首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Problem

While observational before-after studies are considered the industry standard for developing crash modification factors (CMFs), there are practical limitations that may preclude their use in highway safety analysis. There is a need to explore alternative methods for estimating CMFs.

Method

This paper employs case-control and cross-sectional analyses to estimate CMFs for fixed roadway lighting and the allocation of lane and shoulder widths.

Results

Based on the case-control method, the CMF for intersection lighting is 0.886, while the cross-sectional study indicates a CMF of 0.881. The CMFs developed for lane and shoulder widths are also similar when comparing the two methods.

Conclusions

This paper suggests that case-control and cross-sectional studies produce consistent results if care is taken in the study design and model development.

Impact on industry

Case-control and cross-sectional studies may provide a viable alternative to estimate CMFs when a before-after study is impractical due to data restrictions.  相似文献   

2.
Introduction: Adaptive Signal Control System (ASCS) can improve both operational and safety benefits at signalized corridors. Methods: This paper develops a series of models accounting for model forms and possible predictors and implements these models in Empirical Bayes (EB) and Fully Bayesian (FB) frameworks for ASCS safety evaluation studies. Different models are validated in terms of the ability to reduce the potential bias and variance of prediction and improve the safety effectiveness estimation accuracy using real-world crash data from non-ASCS sites. This paper then develops the safety effectiveness of ASCS at six different corridors with a total of 65 signalized intersections with the same type of ASCS, in South Carolina. Results: Validation results show that the FB model that accounts for traffic volume, roadway geometric features, year factor, and spatial effects shows the best performance among all models. The study findings reveal that ASCS reduces crash frequencies in the total crash, fatal and injury crash, and angle crash for most of the intersections. The safety effectiveness of ASCS varies with different intersection features (i.e., AADT at major streets, number of legs at an intersection, the number of through lanes on major streets, the number of access points on minor streets, and the speed limit at major streets). Conclusions: ASCS is associated with crash reductions, and its safety effects vary with different intersection features. Practical Applications: The findings of this research encourage more ASCS deployments and provide insights into selecting ASCS deployment sites for reducing crashes considering the variation of the safety effectiveness of ASCS.  相似文献   

3.
Introduction: Alcohol-related impairment is a key contributing factor in traffic crashes. However, only a few studies have focused on pedestrian impairment as a crash characteristic. In Louisiana, pedestrian fatalities have been increasing. From 2010 to 2016, the number of pedestrian fatalities increased by 62%. A total of 128 pedestrians were killed in traffic crashes in 2016, and 34.4% of those fatalities involved pedestrians under the influence (PUI) of drugs or alcohol. Furthermore, alcohol-PUI fatalities have increased by 120% from 2010 to 2016. There is a vital need to examine the key contributing attributes that are associated with a high number of PUI crashes. Method: In this study, the research team analyzed Louisiana’s traffic crash data from 2010 to 2016 by applying correspondence regression analysis to identify the key contributing attributes and association patterns based on PUI involved injury levels. Results: The findings identified five risk clusters: intersection crashes at business/industrial locations, mid-block crashes on undivided roadways at residential and business/residential locations, segment related crashes associated with a pedestrian standing in the road, open country crashes with no lighting at night, and pedestrian violation related crashes on divided roadways. The association maps identified several critical attributes that are more associated with fatal and severe PUI crashes. These attributes are dark to no lighting, open country roadways, and non-intersection locations. Practical Applications: The findings of this study may be used to help design effective mitigation strategies to reduce PUI crashes.  相似文献   

