首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Normal female rats of Wistar strain (Rattus norvegicus) weighing between 150–200 g were treated with fluoride (Fl) contaminated drinking water (FW, 5.8 ppm), vitamin C (6 mg) and vitamin C (6 mg) + D (6 mg once a week) + calcium (6 mg) for 30 days. Fl water treatment to rats produced reduction in weights of ovaries, uterus, vagina, kidneys, and adrenal glands, circulating levels of estrogen, number of litters, fertility rate, and altered tissue and serum biochemistry compared to control rats. However, cholesterol concentrations of ovaries and adrenals increased significantly. The above altered parameters were restored partially/completely after exogenous feeding with vitamin C and vitamins (C + D) and calcium. The data suggest that Fl-induced adverse effects on reproductive and other organs in female rats, whereas vitamin C, vitamin D and calcium treatment ameliorated Fl toxicity. Therefore, vitamins (C and D) and calcium play an important role in prophylactic treatment of fluorosis.  相似文献   

2.
This study was carried out to assess fluoride (Fl) concentration in groundwater in some villages of central Rajasthan, India, where groundwater is the main source of drinking water. Water samples collected from deep aquifer-based hand pumps were analyzed for Fl content. Fluoride in groundwater of 121 habitations of Bhilwara tehsil of Bhilwara district of Rajasthan was determined to examine the potential Fl-induced toxicity in rural locations. Fluoride concentrations in the tehsil ranged from 0.5 to 5.8 mg/l. In the tehsil, 69 villages (57%) were found to have Fl concentration beyond the maximum desirable limit recommended in Bureau of Indian Standards (BIS), 10500, 1991. Fifty-eight percent population of these villages was under the threat of fluorosis. One percent population of tehsil living in two villages ingested more than 5 mg/l Fl in each liter of drinking water and at maximal risk for dental and skeletal fluorosis. 142 individuals of these villages were examined for fluorosis. Data indicated that only four individuals (2.82%) did not exhibit dental fluorosis. Most individuals were found to suffer from mild (34.51% or 49 individuals) and moderate (31.69% or 45 individuals) fluorosis. Severe dental fluorosis was recorded in only 16 individuals (11.27%). In 104 individuals above 21 years of age examined for the prevalence of skeletal fluorosis, 66 were positive for skeletal fluorosis with a maximum 36.5% with grade I skeletal fluorosis. Grade II skeletal fluorosis was recorded in 28 individuals (26.9%). Data in this study demonstrate that there is a need to take ameliorative steps in this region to prevent fluorosis.  相似文献   

3.
Humans are primarily exposed to fluoride (Fl), a widespread environmental pollutant, via contaminated drinking water and foodstuffs. The aim of this study was to examine whether sodium fluoride (NaF) exerted cytotoxic effects in human hepatocarcinoma (HepG2) cells. HepG2 cells were incubated with different concentrations of NaF and reactive oxygen species (ROS) levels, cell cycle, apoptosis, and DNA damage determined. Concentration-dependent studies showed that exposure to HepG2 cells with different concentrations of NaF for 24 hr significantly decreased cell viability and intracellular antioxidant capacity. Furthermore, NaF exposure increased lipid peroxidation levels and accumulation of intracellular ROS; and lowered antioxidant glutathione concentrations. In addition to oxidative impairments, NaF treatment enhanced HepG2 cell death via apoptotic pathway as evidenced by DNA fragmentation and cell cycle arrest. Sodium fluoride treatment unregulated p53 level, and Bax and Bcl2 expression. Diminished cell viability and changes in cell cycle accompanied a rise in p53 expression.  相似文献   

