共查询到20条相似文献,搜索用时 15 毫秒
1.
Arsenic in groundwater in six districts of West Bengal,India 总被引:9,自引:0,他引:9
Dipankar Das Gautam Samanta Badal Kumar Mandal Tarit Roy Chowdhury Chitta Ranjan Chanda Partha Pratim Chowdhury Gautam Kumar Basu Dipankar Chakraborti 《Environmental geochemistry and health》1996,18(1):5-15
Arsenic in groundwater above the WHO maximum permissible limit of 0.05 mg l–1 has been found in six districts of West Bengal covering an area of 34 000 km2 with a population of 30 million. At present, 37 administrative blocks by the side of the River Ganga and adjoining areas are affected. Areas affected by arsenic contamination in groundwater are all located in the upper delta plain, and are mostly in the abandoned meander belt. More than 800 000 people from 312 villages/wards are drinking arsenic contaminated water and amongst them at least 175 000 people show arsenical skin lesions. Thousands of tube-well water in these six districts have been analysed for arsenic species. Hair, nails, scales, urine, liver tissue analyses show elevated concentrations of arsenic in people drinking arsenic-contaminated water for a longer period. The source of the arsenic is geological. Bore-hole sediment analyses show high arsenic concentrations in only few soil layers which is found to be associated with iron-pyrites. Various social problems arise due to arsenical skin lesions in these districts. Malnutrition, poor socio-economic conditions, illiteracy, food habits and intake of arsenic-contaminated water for many years have aggravated the arsenic toxicity. In all these districts, major water demands are met from groundwater and the geochemical reaction, caused by high withdrawal of water may be the cause of arsenic leaching from the source. If alternative water resources are not utilised, a good percentage of the 30 million people of these six districts may suffer from arsenic toxicity in the near future. 相似文献
2.
This paper identifies newer areas of arsenic contamination in the District Kanker, which adjoins the District Rajnandgaon where high contamination has been reported earlier. A correlation with the mobile phase episodes of arsenic contamination has been identified, which further hinges on the complex geology of the area. Arsenic concentrations in both surface and groundwater, aquatic organisms (snail and water weeds) soil and vegetation of Kanker district and its adjoining area have been reported here. The region has been found to contain an elevated level of arsenic. All segments of the ecoysystem are contaminated with arsenic at varying degrees. The levels of arsenic vary constantly depending on the season and location. An analysis of groundwater from 89 locations in the Kanker district has shown high values of arsenic, iron and manganese (mean: 144, 914 and 371 μg L−1, respectively). The surface water of the region shows elevated levels of arsenic, which is influenced by the geological mineralised zonation. The most prevalent species in the groundwater is As(III), whereas the surface water of the rivers shows a significant contamination with the As(V) species. The analysis shows a bio-concentration of the toxic metals arsenic, nickel, copper and chromium. Higher arsenic concentrations (groundwater concentrations greater than 50 μg L−1) are associated with sedimentary deposits derived from volcanic rocks, hence mineral leaching appears to be the source of arsenic contamination. Higher levels of arsenic and manganese in the Kanker district have been found to cause impacts on the flora and fauna. A case study of episodic arsenical diarrhoea is presented. 相似文献
3.
于2008年2、5、8及11月对珠江口进行了水、沉积物和生物体As含量的调查,分析其分布特征以及进行生态评价。结果表明:珠江口水体中As含量平均值为2.88μg·L-1,符合一类海水水质标准;其中,11月份显著高于其它3个月份(P <0.05)。全年珠江口水体八个河口在地域分布上As平均含量由高到低依次为:虎门、鸡啼门、磨刀门、崖门、洪沥门、蕉门、横门、虎跳门。表层沉积物As含量平均值为38.73 mg·kg-1,沉积物中As含量均超过海洋沉积物质量一类标准,但均未超三类标准。结果显示,表层沉积物横门含量最高,为(70.5±2.0) mg·kg-1,显著高于其它7个口门(P <0.05),而其它7个口门差异不显著。各口门含量从大到小依次为横门、洪沥门、鸡啼门、虎门、崖门、磨刀门、虎跳门、蕉门。表层沉积物地质累积指数评价结果与潜在生态风险系数评价结果一致,横门为中等污染水平,其余站点均为低污染水平。采集代表性生物样品,其中11种鱼类As平均含量为0.587 mg·kg-1,部分受检鱼类超出水产品中有毒有害物质限量要求,超标率为37.8%,肉食性鱼类平均含量要略低于杂食性鱼类,但不同食性和不同生活水层的鱼类As含量差异不显著(P >0.05)。受检生物样品虾的含量为0.314 mg·kg-1,符合水产品中有毒有害物质限量要求。与历年比较发现珠江口水、沉积物和生物体中As含量有上升的趋势,与其它河口相比较发现珠江口As污染在对比的河口和海湾中受污染程度较高。 相似文献
4.
