首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This study demonstrates the accumulation of Zn, Cd and Cu in the digestive gland of the oyster Crassostrea rhizophorae in response to the contamination of sediments and discusses the potential use of this specific organ in monitoring metal contamination in tropical areas. Sediment and oyster samples were collected from coastal Rio de Janeiro sites with different levels of human impact: Sepetiba Bay, Guanabara Bay and the Paraty coast. Metal concentrations were measured using inductively coupled plasma optical emission spectrometry (ICP OES). Significant statistical differences (p<0.001; p<0.05) were observed for Zn and Cd concentrations in the digestive gland; the highest Zn concentrations were found at Sepetiba, followed by Guanabara and Paraty. The highest digestive gland Cd concentrations were found at Paraty, followed by Sepetiba and Guanabara. These concentrations were proportional to those found in the sediments. There was no significant difference (p>0.05) in Cu among the sampling sites. The highest digestive-gland Cu concentration was also found at Sepetiba, followed by Guanabara. The biosediment accumulation factor indicated a gradient of sediment contamination for Zn and Cd. The digestive gland of C. rhizophorae can be a potential indicator of trace metal contamination in sediments from tropical estuarine environments.  相似文献   

2.
The concentrations of 11 heavy metals (Ag, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn) were measured in the tissues (digestive gland, branchial hearts, gills, digestive tract, kidney, genital tract, muscle, skin, shell) of the two cephalopods Eledone cirrhosa (d'Orb.) and Sepia officinalis (L.) collected from the French coast of the English Channel in October 1987. The tissues of both species displayed a similar pattern of heavy-metal accumulation: the digestive gland, branchial hearts and kidney were the major sites of concentration for all 11 metals; the digestive gland accumulated silver, cadmium, cobalt, copper, iron, lead and zinc, the branchial hearts high concentrations of copper, nickel and vanadium, and the kidney high concentrations of manganese, nickel and lead. The digestive gland, which constituted 6 to 10% of the whole-animal tissue, contained >80% of the total body burden of Ag, Cd and Co and from 40 to 80% of the total body burden of the other metals. The ratios between heavy metal concentrations in the digestive gland and those in the muscle separated the elements into three groups, those with a ratio 10 (Cr, Mn, Ni, Pb, V, Zn), those with a ratio >10 to <50 (Co, Cu, Fe), and those with a ratio 50 (Ag, Cd). The digestive gland of cephalopods (carnivorous molluscs whose age can be easily calculated with great accuracy) would seem to constitute a good potential indicator of heavy metal concentrations in the marine environment.  相似文献   

3.
 The levels and burdens of Cd, Zn, Cu and Hg were measured in the dorsal mantle, digestive gland and gonads of the squid Illex argentinus, from the Southwest Atlantic Ocean. Mature and immature individuals of both sexes were analysed. Correlations of heavy metal concentrations and burdens with sex and food habits were studied. The highest metal levels were found, particularly for Cd, in the digestive gland, which attained a concentration of up to 270 μg g−1 (wet weight). Dorsal mantle and gonads exhibited the same order of metal enrichment: Zn>Cu>Cd. Zinc and Cu levels were higher in ovaries than in testes and varied with the stage of maturation. The dorsal mantle exhibited the lowest heavy metal concentrations. Mercury levels were below the detection limit of the method in all the tissues analysed. Received: 7 September 1999 / Accepted: 9 March 2000  相似文献   

4.
Trace-metal distribution in tissues of the shrimp Pleoticus muelleri Bate from the Patagonian region, Argentina, was related to sex, size and physiological condition. Concentrations of cadmium, copper, manganese and zinc were determined in the digestive gland, male reproductive system and muscle of adult specimens. Significant (p<0.01) sex-dependent differences in mean metal concentrations (g g-1 wet wt) were found in the following tissues of males and females, respectively: digestive gland, Cu, 82.9 and 30.8; Zn, 32.5 and 44.9; reproductive system, Zn, 12.8 and 38.6; Mn, 1.7 and 3.1; Cd, 0.29 and 0.58. Metal levels of muscle showed no significant differences between sexes. Cadmium was not detected in muscle, suggesting that its incorporation into this tissue was strictly regulated. Metal concentrations in the male reproductive system were in general weakly correlated (0.001<p<0.05) with either body size or the concentration of metals in the digestive gland. The developing ovary incorporated substantial amounts of zinc, while cadmium and copper levels decreased at proportional rates (p<0.001). The patterns of the variations in the concentrations of these metals in the ovary strongly suggested that a regulatory mechanism operated throughout oogenesis. Manganese was not involved in this presumptive mechanism. The results of this study are discussed in terms of concentrations and in absolute amounts for standardized individuals.  相似文献   