4.
Introduction: There have been a number of studies that have led to the development of safety risk assessment models to quantify the probability of crash frequencies on roadway facilities (both at micro- and macro-levels), over a specified time period. However, past research has rarely focused on heterogeneous traffic conditions in developing countries. Method: This paper puts forward several models related to the traditional count approach to estimate crash frequency at a micro-level in a non-lane based bi-directional heterogeneous traffic environment. The paper shows the results of dispersion, zero-inflation, and random heterogeneity effects of different exogenous factors by comparing Poisson (P); Negative Binomial (NB); random and fixed parameter Zero-Inflated Poisson (ZIP); and Latent Class Models (LCM). The empirical analysis is based on data from a section of a major national highway in Bangladesh. The performance of the models was validated using different statistical goodness-of-fit measures that compared the estimated and observed average crash frequencies at individual locations. With the identification of the most significant influencing factors, the paper discusses the practical policy implications using partial effects analysis and spatial distribution. Results: It was found that the Zero-Inflated Random Parameter model gives a slightly better statistical fit when compared to alternative approaches. Practical applications: This micro-level modeling approach would be useful to identify significant crash risk factors; to prioritize road sections according to their safety level; to select site-specific appropriate counter-measures; and devise proactive target oriented safety management strategies. Thus, the results shown here could be a point of reference in the planning, designing, maintaining, and managing two-lane highway sections in developing countries.  相似文献   

5.
IntroductionTransportation safety analyses have traditionally relied on crash data. The limitations of these crash data in terms of timeliness and efficiency are well understood and many studies have explored the feasibility of using alternative surrogate measures for evaluation of road safety. Surrogate safety measures have the potential to estimate crash frequency, while requiring reduced data collection efforts relative to crash data based measures. Traditional crash prediction models use factors such as traffic volume, sight distance, and grade to make risk and exposure estimates that are combined with observed crashes, generally using an Empirical Bayes method, to obtain a final crash estimate. Many surrogate measures have the notable advantage of not directly requiring historical crash data from a site to estimate safety. Post Encroachment Time (PET) is one such measure and represents the time difference between a vehicle leaving the area of encroachment and a conflicting vehicle entering the same area. The exact relationship between surrogate measures, such as PET, and crashes in an ongoing research area.MethodThis paper studies the use of PET to estimate crashes between left-turning vehicles and opposing through vehicles for its ability to predict opposing left-turn crashes. By definition, a PET value of 0 implies the occurrence of a crash and the closer the value of PET is to 0, the higher the conflict risk.ResultsThis study shows that a model combining PET and traffic volume characteristic (AADT or conflicting volume) has better predictive power than PET alone. Further, it was found that PET may be capturing the impact of certain other intersection characteristics on safety as inclusion of other intersection characteristics such as sight distance, grade, and other parameters result in only marginal impacts on predictive capacity that do not justify the increased model complexity.  相似文献   

6.
Safety at roadway intersections is of significant interest to transportation professionals due to the large number of intersections in transportation networks, the complexity of traffic movements at these locations that leads to large numbers of conflicts, and the wide variety of geometric and operational features that define them. A variety of collision types including head-on, sideswipe, rear-end, and angle crashes occur at intersections. While intersection crash totals may not reveal a site deficiency, over exposure of a specific crash type may reveal otherwise undetected deficiencies. Thus, there is a need to be able to model the expected frequency of crashes by collision type at intersections to enable the detection of problems and the implementation of effective design strategies and countermeasures. Statistically, it is important to consider modeling collision type frequencies simultaneously to account for the possibility of common unobserved factors affecting crash frequencies across crash types. In this paper, a simultaneous equations model of crash frequencies by collision type is developed and presented using crash data for rural intersections in Georgia. The model estimation results support the notion of the presence of significant common unobserved factors across crash types, although the impact of these factors on parameter estimates is found to be rather modest.  相似文献   

