either stationary or time inhomogeneous according to whether a steady state or non-steady state ecosystem, respectively, is analyzed. 相似文献
4.
This paper explains the application of structural path analysis (SPA), an input–output-based technique for measuring flows in ecological and linked ecological–economic networks. Previous methods of input–output flow analysis have concluded with aggregate indexes relying on the summing feature of the Leontief inverse in order to completely account for throughflows along a multitude of inter-compartmental paths. This paper shows that for most linear dissipative networks, a manageable number of paths of limited length exist that cover in the order of 99% or more of total throughflow. These paths can be conveniently extracted, enumerated and ranked using SPA. 相似文献
5.
Legagneux P Gauthier G Berteaux D Bêty J Cadieux MC Bilodeau F Bolduc E McKinnon L Tarroux A Therrien JF Morissette L Krebs CJ 《Ecology》2012,93(7):1707-1716
Determining the manner in which food webs will respond to environmental changes is difficult because the relative importance of top-down vs. bottom-up forces in controlling ecosystems is still debated. This is especially true in the Arctic tundra where, despite relatively simple food webs, it is still unclear which forces dominate in this ecosystem. Our primary goal was to assess the extent to which a tundra food web was dominated by plant-herbivore or predator-prey interactions. Based on a 17-year (1993-2009) study of terrestrial wildlife on Bylot Island, Nunavut, Canada, we developed trophic mass balance models to address this question. Snow Geese were the dominant herbivores in this ecosystem, followed by two sympatric lemming species (brown and collared lemmings). Arctic foxes, weasels, and several species of birds of prey were the dominant predators. Results of our trophic models encompassing 19 functional groups showed that <10% of the annual primary production was consumed by herbivores in most years despite the presence of a large Snow Goose colony, but that 20-100% of the annual herbivore production was consumed by predators. The impact of herbivores on vegetation has also weakened over time, probably due to an increase in primary production. The impact of predators was highest on lemmings, intermediate on passerines, and lowest on geese and shorebirds, but it varied with lemming abundance. Predation of collared lemmings exceeded production in most years and may explain why this species remained at low density. In contrast, the predation rate on brown lemmings varied with prey density and may have contributed to the high-amplitude, periodic fluctuations in the abundance of this species. Our analysis provided little evidence that herbivores are limited by primary production on Bylot Island. In contrast, we measured strong predator-prey interactions, which supports the hypothesis that this food web is primarily controlled by top-down forces. The presence of allochthonous resources subsidizing top predators and the absence of large herbivores may partly explain the predominant role of predation in this low-productivity ecosystem. 相似文献
6.
The selection and establishment of the structure (number and compartments, aggregation criteria, and trophic links) of the food webs is a critical task in trophic modelling. The present work proposes a systematic method to structure trophic networks in pelagic food webs. The biomass-size spectrum (BSS) is a well-established approach to analyze the structure of pelagic communities, and the body size is especially related to the ecological role of the organisms in the pelagic environment. To structure food webs, this work uses detailed arrangements of the community in size classes with increasing widths (like Sheldon-type BSS) as first aggregation criteria, and BSS theory as a framework to integrate the available knowledge about feeding selectivity in order to obtain a method to identify the trophic links between compartments. Diet composition matrices were estimated through the combination of a probability of encounter for each food type and a specific probability of ingestion related to the food size selectivity and other food quality characteristics (e.g., morphology and nutritional quality). The feasibility of this approach has been illustrated through data of size-structured communities extracted from the literature including different planktonic predator guilds (nanoflagellates, cladoceran-dominated zooplankton and copepod-dominated zooplankton) in a high mountain lake (La Caldera, Spain), two subtropical wetland lakes (meso-oligotrophic Laguna Galarza and eutrophic Laguna Iberá, Argentina) and a marine microcosm (Alborán Sea, Mediterranean). The identification of “who eats whom” and “by how much” also allows for more accurate analyses of the trophic control in the BSS. Extensive analyses of the balance between top-down and bottom-up controls were developed for the feeding interactions of the study cases. 相似文献
7.