4.
Two surveys of nitrate-N concentrations in surface and ground water in Ogun and parts of Lagos and Oyo States of south-western Nigeria were undertaken between October 1997 and December 1998, and between July 2000 and May 2001 (covering both dry and rainy seasons). The study was conducted to ascertain the extent of nitrate-N pollution of the surface/ground water in some parts of the three states. Seventy-two water points (33 rivers/streams, 21 wells and 18 boreholes) were sampled three times during each of the two seasons. Nitrate-N was detected in all the river/stream samples analysed with concentrations ranging from 0.5 to 15.3 mg/l and 1.0 to 7.7 mg/l during the rainy and dry seasons, respectively (average value 2.7 and 2.4 mg/l for rainy and dry season, respectively). 98.5% of the rivers/streams sampling points contained nitrate-N in amounts equal to or less than 10 mg/l. 88.1% of wells and 97.2% of boreholes had a nitrate-N content less than 5 mg/l. Nitrate-N concentrations in the sampled wells ranged from 1.4 to 7.4 mg/l and 1.1 to 6.0 mg/l during the rainy and dry seasons, respectively (average value 2.6 and 2.2 mg/l, respectively). The sampled boreholes had a lower nitrate-N concentration ranging from 0.1 to 5.2 mg/l and from below the detection limit to 5.0 mg/l during the rainy and dry seasons, respectively (average value 1.8 and 1.6 mg/l, respectively). Nitrate-N concentrations in boreholes were below detection limit in 22% of the samples. Generally, for most of the sampling points, nitrate-N concentrations were slightly higher during the rainy season compared with the dry season. The present results indicated that nitrate-N concentrations in all the water points (except one) were below the World Health Organization (WHO) maximum acceptable limit in potable waters (10 mg/l). Therefore, contamination of the surface and ground water of the study area is not indicated. This study provides background data against which future changes in nitrate-N concentrations of surface and ground waters in the study area can be measured.  相似文献   

5.
The levels of heavy metals (Cd, Cr, Ni, Pb, Sb and V) in Sporobulus pyramidalis plant species from an abandoned battery industry environment were determined during the wet and dry seasons as follows: The ranges in metal concentrations during the wet and dry seasons were 0.002, 0.420, 0.036 and 36.10?µg?g?1, respectively. The coefficients of variation for the metals during wet and dry seasons ranged between none to 151.724% and 13.838–214.935%, respectively. The results showed higher levels of the metals in S. pyramidalis during the dry than wet season. Results obtained from both wet and dry season when compared with background values, Federal Environmental Protection Agency and other international standards revealed that the plant species accumulated high levels of these heavy metals which was evident in concentrations exceeding maximum tolerable limits. The health implications of consuming this plant and any other plant or crop within this environment are discussed.  相似文献   

6.
Chronic fluoride (Fl) toxicity is a serious public health problem globally where drinking water contains more than 1 ppm of Fl. Sodium fluoride (NaF) produced male reproductive system toxicity. The aim of the present study was to evaluate the amelioration of Fl toxicity-induced fertility impairment by vitamin E and calcium during the withdrawal period. The study was carried out on 70 adult male albino rats divided into five main groups: group I control; subdivided into group Ia (maintained on standard diet and water ad libitum for 60 days) and group Ib (maintained on standard diet and water ad libitum for 120 days), group II was administered NaF and subdivided into group IIa (administered NaF for 60 day and sacrificed) and group IIb (administered NaF for 60 day then maintained on standard diet and water ad libitum for a further 60 days), and treated groups III, IV, and V were administered NaF. Rats were maintained during withdrawal from NaF, on vitamin E (10 mg kg?1 day?1 for 60 days), calcium (50 mg kg?1 day?1 orally for 60 days), and both vitamin E and calcium, respectively. The duration of NaF administration was 60 days at a dose 20 mg kg?1 day?1 for all treated groups. The following parameters were determined: body and organ weights, sperm motility, sperm morphology, sperm viability, fertility test, and hormone assays: testosterone, in vitro testosterone production, luteinizing hormone, and follicular stimulating hormone. The combined administration of vitamin E and calcium during withdrawal from NaF showed significant improvement from chronic FL-induced toxicity on male reproductive organs.  相似文献   