5.
It has been confirmed that metallothioneins play an important role in the accumulation of cadmium (Cd) in the digestive gland cells of mussels (Mytilus galloprovincialis Lam.). The content of Cd in the tissue of mussels exposed for 9 d to the metal (estimated dosage of 180 g Cd mussel-1 d-1) was 66.2 ppm. This value is about the same as the metal content found in the digestive gland of Cd-exposed mussels kept in clean water for a recovery period of 28 d. At the end of the recovery period, however, the Cd bound to thionein had increased by approximately 250%. Our data demonstrate that the stability of lysosomes, a biological parameter adopted as a cellular stress index, is extremely low in mussels exposed to Cd for 9 d, but returns to control values in the digestive gland cells of mussels allowed to recover for 28 d in uncontaminated sea water. At this point most of the Cd present in the cytosol is bound to thionein. These data demonstrate the importance of metallothionein induction in the reduction of the cytotoxic effects exerted by high levels of Cd accumulation. The results of tests designed to clarify the reasons for the long biological half-life of Cd demonstrated that, in the digestive gland of mussels, the lysosomes are not able to eliminate Cd either bound to insoluble thionein polymers or to lipid peroxidation products such as lysosomal lipofuscin, both of which are apparently involved in the elimination of copper. The absence of these two mechanisms of metal sequestration and elimination via excretion of residual bodies (tertiary lysosomes) is in agreement with the persistence of cadmium in the digestive gland of mussels. Finally, the results also demonstrate that simultaneous exposure of mussels to Cd and phenanthrene, an established lysosomal membrane destabilizer, did not significantly alter the accumulation of Cd or the kinetics of the metal in mussels.  相似文献   

6.
The depuration of 12 trace metals in the mantle, gill, digestive gland, and kidney of Crassostrea gigas and C. virginica was investigated under natural field conditions; oysters from a relatively contaminated environment (Redwood Creek in south San Francisco Bay) were transplanted to a relatively clean environment (Tomales Bay). In the transplanted oysters, the digestive gland and kidney depurated Cd, Cu, Hg, Ag, and Zn more readily than the mantle and gill. Other trace metals As, Fe, Mn, Ni and Se showed varying depuration patterns. The results for Cr and Pb were inconclusive, since initial concentrations were too low to follow any losses. Interspecific differences in trace metal depuration were observed. Biological half-lives for most trace metals were on the order of 23 to 60 d for C. gigas and on the order of 70 to 180 d for C. virginica.  相似文献   

7.
ABSTRACT

Cadmium (Cd) is a toxic-heavy metal that induces a wide range of behavioural, biochemical and physiological effects in aquatic organisms. Oxidative damage has been proposed as a possible mechanism involved in cadmium toxicity. The current study was carried out to evaluate the antioxidant activity of Spirulina as feed additive (1?mg/L) against the toxicity of cadmium (Cd) 0.5?mg/L in freshwater mussel Unio ravoisieri. At the end of the exposed period of 4 days, digestive gland antioxidant status Superoxide dismutase, Catalase, Glutathione-S-transferase and damage markers such as Malondialdehyde and Protein carbonyl were determined. Associations between biomarkers were assessed by a multivariate analysis technique, principal component analysis (PCA). The results of this study revealed that digestive gland antioxidant status showed a significant decrease when mussels were exposed to Cd. Superoxide dismutase, Catalase and Glutathione-S-transferase activities in the Cd?+?SP group were significantly higher than the Cd group (p P?相似文献   