Patel KS Shrivas K Brandt R Jakubowski N Corns W Hoffmann P 《Environmental geochemistry and health》2005,27(2):131-145
Arsenic contamination in the environment (i.e. surface, well and tube-well water, soil, sediment and rice samples) of central
India (i.e. Ambagarh Chauki, Chhattisgarh) is reported. The concentration of the total arsenic in the samples i.e. water (n=64), soil (n=30), sediment (n=27) and rice grain (n=10) were ranged from 15 to 825 μg L−1, 9 to 390 mg kg−1, 19 to 489 mg kg−1 and 0.018 to 0.446 mg kg−1, respectively. In all type of waters, the arsenic levels exceeded the permissible limit, 10 μg L−1. The most toxic and mobile inorganic species i.e. As(III) and As(V) are predominantly present in water of this region. The
soils have relatively higher contents of arsenic and other elements i.e. Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, As, Ga, Zr, Sn, Sb, Pb and U. The mean arsenic contents in soil of this region are much higher than in arsenic soil of
West Bengal and Bangladesh. The lowest level of arsenic in the soil of this region is 3.7 mg kg−1 with median value of 9.5 mg kg−1. The arsenic contents in the sediments are at least 2-folds higher than in the soil. The sources of arsenic contamination
in the soil of this region are expected from the rock weathering as well as the atmospheric deposition. The environmental
samples i.e. water, soil dust, food, etc. are expected the major exposure for the arsenic contamination. The most of people
living in this region are suffering with arsenic borne diseases (i.e. melanosis, keratosis, skin cancer, etc.). 相似文献
5.
Arsenic, Cadmium, Lead, and Mercury in surface soils, Pueblo, Colorado: implications for population health risk 总被引:1,自引:0,他引:1
Diawara MM Litt JS Unis D Alfonso N Martinez L Crock JG Smith DB Carsella J 《Environmental geochemistry and health》2006,28(4):297-315
Decades of intensive industrial and agricultural practices as well as rapid urbanization have left communities like Pueblo, Colorado facing potential health threats from pollution of its soils, air, water and food supply. To address such concerns about environmental contamination, we conducted an urban geochemical study of the city of Pueblo to offer insights into the potential chemical hazards in soil and inform priorities for future health studies and population interventions aimed at reducing exposures to inorganic substances. The current study characterizes the environmental landscape of Pueblo in terms of heavy metals, and relates this to population distributions. Soil was sampled within the city along transects and analyzed for arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb). We also profiled Pueblo’s communities in terms of their socioeconomic status and demographics. ArcGIS 9.0 was used to perform exploratory spatial data analysis and generate community profiles and prediction maps. The topsoil in Pueblo contains more As, Cd, Hg and Pb than national soil averages, although average Hg content in Pueblo was within reported baseline ranges. The highest levels of As concentrations ranged between 56.6 and 66.5 ppm. Lead concentrations exceeded 300 ppm in several of Pueblo’s residential communities. Elevated levels of lead are concentrated in low-income Hispanic and African-American communities. Areas of excessively high Cd concentration exist around Pueblo, including low income and minority communities, raising additional health and environmental justice concerns. Although the distribution patterns vary by element and may reflect both industrial and non-industrial sources, the study confirms that there is environmental contamination around Pueblo and underscores the need for a comprehensive public health approach to address environmental threats in urban communities. 相似文献
6.