7.
Data mining applications are becoming increasingly popular for many applications across a set of very divergent fields. Analysis of crash data is no exception. There are many data mining methodologies that have been applied to crash data in the recent past. However, one particular application conspicuously missing from the traffic safety literature until recently is association analysis or market basket analysis. The methodology is used by retailers all over the world to determine which items are purchased together. In this study, crashes are analyzed as supermarket transactions to detect interdependence among crash characteristics. The results from the analysis include simple rules that indicate which crash characteristics are associated with each other. The application is demonstrated using non-intersection crash data from the state of Florida for the year 2004. In the proposed methodology no variable needs to be assigned as dependent variable. Hence, it is useful in identifying previously unknown patterns in the data obtained from large jurisdictions (such as the State of Florida) as opposed to the data from a single roadway or intersection. Based on the association rules discovered from the analysis, it was concluded that there is a significant correlation between lack of illumination and high severity of crashes. Furthermore, it was found that under rainy conditions straight sections with vertical curves are particularly crash prone. Results are consistent with the understanding of crash characteristics and point to the potential of this methodology for the analysis of crash data collected by the state and federal agencies. The potential of this technique may be realized in the form of a decision support tool for the traffic safety administrators.  相似文献   

8.
Introduction: Cargo Tank Trucks (CTTs) are a primary surface transportation carrier of hazardous materials (hazmat) in the United States and CTT rollover crashes are the leading cause of injuries and fatalities from hazmat transportation incidents. CTTs are susceptible to rollover crashes because of their size, distribution of weight, a higher center of gravity, and the surging and sloshing of liquid cargo during transportation. This study identified and quantified the effects of various factors on the probability of rollover and release of hazmat in traffic crashes where a CTT was involved. Method: Bayesian Model Averaging (BMA)-based logistic regression models were estimated with rollover and hazmat release as the binary response variables, and crash, truck, roadway, environment, and driver characteristics as the explanatory variables. 2010–2016 police-reported CTT-involved crash data from Nebraska and Kansas was utilized. Receiver Operating Characteristic (ROC) curves confirmed appropriateness of the modeling approach for inference and prediction on the crash dataset. Results: CTTs are more likely to rollover in crashes while turning and changing lanes relative to going straight; side impacts (side collisions) and severe crosswinds increased the likelihood of rollovers; tractor and semi-trailer body style decreased the probability of rollover, while truck tractors are more prone to rollovers; collisions with fixed objects and higher posted speeds increased the rollover probability; rollovers and intersection crash locations increased the likelihood of hazmat release. Conclusions: The findings can assist stakeholders (policy-makers, private shippers, and CTT drivers) in restricting CTTs’ operations for safety; scheduling, routing, and fleet planning; and low-level decision-making (e.g., emergency stopping or local routing). Practical Applications: This study identified and quantified the effects of different factors on the conditional probability of rollover and release of hazmat in CTT-involved crashes. The findings may assist stakeholders in decision-making towards safe operations of CTTs for transportation of hazmat.  相似文献   

9.
Introduction: With the rapid development of transportation infrastructures in precipitous areas, the mileage of freeway tunnels in China has been mounting during the past decade. Provided the semi-constrained space and the monotonous driving environment of freeway tunnels, safety concerns still remain. This study aims to investigate the uniqueness of the relationships between crash severity in freeway tunnels and various contributory factors. Method: The information of 10,081 crashes in the entire freeway network of Guizhou Province, China in 2018 is adopted, from which a subset of 591 crashes in tunnels is extracted. To address spatial variations across various road segments, a two-level binary logistic approach is applied to model crash severity in freeway tunnels. A similar model is also established for crash severity on general freeways as a benchmark. Results: The uniqueness of crash severity in tunnels mainly includes three aspects: (a) the road-segment-level effects are quantifiable with the environmental factors for crash severity in tunnels, but only exist in the random effects for general freeways; (b) tunnel has a significantly higher propensity to cause severe injury in a crash than other locations of a freeway; and (c) different influential factors and levels of contributions are found to crash severity in tunnels compared with on general freeways. Factors including speed limit, tunnel length, truck involvement, rear-end crash, rainy and foggy weather and sequential crash have positive contributions to crash severity in freeway tunnels. Practical applications: Policy implications for traffic control and management are advised to improve traffic safety level in freeway tunnels.  相似文献   

10.
Objective: The conflicts among motorists entering a signalized intersection with the red light indication have become a national safety issue. Because of its sensitivity, efforts have been made to investigate the possible causes and effectiveness of countermeasures using comparison sites and/or before-and-after studies. Nevertheless, these approaches are ineffective when comparison sites cannot be found, or crash data sets are not readily available or not reliable for statistical analysis. Considering the random nature of red light running (RLR) crashes, an inventive approach regardless of data availability is necessary to evaluate the effectiveness of each countermeasure face to face.