Jeong-Ho HanHema K. Kumar Jae Hoon LeeChang-Ik Zhang Se-Wha KimJung-Ho Lee Sang Don KimKwang-Guk An 《Ecological modelling》2011,222(19):3457-3472
The objective of this study was to describe the trophic structure and energy flow in a lentic ecosystem in South Korea. Physicochemical water conditions were evaluated along with the reservoir ecosystem health using a multimetric IBI model. Nutrient analyses of the reservoir showed a nutrient rich and hypereutrophic system. Guild analysis revealed that tolerant and omnivorous species dominated the ecosystem. Tolerant fish, as a proportion of the number of individuals, were associated (R2 > 0.90, p < 0.01) with TN and TP, the key indicators of trophic state in lentic ecosystems. The mean Reservoir Ecosystem Health Assessment (REHA) score was 19.3 during the study, which was judged as in ‘fair to poor’ condition. A trophic analysis of the reservoir estimated by the ECOPATH model shows that most activity in terms of energy flow occurred in the lower part of the trophic web, where there was intensive use of primary producers as a food source. Consequently, of the 10 consumer groups, nine fell within trophic levels <2.8. Trophic levels (TL) estimated from the weighted average of prey trophic levels varied from 1.0 for phytoplankton, macrophytes, and detritus to 3.25 for the top predator, Pseudobagrus fulvidraco. Our integrated approach to trophic network analysis may provide a key tool for determining the effects of nutrient influx on energy flow pathways in lentic ecosystems. 相似文献
8.
Dobson A Lodge D Alder J Cumming GS Keymer J McGlade J Mooney H Rusak JA Sala O Wolters V Wall D Winfree R Xenopoulos MA 《Ecology》2006,87(8):1915-1924
The provisioning of sustaining goods and services that we obtain from natural ecosystems is a strong economic justification for the conservation of biological diversity. Understanding the relationship between these goods and services and changes in the size, arrangement, and quality of natural habitats is a fundamental challenge of natural resource management. In this paper, we describe a new approach to assessing the implications of habitat loss for loss of ecosystem services by examining how the provision of different ecosystem services is dominated by species from different trophic levels. We then develop a mathematical model that illustrates how declines in habitat quality and quantity lead to sequential losses of trophic diversity. The model suggests that declines in the provisioning of services will initially be slow but will then accelerate as species from higher trophic levels are lost at faster rates. Comparison of these patterns with empirical examples of ecosystem collapse (and assembly) suggest similar patterns occur in natural systems impacted by anthropogenic change. In general, ecosystem goods and services provided by species in the upper trophic levels will be lost before those provided by species lower in the food chain. The decrease in terrestrial food chain length predicted by the model parallels that observed in the oceans following overexploitation. The large area requirements of higher trophic levels make them as susceptible to extinction as they are in marine systems where they are systematically exploited. Whereas the traditional species-area curve suggests that 50% of species are driven extinct by an order-of-magnitude decline in habitat abundance, this magnitude of loss may represent the loss of an entire trophic level and all the ecosystem services performed by the species on this trophic level. 相似文献
9.
Kelp as a trophic resource for marine suspension feeders: a review of isotope-based evidence 总被引:2,自引:0,他引:2
Kelp forests are enormously productive, and they and adjacent habitats support large populations of suspension feeders. What do these suspension feeders eat? Intuitively, we might expect that kelp primary production is a key form of trophic support for these animals. Indeed, a large and growing number of studies using carbon stable isotope data, typically collected over short time periods, have asserted that detritus from kelps is an important, and in some cases the main, food source for coastal benthic suspension feeders. This view has been incorporated into several textbooks and review papers covering kelp forest ecosystems, and loss of trophic support for benthic suspension feeders is now often invoked as an ecosystem consequence of top-down or other impacts on kelp forests. More direct evidence, however, suggests that these animals mainly eat phytoplankton and, in some cases, bacteria or zooplankton. Because isotope values of pure coastal phytoplankton, uncontaminated with detritus, are difficult to obtain, present studies have largely relied on single measurements from offshore environments or from the literature, which typically reflects offshore values. We review the evidence showing that phytoplankton isotope values can, and are expected to, vary widely in coastal waters and that inshore phytoplankton may often be enriched in 13C compared to offshore phytoplankton. This unaccounted-for variation may have systematically biased the results of such trophic studies toward finding large contributions of kelp detritus to suspension-feeder diets. We review some key stable isotope studies and put forth evidence for alternative explanations of the isotope patterns presented. Finally, we make recommendations for future isotope studies and describe several approaches for progress in this area. New techniques, particularly flow cytometry and compound-specific stable isotope analysis, provide ways to shed light on this interesting and important ecological issue. 相似文献
10.