The blackfoot disease (BFD) observed in southwestern Taiwan is due to drinking high arsenic concentrations in well water. This paper presents some results concerning the distributions of arsenic species in water and sediments collected in the BFD (well, river and coastal) area and the background (lake and ocean) area for comparison. The results show that the concentrations of arsenate (870 ± 26 ug/L) and arsenite (70.2 ± 2.6 ug/ L) in well waters, and the contents of arsenic (1640 ug/g) with high percentage of easily reducible (Fe and Mn oxides, 91.7%) and exchangeable and carbonate (4.6%) phases in well sediments were much higher than those in river, lake and coastal samples. Low arsenic (3.46–31.8 ug/g) with high percentages (73.8–97.3%) of detritus and minerals phase with low percentages (0.4–9.8%) of total carbonate and exchangeable phases were found in the river and coastal samples in the BFD area as well as the lake and ocean samples in background area. It might suggest that the higher concentrations of toxic As(III) in well water and arsenic with higher values of easily reducible, carbonate and exchangeable phases in the well sediments, combined with the higher values of dissolved organic carbon, humic and fulvic acids and aromatic carbon as well as the higher fluorescence indensity in the well water are the key factors to cause the BFD in Taiwan. 相似文献
7.
Juan C. García-Prieto Juan M. Cachaza Patricia Pérez-Galende 《Chemistry and Ecology》2013,29(6):545-560
The impact of drought on the ecological and chemical status of surface and groundwaters of the River Tormes (River Duero basin, northwestern Iberian Peninsula) was studied to evaluate the evolution of the quality of the river during its passage through the city of Salamanca (Spain). The Water Quality Index (WQI) of the river revealed that the drought period of 2005 did not significantly affect water chemical quality. However, during the study period differences were found in surface water ecological quality, using phytoplankton quality as AN indicator. These differences may be accentuated as a result of regulation of the River Tormes by the Santa Teresa reservoir. Arsenic and fluoride concentrations were measured in water wells, finding higher arsenic concentrations after the drought period and no correlation between the arsenic and fluoride contents. The results are useful for an overall understanding of potential impact of climate change on the ecological and chemical status of water in regional systems. 相似文献
8.
Associations between arsenic in drinking water and bladder cancer in an area along the southwest coast of Taiwan have been documented for decades. Several ecologic studies were conducted to assess the dose-response relationships. Some of them used the National Cancer Registry Program to identify cancer cases, and some used death certificates. Whereas the cancer registry collects information on all patients no matter if they died of bladder cancer or not, the case ascertainment might be incomplete due to the fact that reporting of cases is not mandatory. Reporting of death, on the other hand, is strictly enforced by law, but patients who did not die of bladder cancer might not be identified. In order to assess the problems with both approaches, we conducted a study using both case identification mechanisms. A total of 243 townships with measurements of arsenic in drinking water were included in the analysis of cancer registry data, and death certificates were collected from 10 of those townships. In both analyses, the same measurements of arsenic made by the mercuric bromide stain method were adopted. Due to limitation of the method, all levels below 0.04mg L–1 were combined as a single exposure category. The results were very much alike; both approaches detected statistically significant associations between high arsenic levels in drinking water (above 0.64mg L–1) and occurrence of bladder cancer but did not find such associations for arsenic exposures at lower levels. 相似文献
9.
The present investigation was conducted to determine the contamination status of arsenic (As), cadmium (Cd), and lead (Pb) in the wetland waters of Bhaluka in Bangladesh. Water samples were collected from 15 selected wetlands of Bhaluka region and analyzed using an atomic absorption spectrophotometer. Estimated results of three metals detected were As (7–80?µg?L?1), Pb (0–86?µg?L?1) and Cd (0–70?µg?L?1) in water samples in all wetlands. The level of As in all investigated wetlands (93%) was higher than that of WHO recommended permissible limit of drinking water except Alanga wetland. However, As levels were higher than that recommended for livestock water quality levels. Eighty-seven percent of the investigated wetlands showed lower content of Pb than WHO recommended permissible limit of drinking water, but two wetland waters (Dohuria-1 and Chowdhuri) were polluted with higher Pb levels. Sixty-seven percent of the investigated wetlands displayed higher levels of Cd than WHO recommended permissible limit in drinking water. Dissolved organic material showed no significant difference among the 15 investigated wetlands water, but total dissolved solids was significantly greater. The condition of the water of all wetlands was basic pH. All water samples were applied to linear regression equation and correlation coefficients where values showed no significant differences. Data demonstrate that the estimated high metal concentrations of these ponds may contribute to bioaccumulation within plants, food grains and shrimp. 相似文献
10.