Method: The aims of this research are to (1) review erstwhile literature related to red light running and traffic safety models; (2) propose a practical methodology for evaluation of RLR countermeasures with a microscopic traffic simulation model and surrogate safety assessment model (SSAM); (3) apply the proposed methodology to actual signalized intersection in Virginia, with the most prevalent scenarios—increasing the yellow signal interval duration, installing an advance warning sign, and an RLR camera; and (4) analyze the relative effectiveness by RLR frequency and the number of conflicts (rear-end and crossing).

Results: All scenarios show a reduction in RLR frequency (?7.8, ?45.5, and ?52.4%, respectively), but only increasing the yellow signal interval duration results in a reduced total number of conflicts (?11.3%; a surrogate safety measure of possible RLR-related crashes). An RLR camera makes the greatest reduction (?60.9%) in crossing conflicts (a surrogate safety measure of possible angle crashes), whereas increasing the yellow signal interval duration results in only a 12.8% reduction of rear-end conflicts (a surrogate safety measure of possible rear-end crash).

Conclusions: Although increasing the yellow signal interval duration is advantageous because this reduces the total conflicts (a possibility of total RLR-related crashes), each countermeasure shows different effects by RLR-related conflict types that can be referred to when making a decision. Given that each intersection has different RLR crash issues, evaluated countermeasures are directly applicable to enhance the cost and time effectiveness, according to the situation of the target intersection. In addition, the proposed methodology is replicable at any site that has a dearth of crash data and/or comparison sites in order to test any other countermeasures (both engineering and enforcement countermeasures) for RLR crashes.  相似文献   

11.
Introduction: It has been demonstrated that weather conditions have significant impacts on freeway safety. However, when employing an econometric model to examine freeway crash injury severity, most of the existing studies tend to categorize several different adverse weather conditions such as rainy, snowy, and windy conditions into one category, “adverse weather,” which might lead to a large amount of information loss and estimation bias. Hence, to overcome this issue, real-time weather data, the value of meteorological elements when crashes occurred, are incorporated into the dataset for freeway crash injury analysis in this study. Methods: Due to the possible existence of spatial correlations in freeway crash injury data, this study presents a new method, the spatial multinomial logit (SMNL) model, to consider the spatial effects in the framework of the multinomial logit (MNL) model. In the SMNL model, the Gaussian conditional autoregressive (CAR) prior is adopted to capture the spatial correlation. In this study, the model results of the SMNL model are compared with the model results of the traditional multinomial logit (MNL) model. In addition, Bayesian inference is adopted to estimate the parameters of these two models. Result: The result of the SMNL model shows the significance of the spatial terms, which demonstrates the existence of spatial correlation. In addition, the SMNL model has a better model fitting ability than the MNL model. Through the parameter estimate results, risk factors such as vertical grade, visibility, emergency medical services (EMS) response time, and vehicle type have significant effects on freeway injury severity. Practical Application: According to the results, corresponding countermeasures for freeway roadway design, traffic management, and vehicle design are proposed to improve freeway safety. For example, steep slopes should be avoided if possible, and in-lane rumble strips should be recommended for steep down-slope segments. Besides, traffic volume proportion of large vehicles should be limited when the wind speed exceeds a certain grade.  相似文献   