8.
Two heavy metal-binding proteins occur naturally in the midgut glands of Carcinus maenas (L.) collected from the Firth of Clyde, Scotland. These proteins, of approximately 27,000 and 11,500 MW (molecular weight) have previously been described as Cd-binding proteins after their induction by high concentrations of cadmium in the laboratory. The 27,000 MW heavy metal-binding protein is bound to about 0.10 g-at of Cd, 0.70 g-at of Zn and 0.31 g-at of Cu per mole of protein; 7.7, 7.9 and 1.1%, respectively, of the soluble Cd, Zn and Cu in the midgut gland are associated with this 27,000 MW protein (6.7, 1.6 and 0.9% of the total midgut gland Cd, Zn and Cu). The 11,500 MW protein is bound to about 0.04 g-at of Cd, 0.37 g-at of Zn and 1.54 g-at of Cu per mole of protein; 29.3, 31.3 and 41.7%, respectively, of the soluble Cd, Zn and Cu in the midgut gland are associated with this protein (25.7, 6.3 and 34.4% of the total midgut gland Cd, Zn and Cu). Neither heavy metal-binding protein is bound to measurable amounts of lead.  相似文献   

9.
Mytilus edulis collected from Tomales Bay, California, USA, during mid-winter 1979 were exposed to increased concentrations of dissolved copper under controlled laboratory conditions. A dose-dependent reduction in the latency of lysosomal hexosaminidase activity in digestive cells was induced after a 30 d exposure to copper. The half-time of the hexosaminidase staining reaction in sections of digestive gland from control mussels was 15.5 min; for mussels exposed to 25, 50, and 75 g Cu l-1 it was 11.8, 8.5 and 5.5 min, respectively. In addition, the dyecoupled reaction product was seen earlier in sections from individuals exposed to 50 and 75 g Cu l-1 (after 30 s) and 25 g Cu l-1 (1 min) than in sections from control individuals (2.5 min). Copper accumulations were demonstrated histochemically to have the same distribution as the hexosaminidase reaction product, indicating that copper is sequestered in lysosomes. Copper concentrations in digestive gland tissue, were related to the concentrations of copper in the water to which the mussels were exposed.  相似文献   

10.
Quantitative data on digestive enzymes of bivalves are very limited and so this study was performed to obtain such information, and to find out whether some of these enzymes are well adapted to conditions in the digestive gland. The green musselPerna viridis was obtained from Clementi West Market in 1985. The results show that various carbohydrases are present in the digestive gland. The activities of-amylase, cellulase and-glucosidase are higher than that of other carbohydrases, whilst the activities of both lipase and protease, especially the former, are low. The pH optima of the following enzymes are also given:-amylase = 5.8; laminarinase = 5.5;-glucosidase = 5.8; trehalase = 4.8;-glucosidase = 5.5. The only enzyme which was not well adapted to conditions in the digestive gland (pH 6.2) was trehalase. The wide spectrum of enzymes present in this bivalve indicates that it has the ability to utilize a wide range of nutrients efficiently.  相似文献   