Linsheng Yang Peter J. Peterson W. Peter Williams Wuyi Wang Shaofan Hou Jian’an Tan 《Environmental geochemistry and health》2002,24(4):293-303
Associations between the concentration of arsenic naturally occurring in drinking water and the development of skin lesions in people have been documented for some years at various locations around the world. Data on the exposure-response relationship between concentrations of arsenic in drinking water and prevalence of skin lesions in farmers from five locations in Inner Mongolia, China have been collected from the original publications and re-analysed together as a meta-study. The calculated data show a positive linear exposure-response relationship without a threshold. The reasons for this linear correlation are discussed and compared with the data from Xinjiang, another arsenism area located in a different geographical area of China. Here a different relationship was recorded that involved a threshold concentration before skin lesions developed. The significance of these two different exposure-response scenarios is discussed. 相似文献
11.
12.
This paper describes a study of the trace element distribution in sediments, marine water and mussel Mytilus galloprovincialis of the Venetian Lagoon around the Island of Murano, an island with a long tradition of glassmaking. Trace elements analysed include Fe, Mn, Zn, Cu, Cr, Pb, Ni, Ag and As. Sediments are contaminated with Zn, Cu, Ag, As and Pb, with levels in the <2m fraction that are likely to cause adverse biological effects to marine organisms. The pelite (<63m) is the main carrier of heavy metals at most sites. However, the fine-grained and coarse sand on the southern coast of Murano accounts for a significant proportion of Fe, Mn, Zn, Cr, Ag, Ni and Pb. Most trace element concentrations found in soft tissue of mussels appear to be within recommended Italian and international guidelines for shellfish for human consumption, the only exception being relatively high As levels. The bioaccumulation of Ag and Cr is more pronounced in the shell of these organisms. In the marine water of the lagoon, trace elements are more enriched than in other areas of the Mediterranean, with particular reference to the dissolved labile species of Zn, Mn, As, Cu, Ni and Cr. 相似文献
13.
Environmental exposure to arsenic (As) in the Kutahya region of the western Anatolia, Turkey has been reported to cause various
types of arsenic-associated skin disorders (Dogan, Dogan, Celebi, & Baris, 2005). A geological and mineralogical study was conducted to find the sources and distribution of the As. Geogenic (background)
levels were measured in samples collected from various sources in the Gediz, Simav, Tavsanli, Emet, Yoncali, Yenicekoy, and
Muratdagi areas of the Kutahya region. Based on this analysis, we determined that natural sources are a domineering factor
affecting the distribution of As, which was found: (1) mainly in evaporitic minerals, including colemanite (269–3900 ppm)
and gypsum (11–99,999 ppm), but also in alunite (7–10 ppm) and chert (54–219 ppm); (2) in secondary epithermal gypsum, which
has a high concentration of As in the form of realgar and orpiment along fracture zones of Mesozoic and Cenozoic carbonate
aquifers; (3) in rocks, including limestone/dolomite (3–699 ppm) and travertine (5–4736 ppm), which are relatively more enriched
in As than volcanics (2–14 ppm), probably because of secondary enrichment through hydrological systems; (4) in coal (1.9–46.5 ppm)
in the sedimentary successions of the Tertiary basins; (5) in thermal waters, where As is unevenly distributed at concentrations
varying from 0.0–0.9 mg/l. The highest As concentrations in thermal water (Gediz and Simav) correlate to the higher pH (7–9.3)
and T (60–83°C) conditions and to the type of water (Na–HCO3–SO4 with high concentration of Ca, Mg, K, SiO2, and Cl in the water). Changes in pH can be related to some redox reactions, such as the cation exchange reactions driving
the dissolution of carbonates and silicates. Fe-oxidation, high pH values (7–9.3), presence of other trace metals (Ni, Co,
Pb, Zn, Al), increased salinity (Na, Cl), high B, Li, F, and SiO, high Fe, SO4 (magnetite, specularite-hematite, gypsum), and graphite, and the presence of U, Fe, Cu, Pb, Zn, and B, especially in the
Emet, Gediz, and Simav areas, are the typical indicators for the geothermally affected water with high As content. A sixth
source of As in this region is the ground (0.0–10.7 mg/l) and the surface waters (0.0022–0.01 mg/l), which are controlled
by water–rock interaction, fracture system, and mixing/dilution of thermal waters. The high As concentration in groundwater
corresponds to the areas where pathological changes are greatest in the habitants. Arsenic in ground water also effects ecology.
