首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background, aims, and scope  

Currently, elemental chlorine-free (ECF) and totally chlorine-free (TCF) bleaching systems are widely used for pulp production. Low and medium molecular weight lignin break-down products are known to have harmful effects on the environment. According to some recent results, also high molecular weight (HMW) material consisting mainly of lignin and carbohydrates may cause toxic effects to the environment. For these reasons, toxicity and structure studies of HMW materials are of great importance. This investigation is a part of a larger project to obtain more structure information of HMW materials and toxicity of ECF and TCF bleaching effluents. Size-exclusion chromatography (SEC) has been commonly used for the characterization of organic macromolecules such as lignin, but to our knowledge, no reports have appeared dealing with the comparison of SEC of ECF and TCF bleaching liquors. The aim of the present study was to get more information about the molecular weight distribution (MWD) of HMW fractions of waste liquors from ECF and TCF bleaching sequences by SEC.  相似文献   

2.
实验中采用简青霉对稻草秸秆进行降解作用,通过正交实验的极差、三因素三水平作用趋势图和降解选择性分析,对影响简青霉降解稻草秸秆的3种因素进行了优化,得到培养温度40℃、含水率80%、培养pH为8是降解的最佳固态发酵培养条件。并研究了碱木质素对简青霉分泌木质素降解酶的诱导作用,不同浓度的碱木质素对简青霉产酶的诱导作用不同,且对不同酶的诱导效果也不同,最后得到较低浓度0.5和1 g/L是诱导的适宜浓度。对比较适浓度的碱木质素和常用的诱导剂愈创木酚、吐温80的诱导作用,发现在同样的培养条件下,碱木质素的诱导效果比愈创木酚和吐温80效果都好。  相似文献   

3.
A new bioassay proposed in the patent P201300029 was applied to a pre-treated wastewater containing a mixture of commercial pesticides to simulate a recalcitrant industrial wastewater in order to determine its biodegradability. The test uses a mixture of standardized inoculum of the lyophilized bacteria Pseudomonas putida with the proper proportion of salts and minerals. The results highlight that biodegradation efficiency can be calculated using a gross parameter (chemical oxygen demand (COD)) which facilitates the biodegradability determination for routine water biodegradability analysis. The same trend was observed throughout the assay with the dehydrated and fresh inoculums, and only a difference of 5 % in biodegradation efficiency (E f) was observed. The obtained results showed that the P. putida biodegradability assay can be used as a commercial test with a lyophilized inoculum in order to monitor the ready biodegradability of an organic pollutant or a WWTP influent. Moreover, a combination of the BOD5/COD ratio and the P. putida biodegradability test is an attractive alternative in order to evaluate the biodegradability enhancement in water pre-treated with advanced oxidation processes (AOPs).  相似文献   

4.
Background, Aim and Scope At present, large-scale paper manufacture involves delignification and bleaching by elemental chlorine free (ECF) or totally chlorine free (TCF) processes. The wastewater is purified by secondary treatment (mechanical, chemical and biological) which removes most of the toxic substances from the discharge. However, we found residual toxicity in the high molecular (> 1000 D) matter (HMWM) of the discharge by test of the RET (reverse electronic transfer) inhibition. This fraction consists mainly of polydisperse lignin (LIG) and carbohydrate (CH) macromolecules. Structural units in these molecules are studied by pyrolysis gas chromatography / mass spectrometry (Pyr-GC/MS). In the present work, our aim was to find out those structural units which could explain the RET toxicity of LIG or CH molecules. We compared statistically RET toxicity values of the HMWM samples from treated wastewaters of pilot pulping experiments and intensity variation of the pyrolysis product gas chromatograms of these samples. This application is a novel study procedure. Methods Pyrolysis products (Py-GC/MS results) and inhibition of RET (reverse electronic transport toxicity) as TU50 and TU20 of HMWM (High Molecular Weight Material; Mw > 1000 D) were compared by multivariate statistics. The samples were from laboratory pilot stages of TCF (Totally Chlorine Free) and ECF (Elemental Chlorine Free) manufacture of softwood pulp. Py-GC/MS was done without and with addition of TMAH (Tetra Methyl Ammonium Hydroxide). The name and structure of each abundant fragment compound was identified from its retention time and mass spectrum compared to authentic reference compounds or literature. Four sets of Toxicity Units (TUs) and GC peak areas of the pyrolysis fragments were obtained. The data were normalized by division with LIG (lignin content of each sample). TU values were dependent and the fragment values independent (explanatory) variables in statistical treatments by SPSS system. Separate analyses of correlations, principal components (PCA) and stepwise multiple linear regression (SMLR) were performed from the four sample sets TCF and ECF with and without TMAH. Results and Discussion From the CH fragments, 2-furfural in TCF, and from the LIG fragments, styrene in ECF showed the highest probabilities to originate from source structures of toxicity. Other possible compounds in concern were indicated to be CH fragment 2-methyl-2-cyclopenten-1-one in ECF and LIG fragments 2-methoxy-4-methylphenol, 4,5-dimethoxy-2-methylphenol and 2-methylphenol in TCF.  相似文献   