12.
Introduction: Predicting crash counts by severity plays a dominant role in identifying roadway sites that experience overrepresented crashes, or an increase in the potential for crashes with higher severity levels. Valid and reliable methodologies for predicting highway accidents by severity are necessary in assessing contributing factors to severe highway crashes, and assisting the practitioners in allocating safety improvement resources. Methods: This paper uses urban and suburban intersection data in Connecticut, along with two sophisticated modeling approaches, i.e. a Multivariate Poisson-Lognormal (MVPLN) model and a Joint Negative Binomial-Generalized Ordered Probit Fractional Split (NB-GOPFS) model to assess the methodological rationality and accuracy by accommodating for the unobserved factors in predicting crash counts by severity level. Furthermore, crash prediction models based on vehicle damage level are estimated using the same two methodologies to supplement the injury severity in estimating crashes by severity when the sample mean of severe injury crashes (e.g., fatal crashes) is very low. Results: The model estimation results highlight the presence of correlations of crash counts among severity levels, as well as the crash counts in total and crash proportions by different severity levels. A comparison of results indicates that injury severity and vehicle damage are highly consistent. Conclusions: Crash severity counts are significantly correlated and should be accommodated in crash prediction models. Practical application: The findings of this research could help select sound and reliable methodologies for predicting highway accidents by injury severity. When crash data samples have challenges associated with the low observed sampling rates for severe injury crashes, this research also confirmed that vehicle damage can be appropriate as an alternative to injury severity in crash prediction by severity.  相似文献   

13.

Introduction

This study presents a classification tree based alternative to crash frequency analysis for analyzing crashes on mid-block segments of multilane arterials.

Method

The traditional approach of modeling counts of crashes that occur over a period of time works well for intersection crashes where each intersection itself provides a well-defined unit over which to aggregate the crash data. However, in the case of mid-block segments the crash frequency based approach requires segmentation of the arterial corridor into segments of arbitrary lengths. In this study we have used random samples of time, day of week, and location (i.e., milepost) combinations and compared them with the sample of crashes from the same arterial corridor. For crash and non-crash cases, geometric design/roadside and traffic characteristics were derived based on their milepost locations. The variables used in the analysis are non-event specific and therefore more relevant for roadway safety feature improvement programs. First classification tree model is a model comparing all crashes with the non-crash data and then four groups of crashes (rear-end, lane-change related, pedestrian, and single-vehicle/off-road crashes) are separately compared to the non-crash cases. The classification tree models provide a list of significant variables as well as a measure to classify crash from non-crash cases. ADT along with time of day/day of week are significantly related to all crash types with different groups of crashes being more likely to occur at different times.

Conclusions

From the classification performance of different models it was apparent that using non-event specific information may not be suitable for single vehicle/off-road crashes.

Impact on Industry

The study provides the safety analysis community an additional tool to assess safety without having to aggregate the corridor crash data over arbitrary segment lengths.  相似文献   

14.
Introduction: With the increasing trend of pedestrian deaths among all traffic fatalities in the past decade, there is an urgent need for identifying and investigating hotspots of pedestrian-vehicle crashes with an upward trend. Method: To identify pedestrian-vehicle crash locations with aggregated spatial pattern and upward temporal pattern (i.e., hotspots with an upward trend), this paper first uses the average nearest neighbor and the spatial autocorrelation tests to determine the grid distance and the neighborhood distance for hotspots, respectively. Then, the spatiotemporal analyses with the Getis-Ord Gi* index and the Mann-Kendall trend test are utilized to identify the pedestrian-vehicle crash hotspots with an annual upward trend in North Carolina from 2007 to 2018. Considering the unobserved heterogeneity of the crash data, a latent class model with random parameters within class is proposed to identify specific contributing factors for each class and explore the heterogeneity within classes. Significant factors of the pedestrian, vehicle, crash type, locality, roadway, environment, time, and traffic control characteristics are detected and analyzed based on the marginal effects. Results: The heterogeneous results between classes and the random parameter variables detected within classes further indicate the superiority of latent class random parameter model. Practical Applications: This paper provides a framework for researchers and engineers to identify crash hotspots considering spatiotemporal patterns and contribution factors to crashes considering unobserved heterogeneity. Also, the result provides specific guidance to developing countermeasures for mitigating pedestrian-injury at pedestrian-vehicle crash hotspots with an upward trend.  相似文献   