11.
镉和铅对菲律宾蛤仔脂质过氧化及抗氧化酶活性的影响   总被引:1,自引:0,他引:1  
为了研究亚致死浓度的重金属对海洋贝类的毒性效应,探讨其可能的作用机理,在实验生态条件下以菲律宾蛤仔(Ru-ditapes philip pinarum)为目标生物,采用半静态毒性实验方法,研究了不同浓度Cd2+(0.0948、0.237和0.474mg·L-1)和Pb2+(0.276、0.690和1.380mg·L-1)对菲律宾蛤仔鳃和消化腺组织中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性以及丙二醛(MDA)含量的影响。结果显示:(1)鳃和消化腺中的抗氧化酶及MDA的变化呈现出类似的趋势,在胁迫初期,各浓度处理组菲律宾蛤仔鳃和消化腺组织SOD和CAT与对照组相比活性都显著升高(P<0.01),呈现出明显的诱导效应,而MDA含量与对照组相比差异不显著(P>0.05);随着胁迫时间的延长,高浓度Cd2+(0.474mg·L-1)和Pb2+(1.380mg·L-1)处理组中SOD、CAT活性快速下降,与对照组相比差异显著;低浓度处理组中的抗氧化活性虽然也较对照组有所下降,但总体下降幅度不如高浓度组明显,并且所历暴露时间较长。各浓度处理组中MDA含量变化一致,均呈现出先升高后降低的趋势,且含量均高于对照组。(2)通过相关性分析,菲律宾蛤仔消化腺组织中的SOD活性与Cd2+浓度的相关性大于鳃组织,与Pb2+浓度的相关性则小于鳃组织;消化腺组织中的CAT活性与Cd2+、Pb2+浓度呈抛物线型相关,与鳃组织CAT活性相关性不十分显著。这说明消化腺组织中SOD活性对Cd2+的敏感性大于鳃组织,消化腺组织中CAT活性对Cd2+、Pb2+的敏感性大于鳃组织。因此,菲律宾蛤仔消化腺中SOD、CAT对水环境中的重金属反应敏感,且存在一定的剂量-效应关系,消化腺组织中SOD和CAT活性与其他敏感性指标一起可以作为指示早期海洋重金属污染的生物标志物。  相似文献   

12.
The present study aims to determine the concentrations of Cd, Cu, Fe, Ni, Pb, and Zn in the different tissues of five species of tropical intertidal gastropods from Malaysia. Each of the species have organs/tissues that highly accumulated certain metals. For Cu, the mantles of Cerithidea obtusa, Pugilina cochlidium, and Murex trapa; and the digestive caeca of Thais sp. and Chicoreus capucinus highly accumulated Cu. The shells of Chi. capucinus and M. trapa, the digestive caeca of P. cochlidium, and the digestive glands of Thais sp. and Chi. capucinus highly accumulated Cd. The tentacles and the digestive caeca of Cer. obtusa and P. cochlidium, respectively, highly accumulated Zn, the digestive glands of Thais sp., Chi. capucinus, and M. trapa also highly accumulated Zn. The shells of most of the gastropods accumulated high levels of Pb and Ni. The opercula of most of the gastropods, besides the digestive glands for Thais sp., accumulated high levels of Fe. The present study on interspecific variations of heavy metals in gastropods provided information on differences of metal distributions in the different tissues, which could be useful in proposing potential tissues as better biomonitoring tools of heavy metal bioavailabilities in the coastal waters of Peninsular Malaysia.  相似文献   

13.
Acid and alkaline phosphatase activities have been partially characterized in Ruditapes philippinarum (Adams and Reeve, 1850). Two activity peaks at pH=4.5 and pH 10.5 were detected in the gill, digestive gland, mantle, siphon and foot. Acid phosphatase activity was higher than that of alkaline phosphatase. The highest activity for both enzymes was observed in the digestive gland and, in decreasing order, the gill, foot, siphon and mantle. Alkaline phosphatase activity was similar in the mantle, siphon and foot. K m values were determined for both enzymes in the gill and digestive gland. Hill coefficients were near 1, indicating no allosteric behaviour for either enzyme in the two organs. The optimum temperature was the same for acid phosphatase in both gill and digestive gland (50 °C), while for alkaline phosphatase it differed for these two organs (gill, 40 °C; digestive gland, 35 °C). The apparent activation energy was obtained from Arrhenius plots, and ranged from 8.61 kcal/mol for alkaline phosphatase in the gill, to 10.84 kcal/mol for acid phosphatase in the digestive gland. The effects of metals (1 mM conc) on both enzyme activities were assayed in vitro. Hg strongly inhibited the enzyme activities in the gill and digestive gland, probably because of its affinity for the sulphydryl group. Histochemically, acid phosphatase in the gill was located in a granular form throughout the gill cells, but was undetectable in the ciliate epithelium of the gill filaments. Alkaline phosphatase was located in the gill skeleton. Clam size and phosphatase activities were inversely related, probably reflecting a decrease in shell deposition with inereasing size. As a function of season, both enzymes were present in lowest amounts in winter, when undifferentiated sex cells were predominant in the germinative epithelium, and highest in summer, when ripe individuals of both sexes were more frequent.  相似文献   