5.
The fate of nine-mole nonylphenol ethoxylate (NPE9) discharged to an on-site wastewater disposal (septic) system was the focus of a 2-year investigation. Known amounts of NPE9-based detergent were metered daily into the plumbing at a single-family household. The ethoxylate-containing wastewater was discharged to the highly anoxic environment of a 4500-L septic tank before distribution to the oxic subsurface via 100 m of leach line. After 180 days of injecting detergent to the septic system, periodic soil pore water and/or groundwater samples were collected and analyzed for nonylphenol ethoxylates (NPEs), nonylphenol ether carboxylates, and nonylphenol. The NPE9 and degradation intermediates that were measured were reduced by 99.99% on a molar basis. An 18% reduction in molar concentration within the septic tank was observed. This was followed by a further 96.7% reduction of molar concentration within the leach lines. As the pore water migrated through the vadose zone, an additional 99.69% reduction in molar concentration was measured between the bottom of the leach lines (leach line effluent) and the lowest vadose zone monitoring location. The results obtained from these analyses indicate that degradation of the surfactant occurs within the anoxic portion of the disposal system with continued rapid biodegradation in the oxic unsaturated zone. Only trace amounts of degradation residuals were detected in soil pore water. The concentration and distribution of various degradation intermediates with respect to location, time, and ambient physical conditions were evaluated. Rapid and systematic degradation of NPE in on-site wastewater disposal systems was documented.  相似文献   

6.
Dave G  Herger G 《Chemosphere》2012,88(4):459-466
Pharmaceuticals are bioactive compounds generally resistant to biodegradation, which can make them problematic when they are released into nature. The use pattern for pharmaceuticals means that they are discharged into water via sewage treatment plants. Also surfactants are discharged through sewage treatment plants, primarily due to their use in detergents and shampoos and other cleaners. In this study the acute toxicity to Daphnia magna of four pharmaceuticals (ciprofloxacin, ibuprofen, paracetamol and zinc pyrithione) and seven surfactants (C8 alkyl glucoside, C6 alkyl glucoside, sodium caprylimidiopropionate, tallow-trimethyl-ammonium chloride, potassium decylphosphate, propylheptanol ethoxylate and alkylmonoethanolamide ethoxylate) was determined. Abiotic (without activated sludge bacteria) and biotic (with activated sludge bacteria) detoxification was also determined. The 24-h EC50s ranged from 2 μg L(-1) for the most toxic substance (zinc pyrithione) to 2 g L(-1) for the least toxic compound (C6 alkyl glucoside). Detoxification rates determined as the ratio between initial EC50 and EC50 after 1 week in water with activated sludge bacteria ranged from 0.4 (paracetamol) to 13 (zinc pyrithione). For most of these chemicals detoxification rate decreased after 1 week, but for one (alkylmonoethanolamide ethoxylate) it increased from about 2 to 30 times after 2 weeks. Many of these chemicals were "detoxified" also abiotically at about the same rate as biotically. Further studies are needed to determine the degradation products that were precipitated (aggregated) for some of the tested chemicals. Altogether, this study has shown that there are large differences in toxicity among chemicals entering sewage treatment plants, but also that the detoxification of them can differ. Therefore, the detoxification should receive more attention in the hazard and risk assessment of chemicals entering sewage treatment plants.  相似文献   