7.
Sparingly soluble contaminants are less likely to affect human health through food chain transfers, such as plant uptake or passage through animal-based foods, because mobility in these pathways is limited by solubility. Direct ingestion or inhalation of contaminated soil becomes the dominant pathway. However, both of these can be selective processes. Clay-sized particles carry the bulk of the sparingly soluble contaminants, and mechanisms that selectively remove and accumulate clay from the bulk soil also concentrate the contaminants. Erosion is another process that selectively removes clays. This project examined the degree of clay and contaminant-concentration enrichment that could occur by these processes, using U, Th and Pb as representative contaminants and using a clay and a loam soil. Erosion by water in natural rainfall events caused concentration enrichments up to 7 fold, and enrichments varied with characteristics of the erosion events. Enrichments were higher for the coarser, loam soil. Adhesion to skin gave modest enrichments of 1.3 fold in these soils, but up to 10 fold in sandy soils studied subsequently. Adhesion to plant leaves, where there was no root contact with contaminated soil, gave leaf concentrations comparable to situations where the roots contacted the contaminated soil. Clearly, adhesion to leaves is an important component of plant accumulation of sparingly soluble contaminants.  相似文献   

8.
Wang  Wei  Ma  Yanfang  Zhou  Yibo  Huang  Hong  Dou  Wenyuan  Jiang  Bin 《Environmental geochemistry and health》2021,43(10):4315-4328

Trihalomethanes (THMs) are a class of disinfection by-products that were proved to have adverse effects to human health. Investigation into its content change and molecular composition variation of its main precursor, which is believed to be dissolved organic matter (DOM) during water purification process, can help understand the formation mechanism of THMs and optimize the processes in drinking water treatment plant (DWTP). This is of great significance to ensure the safety of urban water supply. In this study, detailed changes of THMs’ content and formation potential were determined during the water purification process in summer and winter at a typical DWTP in south China. Specific molecular composition changes of DOM were also characterized by ultrahigh-resolution mass spectrometry, to comprehensively study its correlation with the formation of THMs in different water processing units and seasons. The result showed that chlorination will cause drastic changes of water quality and a sharp increase in the concentration of THMs (18.7 times in summer and 13.9 times in winter). Molecular-level characterization of DOM indicates that a range of lignin-like substance with lower O/C (<?0.5) and H/C (<?1.25) vanished and considerable amount of protein-like and tannins-like substance with higher H/C (>?1.25) and O/C (>?0.5) was formed after chlorination. Analysis of Cl-containing products demonstrated that a bulk of CHOCl1 and CHOCl2 compounds with moderate molecular weights were formed in both winter and summer. However, the newly formed CHOCl1 molecules showed a relatively higher mass weight in summer (>?500 Da) compared to winter (300–500 Da). Seasonal differences also emerged in the result of correlation between the trihalomethanes formation potential and total organic carbon. The correlation coefficient in summer (0.500) was lower than that in winter (0.843). The results suggested that the exhaustive reaction and contribution of DOM to THMs may vary in different seasons.

  相似文献   

9.

The River Nile is the primary source of freshwater for drinking, irrigation, and industrial purposes in Egypt. Thus, the water quality in this river concerns the health of local inhabitants. The present study reveals seasonal variations of various physicochemical and heavy metals parameters and microbial load of water at 15 sites from Qena to Sohag cities, Egypt. The water is fresh with TDS?≤?270 and 410 mg L?1 in summer and winter, respectively. Fe, Mn, Cd, Cr, Cu, Ni, and Zn concentrations were within drinking water specification in both seasons except Cr and Cd in summer. Viable numbers of total coliform, fecal coliform, and fecal streptococci were recorded in both seasons with fecal streptococci's disappearing in winter. The concentrations of salts and ions in winter were higher than summer due to decreased water quantity and flow rate in this season. On the other hand, heavy metals and bacteria were higher in summer owing to the rain and weathering of upstream rocks and increasing of human activities during the summer. The calculated water quality index (WQI) depicted that the chemical quality of water was poor for drinking and treatment, especially biological treatment, which is required before the water is supplied for drinking. Human health risk assessment factors such as probable daily intake, hazard quotient, and carcinogenic risk indicated high risks of Cr, Cd, and Ni for adults and children in both seasons. The non-carcinogenic and carcinogenic risks are mainly posed by Cr. The WQI values for the other water uses indicated the marginal quality for aquatic life, fair for irrigation, and fair in summer to good in winter for livestock consumption. The irrigation water quality parameters indicated that the water could be used to irrigate all soils and crops except the hazard of biological contamination. The water–rock interaction controls water chemistry besides the contribution of human activities. The agricultural, industrial, and municipal wastewaters were the main contributors to water pollution and should be treated before discharge into the Nile River. Source and drinking water should be monitored continuously to prevent related human waterborne diseases.