14.
The tissue and sub-cellular distribution of Fe, Cu, Zn and the naturally occurring radionuclide polonium-210 was determined in the gastropod mollusc Haliotis rubra collected from Western Port Bay, Australia, between March and July 1988. The highest concentrations of the metals, with the exception of Cu, were found in the digestive gland. Copper was more uniformly distributed, with tissues that are more vasculated having higher concentrations. Ultrastructural examination of the digestive gland, gill and kidney showed dense membrane-bound granules within the cytoplasm. Elemental analysis of the granules by electron probe x-ray microanalysis indicated that the granules in the digestive gland and gill contained high concentrations of iron, with small amounts of copper and zinc. In contrast, the metal-containing granules in the kidney were predominantly composed of iron, copper and phosphorus, with variable contributions of sodium potassium, and calcium. Homogenisation and fractionation of the digestive gland by differential centrifugation confirmed that approximately 80, 10, 90 and 50% of the total homogenate Fe, Cu, Zn and 210Po, respectively, sedimented at 1200xg. In the haemolymph, all the elements studied were associated with the soluble high molecular weight component of the serum, not with the amoebocytes. 210Po was present in the mucus-secreting hypobranchial glands at about half the concentration found in gill tissue.  相似文献   

15.
To understand acute toxicity and oxidative stress of perfluorinated compounds in the freshwater ecosystems, we exposed freshwater mussels (Unio ravoisieri) to perfluorooctane sulfonate (PFOS), over a range of concentrations from 10 to 100?mg/L, in a laboratory experiment. Lethal concentration (LC50) was of about 65.9?mg/L after 96?h of exposure. The oxidative stress was assessed in gill and digestive gland of the freshwater mussels after 7 days of exposure to different nominal PFOS concentrations (C1=?2?mg/L, C2?=?6?mg/L and C3=?10?mg/L). C1 and C2 increased significantly (p?<?.05) the superoxide dismutase activity in both tissues compared, while the highest C3 decreased the enzyme activity. This implements an unfavourable response that highlights the excess of reactive oxygen species produced after contamination. The Catalase activity was also increased by about 40.05% and 66.63%, respectively, in gill and digestive gland after exposure to C3. The Malondialdehyde (MDA) level was increased in both gill and digestive gland in a concentration-dependent pattern. In contrast, the contamination of U. ravoisieri by PFOS did not affect the acetylcholinesterase activity in both organs (p?>?.005). These results provided information on potential biomarkers that could be effectively applied for the monitoring of freshwater ecosystem using indicator species such as U. ravoisieri.  相似文献   

16.
Mediterranean mussels Mytilus galloprovincialis is among the most widely used bioindicators, and anthracene (AN) is one of the most commonly found hydrocarbons in the aquatic environment. M. galloprovincialis were exposed to nominal concentrations of 0.05, 0.15 and 0.4?μg/L AN. Chemical analysis using high-performance liquid chromatography revealed the uptake of AN in the whole soft body and digestive gland at different amounts. After a short exposure (2, 4 and 8 days), the results revealed that AN induced malondialdehyde (MDA), glutathione (GSH) and acetylcholinesterase (AChE) activity in digestive gland. Our findings demonstrated also that AN reduced the filtration rates in a concentration-dependent manner. Increase in lipid peroxidation (MDA content) in digestive gland (p?M. galloprovincialis, where digestive gland constitutes a valuable organ for investigating AN biotransformation and toxicity.  相似文献   

17.
C. Michel 《Marine Biology》1977,44(3):265-273
The digestive tract of Sabellaria alveolata (L.) is partitioned into 4 main regions: oesophagus, gizzard, intestine and rectum. Histoenzymologic study of the repartition of the protease activities along the digestive tract has shown that the proteases are secreted in the anterior intestine, where numerous serous gland cells are present. These cells display many histochemical and cytological characteristics similar to those of the gland cells previously described in digestive organs of other polychaetes. The role of the other regions of the digestive tract is discussed.  相似文献   