7.
Nitschke L  Wilk A  Schüssler W  Metzner G  Lind G 《Chemosphere》1999,39(13):2313-2323
The biodegradation and the aquatic toxicity of four herbicides (isoproturon, terbuthylazine, mecoprop, metamitron) were investigated. Laboratory activated sludge plants were used for biodegradation experiments. The biodegradation of mecoprop reached nearly 100%, the other herbicides were not eliminated by biodegradation. The acute Daphnia magna 24-h assay, the algal 72-h inhibition test, and the recently developed lemna growth inhibition 7-d test were applied to evaluate the biological effects of herbicides as original substances. EC 50 and EC 10 values were determined. Algal and lemna test show that isoproturon and terbuthylazine are both much more toxic than mecoprop and metamitron. Daphnids are generally less sensitive against herbicides than plants. Biodegradation and toxicity test were coupled for mecoprop to assess biological long-term effects of possible biodegradation products of this herbicide. The effluents of the laboratory activated sludge units were used in toxicity tests (Daphnia magna 21-d reproduction test, lemna growth inhibition 7-d test). No inhibiting effect on the tested organisms was observed.  相似文献   

8.
Eighteen fungal strains were tested in toxicity assays with surfactants in order to select surfactants and strains tolerant to surfactants for degradation assays. Two nonionic surfactants were used, an alkylphenol ethoxylate, Triton X-100, a sorbitan ester, Tween 80 and an anionic surfactant, sodium dodecyl sulfate. Solubilization and biodegradation tests were conducted in liquid medium batch; fluorene was quantified by HPLC. Results showed the enhancement of fluorene solubilization by the three surfactants, good tolerance of nonionic surfactants by the fungal strains and the enhancement of the biodegradation of fluorene by Doratomyces stemonitis (46-62%) and Penicillium chrysogenum (28-61%) in the presence of Tween 80 (0.324 mM) after 2 days.  相似文献   

9.
Nonionic surfactants are frequently incorporated into pesticide formulations, and are therefore a group of chemicals to which amphibians may be exposed in agricultural or urban landscapes. However, little is known about the effects of surfactant exposure in amphibians. Feeding stage tadpoles of Bufo marinus, Xenopus laevis and four species of Australian frogs (Crinia insignifera, Heleioporus eyrei, Limnodynastes dorsalis and Litoria moorei) were exposed to nonylphenol ethoxylate (NPE) and alcohol alkoxylate in static-renewal acute toxicity tests. All species exhibited nonspecific narcosis following exposure to both these surfactants. The 48-h EC50 values for NPE ranged between 1.1 mg/l (mild narcosis) and 12.1 mg/l (full narcosis). The 48-h EC50 values for alcohol alkoxylate ranged between 5.3 mg/l (mild narcosis) and 25.4 mg/l (full narcosis). Replicate acute toxicity tests with B. narinus exposed to NPE at 30 degrees C over 96 h indicated that the narcotic effects were not particularly time dependant. The mean 24, 48, 72, and 96-h EC50 (mild narcosis) values were 3.6, 3.7, 3.5 and 3.5 mg/l, respectively. The mean 24, 48, 72 and 96-h EC50 (full narcosis) were 4.0, 4.1, 4.2 and 4.0, respectively. Acute toxicity tests with B. marinus exposed to NPE at 30 degrees C under conditions of low dissolved oxygen (0.8-2.3 mg/l) produced a two to threefold increase in toxicity.  相似文献   