  相似文献   

10.
Phytoremediation of heavy metals: mechanisms,methods and enhancements   总被引:1,自引:0,他引:1  
Polluted soil and water impact the quality of food and nutrients of human and animal biota. Soil and water are mainly polluted by effluent discharges from industries, which are broadly classified into metallic and nonmetallic pollutant-bearing effluents. In order to tackle this problem, a plant-based technology called phytoremediation is used to clean contaminated lands. Phytoremediation is based upon several processes such as phytodegradation, phytovolatilization, phytoaccumulation and phytoextraction. These methods are efficient, eco-friendly and economic. This paper reviews the methods and mechanisms involved in phytoremediation of heavy metals, and enhancement processes.  相似文献   

11.
Adaptive processes linked to overall metabolism were studied in terms of oxygen consumption and ammonia excretion in each of three self-contained krill populations along a climatic gradient. In the Danish Kattegat, krill were exposed to temperatures which ranged from 4°C to 16°C between seasons and a vertical temperature gradient of up to 10°C during summer. In the Scottish Clyde Sea, water temperatures varied less between seasons and the vertical temperature gradient in summer was only 3°C. Temperatures in the Ligurian Sea, off Nice, were relatively constant around 12-13°C throughout the year, with a thin surface layer (20-30 m) of warm water developing during summer. The trophic conditions were rich in the Kattegat and, particularly, in the Clyde, but comparatively poor in the Ligurian Sea. Oxygen consumption increased exponentially with increasing experimental temperature, which ranged from 4°C to 16°C. Overall respiration rates were between 19.9 and 89.9 µmol O2 g-1 dry wt h-1. Krill from the Kattegat, the Clyde Sea, and the Ligurian Sea all exhibited approximately the same level of oxygen consumption (30-35 µmol O2 g-1 dry wt h-1) when incubated at the ambient temperatures found in their respective environments (9°C, 5°C, and 12°C). This indicates that krill adjust their overall metabolic rates to the prevailing thermal conditions. The exception to this were the respiration rates of Ligurian krill from winter/spring, which were about twice as high as the rates from summer krill despite the fact that the thermal conditions were the same. This effect appears to result from enhanced somatic activity during a short period of increased food availability and reproduction. Accordingly, krill appears to be capable of adapting to both changing thermal and trophic conditions, especially when nutrition is a limiting factor in physiological processes.  相似文献   

12.
The cement-based solidification/stabilization (S/S) of nitrobenzene (NB) contaminated soils, with cement and lime as binders, sodium silicate solution and powder activated carbon (PAC) as additives, was optimized through an orthogonal experiment, and S/S efficiency was estimated by both leaching test and volatilization measurement. The leaching test results showed that the factors affecting S/S efficiency were NB concentration, cement-to-lime ratio and binder-to-soils ratio, in sequence. With increasing curing time, the leaching concentration of NB between different levels of the same factor in the orthogonal experiment decreased, and less than 9% NB leached out from the 28 d cured samples. The volatilization measurement results indicated that 0.5‰ of NB was volatilized during the mixing and curing processes for the samples without PAC in the 28 d cycle, whereas adding 2 wt% and 5 wt% PAC, with respect to the weight of contaminated soils, could reduce NB volatilization to half of its original values either during the mixing or curing process. The optimizing formula, that is, contaminated soils (dry weight):cement:lime= 100:25:25, with 5 wt% additional sodium silicate and 2 wt% additional PAC, was applied to the engineering application of NB contaminated soils. Both the leaching test results of the product and the ambient air quality monitoring results met related regulations during the treating process.  相似文献   