15.
IntroductionMany studies have examined different factors contributing to the injury severity of crashes; however, relatively few studies have focused on the crashes by considering the specific effects of lighting conditions. This research investigates lighting condition differences in the injury severity of crashes using 3-year (2009–2011) crash data of two-lane rural roads of the state of Washington.MethodSeparate ordered-probit models were developed to predict the effects of a set of factors expected to influence injury severity in three lighting conditions; daylight, dark, and dark with street lights. A series of likelihood ratio tests were conducted to determine if these lighting condition models were justified.ResultsThe modeling results suggest that injury severity in specific lighting conditions are associated with contributing factors in different ways, and that such differences cannot be uncovered by focusing merely on one aggregate model. Key differences include crash location, speed limit, shoulder width, driver action, and three collision types (head-on, rear-end, and right-side impact collisions).Practical ApplicationsThis paper highlights the importance of deploying street lights at and near intersections (or access points) on two-lane rural roads because injury severity highly increases when crashes occur at these points in dark conditions.  相似文献   

16.
Introduction: Traffic engineers require robust tools to assist with their day-to-day decision making, and there is no better example of this than traffic signal warrants. North American traffic signal warrant systems are lacking in how they incorporate motor-vehicle collisions from both a severity and prediction perspective. The objective of this study was to produce reliable collision costs for the development of improved traffic signal warrants that accounted for the variations in severity that practitioners should expect based on the characteristics of the intersection being studied. Method: The primary data used for this analysis were from the National Automotive Sampling System (NASS) Crashworthiness Data System, with adjustments from the NASS General Estimates System and Fatality Accident Reporting System. Generalized ordered logit models were used to identify the most significant intersection characteristics, which were then used to segregate the data to determine expected the collision severity profiles and average costs of both casualty and total collisions at intersections. Results: The average collision at a signalized intersection was found have a lower severity than the average collision at a stop-controlled intersection. A combination of posted speed limit, urban/rural, and divided/undivided were identified as the most significant intersection characteristics in most cases and were used to delineate the data for developing collision cost estimates. Conclusions: Posted speed limit, rural/urban land use, and the presence of divided approaches are intersection characteristics that traffic engineers can readily determine and/or control for that have significant effects on intersection collision severity. Practical applications: The collision costs produced through this process give traffic engineers a reliable estimate that can provide a more substantial foundation for justifying a proposed change in intersection traffic control.  相似文献   

17.
Introduction: Safety of horizontal curves on rural two-lane, two-way undivided roadways is not fully explored. This study investigates factors that impact injury severity of such crashes. Method: To achieve the aim of this paper, issues associated with police-reported crash data such as unobserved heterogeneity and temporal stability need to be accounted for. Hence, a mixed logit model was estimated, while heterogeneity in means and variances is investigated by considering four injury severity outcomes for drivers: severe injury, moderate injury, possible injury, and no injury. Crash data for the period between 2011 and 2016 for crashes that occurred in the state of Oregon was analyzed. Temporal stability in factors determining the injury severity was investigated by identifying three time periods through splitting crash data into 2011–2012, 2013–2014, and 2015–2016. Results: Despite some factors affecting injuries in all specified time periods, the values of the marginal effects showed relative differences. The estimation results revealed that some factors increased the risk of being involved in severe injury crashes, including head-on collisions, drunk drivers, failure to negotiate curves, older drivers, and exceeding the speed limits. Conclusions: The hypothesis that attributes of injury severity are temporally stable is rejected. For example, young drivers (30 years old and younger) and middle-aged drivers were found to be temporally instable over time. Practical applications: The findings could help transportation authorities and safety professionals to enhance the safety of horizontal curves through appropriate and effective countermeasures.  相似文献   