10.
Alkylphenols (APs), alkylphenol ethoxylates (APEOs), ethoxycarboxylate metabolites (APECs) and bisphenol A were determined in surface water using solid-phase extraction (SPE) followed by triple-quadrupole LC-MS-MS. APs were separated by LC from APECs using an acetonitrile-water-gradient without the addition of any buffer. Nonylphenol ethoxycarboxylates (NPECs) interfere in the detection of nonylphenols (NPs) when using an acidic mobile phase, because they produce the same MS-MS fragment ions (219>133 and 147). 4n-NP shows the characteristic transition 219>106; it is well suited as internal standard. Nonylphenol ethoxylates NPE(n)Os (n=1-17) were analysed separately in a second run by positive ionization using an ammonium acetate mobile phase. Textile industry discharges, the corresponding wastewater treatment plant (WWTP) effluents and the receiving rivers in Belgium and Italy were analysed. Among the substances investigated, NPE1C and NPE2O exhibited the highest concentrations in the water samples, up to 4.5 microg l(-1) NPE1C in a WWTP effluent and 3.6 microg l(-1) NPE2O in a river. The highest NP levels were found in the receiving rivers (max. 2.5 microg l(-1)). The predicted no-effect concentration (PNEC) for NP of 0.33 microg l(-1) for water species was frequently exceeded in the surface waters investigated, suggesting potential adverse effects to the aquatic environment.  相似文献   

11.
This study examines the feasibility of coupling a Catalytic Wet Air Oxidation (CWAO), with activated carbon (AC) as catalyst, and an aerobic biological treatment to treat a high-strength o-cresol wastewater. Two goals are pursued: (a) To determine the effect of the main AC/CWAO intermediates on the activated sludge of a municipal WasteWater Treatment Plant (WWTP) and (b) To demonstrate the feasibility of coupling the AC/CWAO effluent as a part of the influent of a municipal WWTP. In a previous study, a high-strength o-cresol wastewater was treated by AC/CWAO aiming to establish the distribution of intermediates and the biodegradability enhancement. In this work, the biodegradability, toxicity and inhibition of the most relevant intermediates detected in the AC/CWAO effluent were determined by respirometry. Also, the results of a pilot scale municipal WWTP study for an integrated AC/CWAO-aerobic biological treatment of this effluent are presented. The biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) of main AC/CWAO intermediates allowed the classification of the intermediates into readily biodegradable, inert or toxic/inhibitory compounds. This detailed study, allowed to understand the biodegradability enhancement exhibited by an AC/CWAO effluent and to achieve a successful strategy for coupling the AC/CWAO step with an aerobic biological treatment for a high-strength o-cresol wastewater. Using 30%, as COD, of AC/CWAO effluent in the inlet to the pilot scale WWTP, the integrated AC/CWAO-biological treatment achieved a 98% of total COD removal and, particularly, a 91% of AC/CWAO effluent COD removal without any undesirable effect on the biomass.  相似文献   

12.
《Chemosphere》1984,13(7):751-761
The influence of different types of inocula as well as the amount of inoculum (microbial biomass) on the biodegradation pattern of acetate, 4-nitrophenol, and the three methoxyaniline isomers was investigated in the Modified OECD test and a NPR guidline. Using sediment of the river Rhine as inoculum 4-nitrophenol could not be degraded, while an inoculum from garden soil gave only 60% degradation in the OECD test. Effluent of an activated sludge plant however was able to degrade 4-nitrophenol at a concentration of 19 mg/1 in the OECD test completely. At a concentration of 94 mg/1 no degradation was observed. Testing the methoxyanilines for biodegradability it was found that at a low inoculum level (OECD protocol) no degradation of the three compounds occurred. Using activated sludge (1.5 ml/1) as inoculum 3- and 4-methoxy aniline could be degraded for 60% respectively completely while 2-methoxyaniline was still refactory to degradation. Measuring the microbial biomass by means of ATP during biodegradation strongly suggested that the microbial flora which rapidly metabolize acetate is quite another microflora than the microflora responsible for the degradation of 4-nitrophenol.  相似文献   

13.
Biodegradability and ecotoxicity of amine oxide based surfactants   总被引:1,自引:0,他引:1  
García MT  Campos E  Ribosa I 《Chemosphere》2007,69(10):1574-1578
The aerobic and anaerobic biodegradability as well as the aquatic toxicity of two fatty amine oxides and one fatty amido amine oxide were investigated. Aerobic biodegradation was evaluated using the CO(2) headspace test (ISO 14593) and biodegradation under anaerobic conditions was assessed employing a standardised batch test. The three amine oxide based surfactants tested were readily biodegradable under aerobic conditions but only the alkyl amido amine oxide was found to be easily biodegradable under anaerobic conditions. Toxicity to Photobacterium phosphoreum and Daphnia magna was evaluated. Bacteria (EC(50) from 0.11 to 11 mg l(-1)) proved to be more sensitive to the toxic effects of the amine oxide based surfactants than crustacea (IC(50) from 6.8 to 45 mg l(-1)). The fatty amido amine oxide showed the lowest aquatic toxicity.  相似文献   