13.
Iron water treatment residues are a free by-product with high concentration of iron oxides Iron water treatment residues has a large potential for arsenic sorption Soils are highly contaminated by arsenic at wood preservation sites Iron water treatment residues were added to hot spots contaminated with arsenic The addition led to significant decrease in leaching of arsenic from the contaminated soil Iron water treatment residues (Fe-WTR) are a free by-product of the treatment of drinking water with high concentration of iron oxides and potential for arsenic sorption. This paper aims at applying Fe-WTR to a contaminated site, measuring the reduction in contaminant leaching, and discussing the design of delivery and mixing strategy for soil stabilization at field scale and present a cost-effective method of soil mixing by common contractor machinery. Soil contaminated by As, Cr, and Cu at an abandoned wood impregnation site was amended with 0.22% (dw) Fe-WTR. To evaluate the full scale amendment a 100 m2 test site and a control site (without amendment) were monitored for 14 months. Also soil analysis of Fe to evaluate the degree of soil and Fe-WTR mixing was done. Stabilization with Fe-WTR had a significant effect on leachable contaminants, reducing pore water As by 93%, Cu by 91% and Cr by 95% in the upper samplers. Dosage and mixing of Fe-WTR in the soil proved to be difficult in the deeper part of the field, and pore water concentrations of arsenic was generally higher. Despite water logged conditions no increase in dissolved iron or arsenic was observed in the amended soil. Our field scale amendment of contaminated soil was overall successful in decreasing leaching of As, Cr and Cu. With minor improvements in the mixing and delivery strategy, this stabilization method is suggested for use in cases, where leaching of Cu, Cr and As constitutes a risk for groundwater and freshwater.  相似文献   

14.
In irrigated maize areas of an important Portuguese agricultural area, Ribatejo and Oeste Region, alachlor, atrazine and metolachlor were detected in ground water.

During the study performed from 1996 to 1998 atrazine was the herbicide that showed the highest frequency of detection. In the 177 ground water samples collected 62% were contaminated with atrazine, 30% with alachlor and 12% with metolachlor. All these herbicides were detected both in ground water for human consumption and for irrigation, in some cases above 0.1 ug/L. The maximum levels quantified were 13μg/L for alachlor, 30μg/L for atrazine and 56 μg/L for metolachlor.

Seasonal variation of residues in ground water it is also presented through several examples of studies performed during the period 1991–1999.  相似文献   

15.
兰州市大气颗粒物中水溶性离子研究   总被引:9,自引:0,他引:9  
张宁  吴仁铭 《环境化学》1994,13(5):453-459
本文对兰州市不同季节大气颗粒物中水溶性离子的主要理化特性及其与降水的关系进行了研究,认为大气颗粒物中水溶性离子是当地降水中SO4^2-,Ca^2+,Cl^-等主要离子的来源。在13种被测的水溶物中,SO4^2-和Ca^2+离子所占比例较高,分别占总离子的31.4%和27.8%,年均浓度值为10.72μg/m^3和3.96μg/m^3。同时大气颗粒物中水溶物浓度与SO2,TSP等大气污染物浓度之间也  相似文献   

16.
《Ecological modelling》2006,190(1-2):15-40
Models aiming to simulate growth under salinity stress and varied climatic conditions must rely on accurate methods for predicting transpiration and photosynthesis. Traditionally, models have described salinity stress as a decrease in water uptake caused by a low osmotic potential in the soil; however, many physiological studies suggest that reduced plant growth observed under saline conditions could be caused by increased respiration. Explicit calculation of photosynthesis and respiration enables both approaches to be tested and compared in a simulation model. We used an integrated ecosystems model (the CoupModel) to simulate photosynthesis and transpiration over a range of salinities. The model was calibrated and tested on two sets of data (two different seasons) on saline water, drip-irrigated tomato from lysimeter trials in the Arava Valley, Israel. Yields for the spring season were significantly lower than during the first autumn season even though transpiration was higher. As a result, water use efficiency differed by a factor of two between seasons. The model was successful in capturing this large variation, which was caused primarily by high levels of radiation and vapour pressure deficits during spring. For autumn the salinity stress approach in which water uptake was reduced performed well, whereas during spring the increased respiration approach correlated better with measurements. The concept of water use efficiency was found to be a useful tool for interpreting the accumulated effects of climatic and environmental conditions on particular agricultural systems. An attempt to simulate tomatoes grown in production beds indicated that the model set-up was also able to describe conventional cropping systems.  相似文献   