Migal MG 《Journal of environmental biology / Academy of Environmental Biology, India》2011,32(4):455-462
The impactof cladocerans metabolic activities on the carbon (C), nitrogen (N) and phosphorus (P) dynamics in Lake Kinneret (Israel) is presented. The study, is based on the incorporation of field data and experimental measurements. Grazing, respiration and production rates of Diaphanosoma spp., Ceriodaphnia spp. and Bosmina spp. were experimentally measured at three temperatures, and the results were extrapolated to the field biomass distribution atthese respective temperatures, and the total lake capacity was calculated using the following equation: consumption = respiration + production + excretion. The field capacity of consumption, respiration and production were found to be mostly correlated with biomass density, but the temporal fluctuation of the percent of excretion from consumed energy differed. The increase in P, decline in N and decrease in the TN/TP mass ratio in the epilimnion of Lake Kinneret during 1969-2004 created N limitation. An increase in C and dedine in TN, with a consequential increase in the C/TN ratio were documented. TP was augmented but the C/TP ratio was only slightly increased. During 1975-2004, P was probably, a minor limitation for cladoceran growth. The positive impact of recycled P by cladocerans underthe N limitation in Lake Kinneret is discussed. There is a current threat on the water quality, derived from N limitation (mostly in summer-fall) and consequent Cyanophyta blooms. Thus, the role of recycled P bygrazers may be significant. 相似文献
11.
Mechanical clam dredging in Venice lagoon: ecosystem effects evaluated with a trophic mass-balance model 总被引:1,自引:0,他引:1
Harvesting of the invasive Manila clam, Tapes philippinarum, is the main exploitative activity in the Venice lagoon, but the mechanical dredges used in this free-access regime produce a considerable disturbance of the lagoon ecosystem. An ecosystem approach to study the complex effects of clam harvesting was implemented using a trophic mass-balance model. The trophic relations in the ecosystem were quantified with a mixed trophic impact analysis and further evaluated by considering different explanations for the " Tapes paradox", which consists of the apparent population enhancement of Manila clams by dredging and the apparent nutritional advantages that this species receives from re-suspended organic matter. The key-role played by this introduced species is highlighted by a network analysis that indicates a "wasp-waist control" of the system by Manila clams. The model constructed to characterise the present state of the Venice lagoon ecosystem is compared with models produced for a reconstructed past lagoon and a projected future lagoon. The future model was obtained by simulating the elimination of clam dredging in 10 years. The three different models were compared using thermodynamic and informational indices. Simulating the elimination of clam dredging produced a 33% increase in artisanal fishery catches, carried out by means of static gears, even with no change in fishing effort. These simulations also forecast an increase in the mean trophic level of the artisanal fishery catches as a positive effect of eliminating mechanical clam harvesting. 相似文献
12.
A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing 总被引:1,自引:0,他引:1
Overexploitation of predators has been linked to the collapse of a growing number of shallow-water marine ecosystems. However, salt-marsh ecosystems are often viewed and managed as systems controlled by physical processes, despite recent evidence for herbivore-driven die-off of marsh vegetation. Here we use field observations, experiments, and historical records at 14 sites to examine whether the recently reported die-off of northwestern Atlantic salt marshes is associated with the cascading effects of predator dynamics and intensive recreational fishing activity. We found that the localized depletion of top predators at sites accessible to recreational anglers has triggered the proliferation of herbivorous crabs, which in turn results in runaway consumption of marsh vegetation. This suggests that overfishing may be a general mechanism underlying the consumer-driven die-off of salt marshes spreading throughout the western Atlantic. Our findings support the emerging realization that consumers play a dominant role in regulating marine plant communities and can lead to ecosystem collapse when their impacts are amplified by human activities, including recreational fishing. 相似文献
13.
14.
Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution 总被引:3,自引:0,他引:3
While empirical studies linking biodiversity to local environmental gradients have emphasized the importance of lake trophic status (related to primary productivity), theoretical studies have implicated resource spatial heterogeneity and resource relative ratios as mechanisms behind these biodiversity patterns. To test the feasibility of these mechanisms in natural aquatic systems, the biodiversity of crustacean zooplankton communities along gradients of total phosphorus (TP) as well as the vertical heterogeneity and relative abundance of their phytoplankton resources were assessed in 18 lakes in Quebec, Canada. Zooplankton community richness was regressed against TP, the spatial distribution of phytoplankton spectral groups, and the relative biomass of spectral groups. Since species richness does not adequately capture ecological function and life history of different taxa, features which are important for mechanistic theories, relationships between zooplankton functional diversity (FD) and resource conditions were examined. Zooplankton species richness showed the previously established tendency to a unimodal relationship with TP, but functional diversity declined linearly over the same gradient. Changes in zooplankton functional diversity could be attributed to changes in both the spatial distribution and type of phytoplankton resource. In the studied lakes, spatial heterogeneity of phytoplankton groups declined with TP, even while biomass of all groups increased. Zooplankton functional diversity was positively related to increased heterogeneity in cyanobacteria spatial distribution. However, a smaller amount of variation in functional diversity was also positively related to the ratio of biomass in diatoms/chrysophytes to cyanobacteria. In all observed relationships, a greater variation of functional diversity than species richness measures was explained by measured factors, suggesting that functional measures of zooplankton communities will benefit ecological research attempting to identify mechanisms behind environmental gradients affecting diversity. 相似文献
15.
近50年贵州净生态系统生产力时空分布特征 总被引:5,自引:0,他引:5
利用大气植被相互作用模型AVIM2(Atmosphere-Vegetation Interaction Model 2)估算分析了时间长度为50年、空间分辨率为0.02°×0.02°的贵州净生态系统生产力(NEP),分析了其对气候变化的响应。结果表明,(1) AVIM2模型能够模拟出贵州森林净初级生产力(NPP)的变化,模拟偏差随着树龄的增大而不断减小,其模拟效果优于综合模型。(2)1961-2010年,贵州NEP(以C计)平均值为23.9 g·m-2·a-1,碳源区面积比例仅为5%,且植被覆盖类型为南部部分常绿阔叶林。NEP总量的变动范围为-7.0~11.5 Tg ·a-1,平均每年吸收碳4.87Tg,碳汇量占中国区域的3~7%。(3)贵州境内31%的区域固碳能力下降明显(P<0.05)且主要集中在植被类型为常绿针叶林及农作物的北部地区,还有7%的区域固碳能力升高明显(P<0.05)且位于南部部分常绿阔叶林地区。(4)贵州NEP与气温显著负相关(P<0.01),与降水量显著正相关(P<0.05),气温对NEP的影响大于降水。 相似文献
16.
Predator diversity and ecosystem functioning: density modifies the effect of resource partitioning 总被引:4,自引:0,他引:4
The link between biodiversity and ecosystem functioning is now well established, but the challenge remains to develop a mechanistic understanding of observed effects. Predator-prey interactions provide an opportunity to examine the role of resource partitioning, thought to be a principal mediator of biodiversity-function relationships. To date, interactions between multiple predators and their prey have typically been investigated in simplified agricultural systems with limited scope for resource partitioning. Thus there remains a dearth of studies examining the functional consequences of predator richness in diverse food webs. Here, we manipulated a species-rich intertidal food web, crossing predator diversity with total predator density, to simultaneously examine the independent and interactive effects of diversity and density on the efficiency of secondary resource capture. The effect of predator diversity was only detectable at high predator densities where competitive interactions between individual predators were magnified; the rate of resource capture within the species mixture more than doubled that of the best-performing single species. Direct observation of species-specific resource use in monoculture, as quantified by patterns of prey consumption, provided clear evidence that species occupied distinct functional niches, suggesting a mechanistic explanation of the observed diversity effect. 相似文献
17.
Cinzia Brugnano Raffaele D'Adamo Adele Fabbrocini Antonia Granata Giacomo Zagami 《Chemistry and Ecology》2013,29(5):461-480
Spatial and temporal variability in zooplankton was studied at eight stations located in the Lesina Lagoon (South Adriatic Sea) Salinity, temperature, dissolved oxygen and chlorophyll a (in the lagoon) at these stations were also assessed. The zooplankton community was characterised by clear seasonal oscillations and mostly represented by copepods and their larvae. The dominant copepod species were Calanipeda aquaedulcis and Acartia tonsa, which exhibited spatial–temporal segregation in the lagoon. C. aquaedulcis copepodites seemed to be better adapted to oligotrophic and oligohaline conditions compared with the A. tonsa population. The invasive species A. tonsa has completely replaced the formerly abundant Acartia margalefi. A positive correlation was found between abundances, total species numbers and trophic state. An increasing abundance trend was shown from the lagoon towards the sea. The highest diversity indices were recorded at the two channel inlets, during high tide due to the absence of a clear dominance of one or more coastal species and the co-occurrence of species of lagoon and marine origin. 相似文献
18.
Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies 总被引:6,自引:0,他引:6
Studies of the effects of cross-habitat resource subsidies have been a feature of food web ecology over the past decade. To date, most studies have focused on demonstrating the magnitude of a subsidy or documenting its effect in the recipient habitat. Ecologists have yet to develop a satisfactory framework for predicting the magnitude of these effects. We used 115 data sets from 32 studies to compare consumer responses to resource subsidies across recipient habitat type, trophic level, and functional group. Changes in consumer density or biomass in response to subsidies were inconsistent across habitats, trophic, and functional groups. Responses in stream cobble bar and coastline habitats were larger than in other habitats. Contrary to expectation, the magnitude of consumer response was not affected by recipient habitat productivity or the ratio of productivity between donor and recipient habitats. However, consumer response was significantly related to the ratio of subsidy resources to equivalent resources in the recipient habitat. Broad contrasts in productivity are modified by subsidy type, vector, and the physical and biotic characteristics of both donor and recipient habitats. For this reason, the ratio of subsidy to equivalent resources is a more useful tool for predicting the possible effect of a subsidy than coarser contrasts of in situ productivity. The commonness of subsidy effects suggests that many ecosystems need to be studied as open systems. 相似文献
19.
Surface “swarms” of the swimming crabs Charybdis smithii are still considered as an unusual phenomenon in the open Indian Ocean, although their dense pelagic aggregations were already
reported in waters off the Indian coast and in the northern Arabian Sea. Based on an extensive large-scale data series taken
over 45 years, we demonstrate that C. smithii is common in the pelagic provinces of the western Indian Ocean driven by the wind monsoon regime. Swimming crabs are dispersed
by the monsoon currents throughout the equatorial Indian Ocean. They aggregate at night in the upper 150-m layer, where their
estimated biomass derived from pelagic trawling data can exceed 130 kg km−2. Abundance of C. smithii can reach >15,000 ind. km−2 in July (i.e. the peak of the south-west monsoon), declines by 50-fold in March and is negligible in May. C. smithii is an important prey for more than 30 species of abundant epipelagic top predators. In turn, it feeds on mesopelagic species.
This swimming crab is a major species of the intermediate trophic levels and represents a crucial seasonal trophic link in
the open ocean ecosystem of the western Indian Ocean. Outbursts in pelagic waters of huge biomasses of ordinarily benthic
crustaceans (C. smithii and Natosquilla investigatoris) are a remarkable feature of the Indian Ocean, although similar, but smaller, events are reported in the Pacific and Atlantic
Oceans.
相似文献
Evgeny RomanovEmail: |
20.
Introducing a new or extirpated species to an ecosystem is risky, and managers need quantitative methods that can predict the consequences for the recipient ecosystem. Proponents of keystone predator reintroductions commonly argue that the presence of the predator will restore ecosystem function, but this has not always been the case, and mathematical modeling has an important role to play in predicting how reintroductions will likely play out. We devised an ensemble modeling method that integrates species interaction networks and dynamic community simulations and used it to describe the range of plausible consequences of 2 keystone‐predator reintroductions: wolves (Canis lupus) to Yellowstone National Park and dingoes (Canis dingo) to a national park in Australia. Although previous methods for predicting ecosystem responses to such interventions focused on predicting changes around a given equilibrium, we used Lotka–Volterra equations to predict changing abundances through time. We applied our method to interaction networks for wolves in Yellowstone National Park and for dingoes in Australia. Our model replicated the observed dynamics in Yellowstone National Park and produced a larger range of potential outcomes for the dingo network. However, we also found that changes in small vertebrates or invertebrates gave a good indication about the potential future state of the system. Our method allowed us to predict when the systems were far from equilibrium. Our results showed that the method can also be used to predict which species may increase or decrease following a reintroduction and can identify species that are important to monitor (i.e., species whose changes in abundance give extra insight into broad changes in the system). Ensemble ecosystem modeling can also be applied to assess the ecosystem‐wide implications of other types of interventions including assisted migration, biocontrol, and invasive species eradication. 相似文献