14.
Baran W  Sochacka J  Wardas W 《Chemosphere》2006,65(8):1295-1299
The photocatalytic degradation of sulfacetamide, sulfathiazole, sulfamethoxazole and sulfadiazine in water solutions during their illumination of UV radiation (lambda(max) 366 nm) with TiO2 catalyst was examined. The growth-inhibition effect of sulfonamides and intermediate products theirs photodegradation was investigated in aqueous solution with the green alga Chlorella vulgaris. The biodegradability of the investigated compounds was determined in the illuminated solutions and is expressed as Biochemical Oxygen Demand. It was found that all of the investigated sulfonamides in the initial solutions were resistant to biodegradation and were toxic relative to C. vulgaris. The toxicity (EC50 values) relative to C. vulgaris increased in the following order sulfacetamide, sulfathiazole, sulfamethoxazole, sulfadiazine. All of the investigated sulfonamides undergo photocatalytic degradation. The toxicity of intermediate products of the sulfonamides degradation was significantly lower than the toxicity of sulfonamides in the initial solutions and was dependent on illumination time and degradation rate. The intermediate products of photocatalysis in contrast to the initial sulfonamides, might be mineralized using biological methods.  相似文献   

15.
通过一系列实验研究碳源浓度、培养箱转速、碱木质素浓度以及菌体活性等因素对简青霉菌丝球在溶液中吸附碱木质素的影响,并探讨其生物吸附机理;确定最佳碳源浓度和转速,分别为10 g/L和150 r/min。当碱木质素浓度小于0.5 g/L时,吸附效果较好,由菌丝球活性对照实验以及电镜照片可知吸附作用主要是由菌丝球的物理结构决定的,与其是否具有活性关系不大。通过吸附等温实验确定菌丝球的最大吸附量为30.3 mg/g,且吸附过程符合Langmuir等温吸附模型。另外,过氧化氢对木质素降解酶影响的实验证明,木质素过氧化物酶和锰过氧化物酶均需要过氧化氢的启动才能催化降解木质素,并且在降解过程中,木质素过氧化物酶和锰过氧化物酶的作用远远大于漆酶。  相似文献   

16.
为明确蜡状芽孢杆菌(Bacillus cereus)混合菌株对毒死蜱的降解效果,采用正交实验的方法构建混合菌。以混合菌对毒死蜱的降解率和菌株的生长量为依据,利用单一因素实验考察了不同因素对混合菌降解毒死蜱的影响。结果表明:构建的混合菌中三菌株的体积比为1∶1∶3。在含80 mg/L毒死蜱的反应体系中,最适接菌量为8%(V/V),最适pH为7。在实验浓度下,混合菌对毒死蜱的降解符合一级动力学方程。混合菌对盐分有较高的耐受度,当反应液中氯化钠浓度在20~100 g/L之间时,混合菌对80 mg/L毒死蜱的降解率最高达61%。  相似文献   

17.
在好氧的条件下,以活性污泥为接种体,使用改良斯特姆法测试脂肪酸浮选捕收剂(油酸钠、9-羟基硬脂酸钠、硬脂酸钠、蓖麻油酸钠)的生物降解性能,并与利用BOD5/COD进行的可生化评价方法进行比较。结果表明:(1)油酸钠、蓖麻油酸钠的BOD5/COD分别为0.54、0.63,属易生物降解物质;9-羟基硬脂酸钠、硬脂酸钠的BOD5/COD分别为0.36、0.37,属可生物降解物质。(2)油酸钠、9-羟基硬脂酸钠、蓖麻油酸钠28d的生物降解率分别为88.6%、62.2%、100.0%,达到了经济合作与发展组织的OECD-301B生物降解性能实验标准,属于易生物降解物质;硬脂酸钠28d的生物降解率为49.8%,没有达到OECD-301B生物降解性能实验标准,属难生物降解物质。4种脂肪酸浮选捕收剂的生物降解性能依次为:蓖麻油酸钠油酸钠9-羟基硬脂酸钠硬脂酸钠。(3)当有机酸中存在碳碳双键和羟基时,有机酸的生物降解性能都会提高,并且碳碳双键的影响要大于羟基的影响;当二者同时存在时,生物降解性能会大幅度提高。  相似文献   