17.
Contamination by heavy metals is the result of different industrial activities. The presence of heavy metals in soil and water causes serious problems, as these materials are not biodegradable and do contaminate both biological systems and the subsoil. Biological surface-active compounds otherwise known as biosurfactants in general and rhamnolipids biosurfactants in particular have been successfully employed in the remediation of environments contaminated with heavy metal ions. The aim of the present review is to highlight potential applications of these tensioactive compounds for use in environmental heavy metals removal and bioremediation and processes involved.  相似文献   

18.
季节性干旱现象在我国中亚热带地区时有发生,为了研究该区域大气-生态系统之间的相互作用关系及其碳水收支状况,2002年起在江西省千烟洲(26.7°N,115.1°E)人工林生态系统建立了通量观测塔。2003年7月该人工林生态系统遭遇了历史上少有的高温少雨天气,本研究应用基于生理生态学过程的EALCO(Ecological Assimilation of Land and Climate Observation)模型及2003和2004年通量观测数据对该生态系统的水热通量进行了模拟,同时分析了干旱胁迫对它们产生的影响。结果显示,模型能够很好的模拟该生态系统的能量通量的日变化,净辐射、显热和潜热通量模拟值与实测值相关系数的平方(R2)及标准差分别为0.99和8.05 W.m-2;0.81和41.02 W.m-2;0.90和31.49 W.m-2,模型可以解释87%的日蒸散量的变化。从模拟结果看,2003年7月下旬(发生较严重干旱胁迫)较2004年同期(干旱程度轻)相比,冠层及土壤水势下降约2倍,植物蒸腾的日变化形式改变,根系吸水滞后冠层蒸腾的时间缩短约半小时,冠层导度下降40%~60%。模拟与观测结果均表明,2003年7月下旬每天正午的波文比大都介于1~2.2,而2004年同期正午的波文比则介于0.2~0.6。EALCO模型通过Ball模型将植物碳水过程耦合在一起,从而可以很好的模拟植物的气孔行为,进而准确的模拟植物水热过程对干旱的响应。土壤水分匮乏对冠层导度的限制是2003年干旱期间冠层潜热通量模拟值下降的根本原因。  相似文献   

19.
Groundwater is the main source of drinking water and water for agricultural and industrial usage. Therefore, groundwater contamination is prevented and contaminated groundwater is remediated to protect public health and the environment. Methods to remediate groundwater contamination have been recently developed. The use of redox processes in water remediation technologies has not been properly reviewed. Numerous water remediation technologies, such as ultrasonication, bioremediation, electrokinetics and nanotechnology, are closely related to redox processes. Redox processes control the chemical speciation, bioavailability, toxicity, mobility and adsorption of water pollutants in environment. Here, we review (1) general introduction of redox processes, (2) applicability of redox processes in water remediation, and (3) catalytic enhancement of redox potentials to explore its wide applicability in environmental remediation.  相似文献   

20.
地下水有机污染是由人类活动引起的各种物理、化学和生物等干扰过程造成有机污染物自土壤表面迁移至地下含水层的结果。为了解有机污染物如何自土表经过不饱和层(包气带)进入含水层,需要对不饱和层中所进行的各种物理、化学和生物等过程进行较准确的定量描述。本文就不饱和层和含水层中水分和有机污染物迁移建模的一些基本概念和方法进行综述,并列举了一些经典的和新颖的建模方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号