18.
Introduction: The state of Wyoming, like other western United States, is characterized by mountainous terrain. Such terrain is well noted for its severe downgrades and difficult geometry. Given the specific challenges of driving in such difficult terrain, crashes with severe injuries are bound to occur. The literature is replete with research about factors that influence crash injury severity under different conditions. Differences in geometric characteristics of downgrades and mechanics of vehicle operations on such sections mean different factors may be at play in impacting crash severity in contrast to straight, level roadway sections. However, the impact of downgrades on injury severity has not been fully explored in the literature. This study is thus an attempt to fill this research gap. In this paper, an investigation was carried out to determine the influencing factors of crash injury severities of downgrade crashes. Method: Due to the ordered nature of the response variable, the ordered logit model was chosen to investigate the influencing factors of crash injury severities of downgrade crashes. The model was calibrated separately for single and multiple-vehicle crashes to ensure the different factors influencing both types of crashes were captured. Results: The parameter estimates were as expected and mostly had signs consistent with engineering intuition. The results of the ordered model for single-vehicle crashes indicated that alcohol, gender, road condition, vehicle type, point of impact, vehicle maneuver, safety equipment use, driver action, and annual average daily traffic (AADT) per lane all impacted the injury severity of downgrade crashes. Safety equipment use, lighting conditions, posted speed limit, and lane width were also found to be significant factors influencing multiple-vehicle downgrade crashes. Injury severity probability plots were included as part of the study to provide a pictorial representation of how some of the variables change in response to each level of crash injury severity. Conclusion: Overall, this study provides insights into contributory factors of downgrade crashes. The literature review indicated that there are substantial differences between single- and multiple vehicle crashes. This was confirmed by the analysis which showed that mostly, separate factors impacted the crash injury severity of the two crash types. Practical applications: The results of this study could be used by policy makers, in other locations, to reduce downgrade crashes in mountainous areas.  相似文献   

19.
Objective: Nighttime crashes are overrepresented on the U.S. highway system. Roadway lighting, which provides additional visibility by supplementing vehicle headlights, has been identified as an effective countermeasure to improve nighttime safety. However, the existing literature does not provide a thorough understanding of the effects of street lighting photometric characteristics on nighttime crash occurrence on roadway segments. This study aimed to investigate the relationship between lighting photometric measures and nighttime crash risk on roadway segments and develop a crash modification function/factor (CMF).

Methods: The research team collected horizontal illuminance data on 440 roadway segments between 2 successive signalized intersections in Florida for 2012–2014 and matched 4 years of nighttime and daylight crash data (2011–2014). Random parameter negative binomial models were estimated for both nighttime and daylight crash frequencies. The expected night-to-day crash odds ratio, as an equivalent of CMF, was derived from the fitted models with the correction of estimation variances. The confidence intervals (CIs) of the developed CMF were estimated using the Cox method.

Results: The coefficient of the mean of horizontal illuminance is significantly negative in the nighttime model. The coefficients of the standard deviation of horizontal illuminance are significantly positive and normally distributed in both the nighttime and daylight models. The significance of the standard deviation in the daylight model captures the confounding effects—a high standard deviation correlates with high traffic exposures, poor safety design standards, and low maintenance quality. The CMF based on the expected daylight-to-day odds ratio was developed as an exponential function of the increments and the increment squares of the mean and the standard deviation of horizontal illuminance. Its 95% CIs indicate that the CMF is almost significant over the whole range. Other significant variables contributing to nighttime crash risk include annual average daily traffic, truck percentage, segment length, access density, undivided roads, and urban/city limits.

Conclusions: Horizontal illuminance characteristics have a significant impact on nighttime crash risk on roadway segments. An increase in the mean of horizontal illuminance, indicating an improvement in average lighting level, tends to decrease nighttime crash risk; an increase in the standard deviation, representing a poor uniformity of lighting pattern on a roadway segment, is more likely to raise nighttime crash risk. Because the 2 measures are strongly correlated in a low mean range (<0.44 fc), the 2 photometric measures need to be considered together to interpret the safety effects of lighting patterns. The standard deviation shows better performance in measuring lighting uniformity on a roadway segment than the traditional ratios (max-to-min and mean-to-min). However, a new photometric measure is needed to capture the true lighting pattern influencing driver vision at night.  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号