18.
The conventional treatment process of palm oil mill effluent (POME) produces a highly colored effluent. Colored compounds in POME cause reduction in photosynthetic activities, produce carcinogenic by-products in drinking water, chelate with metal ions, and are toxic to aquatic biota. Thus, failure of conventional treatment methods to decolorize POME has become an important problem to be addressed as color has emerged as a critical water quality parameter for many countries such as Malaysia. Aspergillus fumigatus isolated from POME sludge was successfully grown in POME supplemented with glucose. Statistical optimization studies were conducted to evaluate the effects of the types and concentrations of carbon and nitrogen sources, pH, temperature, and size of the inoculum. Characterization of the fungus was performed using scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and Brunauer, Emmet, and Teller surface area analysis. Optimum conditions using response surface methods at pH 5.7, 35 °C, and 0.57 % w/v glucose with 2.5 % v/v inoculum size resulted in a successful removal of 71 % of the color (initial ADMI of 3,260); chemical oxygen demand, 71 %; ammoniacal nitrogen, 35 %; total polyphenolic compounds, 50 %; and lignin, 54 % after 5 days of treatment. The decolorization process was contributed mainly by biosorption involving pseudo-first-order kinetics. FTIR analysis revealed that the presence of hydroxyl, C–H alkane, amide carbonyl, nitro, and amine groups could combine intensively with the colored compounds in POME. This is the first reported work on the application of A. fumigatus for the decolorization of POME. The present investigation suggested that growing cultures of A. fumigatus has potential applications for the decolorization of POME through the biosorption and biodegradation processes.  相似文献   

19.
The goal of this study was to compare diesel fuel to biodiesel fuel by determining the toxicity of analyzed materials and by quantitatively evaluating the microbial transformation of these materials in non-adapted aerated soil. The toxicity levels were determined by measuring the respiration of soil microorganisms as well as the activity of soil dehydrogenases. The quantitative evaluation of biotransformation of analyzed materials was based on the principle of balancing carbon in the following final products: (a) carbon dioxide; (b) humus compounds; (c) the remainder of non-biodegraded analyzed material; and (d) intermediate biodegradation products and the biomass of microorganisms. The results of these studies indicate that diesel fuel has toxic properties at concentrations above 3% (w/w), while biodiesel fuel has none up to a concentration of 12% (w/w). The diesel fuel is more resistant to biodegradation and produces more humus products. The biodiesel is easily biotransformed.  相似文献   

20.
A test for assessing the anoxic biodegradability of organic compounds under denitrifying conditions is proposed. The method is based on the recovery and quantification of the CO2 produced, which is evidence of complete biodegradation of the test compound (added as the sole carbon source). The tests were carried out in a mineral medium, with nitrate as electron acceptor. Whole lake sediments, sediment extracts and a commercial inoculum were assayed as a possible inoculum source by means of glucose biodegradability tests. It was found that the sediment extracts constitute a suitable and environmentally-relevant inoculum source, since they add non-significant amounts of carbon to the tests. Two xenobiotic compounds, namely, aniline and phenol, were tested in the aforementioned conditions as well as in a standard aerobic biodegradability test. Both aniline and phenol attained a biodegradation level higher than 60% in a short time period (<28 days) and thus can be considered as readily biodegradable in denitrifying environments. Nevertheless, the kinetics obtained in the anoxic test were slower than in aerobic conditions, and even suggested the accumulation of intermediate metabolites in the case of phenol. The results of this study indicate that the fate of xenobiotic compounds under anoxic conditions differs from that observed in an oxic environment, and therefore it should be considered by standard biodegradability testing procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号