18.
ABSTRACT

Lead (Pb) is one of the most toxic heavy metals that affect the physiological status of aquatic organisms. The present investigation evaluated the possible toxic effect of lead chloride (PbCl2) on biomarkers responses, DNA damage and histological alterations in Venus verrucosa gills and digestive gland. Three concentrations of PbCl2 (D1:1µgL?1, D2: 10µgL?1 and D3: 100µgL?1) were chosen for V. verrucosa exposure during six days. At the end of the trial, it was found that Pb tended to accumulate in both gills and digestive gland in a dose-dependent manner. However, gill tissues exhibited the highest metal burden. Our results showed an increase of malondialdehyde, protein carbonyls and advanced oxidation protein product levels in both organs following PbCl2exposure. The induction of both non-enzymatic and enzymatic antioxidant systems; as well as the decrease of the acetylcholinesterase activity and degradation of DNA structure was recorded in the gills and digestive gland. The histopathological alterations observed in gills (disruption of lamellas and cilia filaments?…) and digestive gland (lumens occlusion, necrosis and fibrosis) confirmed the aforementioned results. Our data highlighted the short-term toxicity effects of PbCl2 on V. verrucosa and pointed out a high sensitivity of gills towards this metal.  相似文献   

19.
During a period of short-term (19 d) starvation, total lipid in the digestive gland of Euphausia superba Dana decreased from 21 to 9% dry weight. Total lipid per digestive gland decreased significantly during starvation compared to Day 0 individuals, falling from 1960 (±172) to 385 (±81) g. Polar lipid was the major lipid class utilised during starvation, falling from 1510 (±225) to 177 (±46) g per digestive gland (76 to 45%). Absolute levels of triacylglycerol fell from 300 (±41) to 76 (±5) g; however, relative levels remained unchanged. The relative level of free fatty acid increased significantly with starvation (4 to 39%) with absolute levels ranging from 79 (±1) to 156 (±20) g per digestive gland. Absolute levels of all fatty acids per digestive gland declined continually until the end of the starvation period. The long-chain polyunsaturated acids eicosapentaenoic (20:53) and docosahexaenoic (22:63), decreased with starvation from 37 to 26% and 15 to 10%, respectively whereas the saturated fatty acid, palmitic acid (16:0), increased from 15 to 20%. Cholesterol, the major sterol in this organ, increased from 17 (±20) to 44 (±13) g per digestive gland by Day 3, and by Day 19 had returned to levels found in the digestive gland of Day 0 individuals. Desmosterol followed a similar pattern to cholesterol, increasing from 3 (±1) g per digestive gland on Day 0 to 11 (±4) g on Day 3, and falling to 2 (±1) g on Day 19. Other sterols in the digestive gland, predominantly of algal origin, fell from the levels found in Day 0 individuals to near zero amounts by Day 6. The digestive gland of E. superba plays a dynamic role during shortterm starvation in terms of lipid content and composition. The relative levels of polar lipids, free fatty acids and cholesterol in the digestive gland may provide reliable indices of the nutritional condition of E. superba in the field. Sterols in the digestive gland are indicative of recent dietary composition of krill, and may also be used to quantify dietary input from individual phytoplanktonic species.  相似文献   

20.
Metallothionein-like proteins (MTLs) have been measured by differential pulse polarography every two months during a period of two and half years in the marine bivalve Macoma balthica from two locations of the Western Scheldt Estuary. The MTL concentrations (0.85 to 7.81 mg g−1 dry wt) are comparable to most values found for other marine invertebrates. These concentrations vary significantly with the seasons (higher in winter, lower in summer), which is mainly due to body weight fluctuations. Strong correlations exist between MTL and metal levels. Upon short-term exposure to a mixture of Cd, Cu and Zn, there are on average significant MTL increases, but important seasonal variations have been observed: in winter, the clams are more sensitive to metals, uptake more Cd and Cu and induce more MTL than during the warmer months. Received: 16 May 1997 / Accepted: 6 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号