For example, only Juriperus oxycedrus and J. varioxycedrus types of vegetation are observed in locations with the highest concentration of As in the region. Branches and roots of these
plants are enriched in As. 相似文献
14.
Linsheng Yang Wuyi Wang Shaofan Hou W. Peter Williams Peter J. Peterson 《Environmental geochemistry and health》2002,24(4):337-348
The clinical skin lesions of arsenism in men and women in Bayinmaodao rural district in Inner Mongolia, Peoples Republic of China, have been examined by doctors, and their hair and drinking water samples analysed for arsenic by hydride generation and ICP-AES. Altogether 311 arsenism patients with a 15.53% prevalence rate for the district were recorded. The disease prevalence rate was positively related to population, age, and their exposure to elevated arsenic concentrations in the drinking water from 1983 when new wells were dug and drinking of surface water was abandoned. Hyperkeratosis was the most serious skin lesion with the highest occurrence rate, then depigmentation and pigmentation in decreasing order. With increasing severity of the disease, ranging from skin lesion with single hyperkeratosis 1° to hyperkeratosis 3° with depigmentation 3° and pigmentation 3°, the results showed that arsenic concentrations in head hair had increased. Arsenic concentrations in hair were positively correlated with the arsenic concentrations in drinking water obtained from local wells. 相似文献
15.
Water-quality parameters and concentrations of various metals in bed sediments of the River Kali and the River Hindon in India were analysed to understand their behaviour in subtropical fluvial systems. Variations in the physico-chemical parameters of the river water and metal content in the bed sediments were recorded in four seasons of the year (post-monsoon, winter, summer and monsoon). Results show that water and sediments contain high cadmium (Cd) and Zinc (Zn). Total and soluble Cd and Zn profiles show that in summer, metals in the water phase exist predominantly in the bound form. Cd and Zn in bed sediments increase from the post-monsoon to the summer season. During and after the monsoon season, metal concentrations in sediments fall rapidly. Correlation coefficients of metals in sediments represent their common source and identical behaviour during transport. 相似文献
16.
Coastal changes in the Ebro delta: Natural and human factors 总被引:1,自引:0,他引:1
The development of the delta of the River Ebro (Ebre) has, during recent centuries, been controlled by both natural and man-induced
factors. Deforestation by man of the Ebro drainage basin favoured a fast progradation of the deltaic system until this century,
when many dams were constructed along the river Ebro and its tributaries. As the sediment load of the river has been retained
behind the dams, the river sediment discharge has been drastically reduced and erosive processes have become dominant in the
Ebro delta coastal area, changing it from a river-wave to a sea-wave-dominated coast. This situation leads to a reshaping
of the nearshore delta area and a redistribution of the pre-existing beach sediment, and significant erosion has already occurred
in some zones. If these conditions continue in the future, severe changes will take place in the Ebro delta, in addition to
the effects of a relative sea level rise. The future development of this delta may be similar to that of abandoned deltaic
lobes, but faster. The present study shows, how coastal changes generated by anthropogenic factors can be faster and more
drastic than those induced only by natural factors. 相似文献
17.
北京地区表层土壤中多环芳烃的分布特征及污染源分析 总被引:6,自引:0,他引:6
根据北京地区不同环境功能区62个样品的分析结果,讨论了研究区表层土壤中多环芳烃的分布特征及污染源类型。结果表明:(1)研究区表层土壤中检测到的多环芳烃主要包括萘、苊、菲、惹烯、三芴、荧蒽、芘、、苯并蒽、苯并[b]荧蒽、苯并[k]荧蒽、苯并[e]芘、苯并[a]芘、苝、二苯并[a,h]蒽、茚并[1,2,3–cd]芘、苯并[g,h,i]苝及其同系物;(2)不同环境功能区表层土壤中多环芳烃的组成及质量分数均存在一定的差别,16种优先控制的多环芳烃质量分数为175.1~10 344 ng.g-1,其中城市中心区表层土壤中多环芳烃的质量分数最高,交通干线附近、工矿企业附近表层土壤中PAHs的质量分数较高,林地、果园和农田表层土壤中PAHs的质量分数较低;(3)表层土壤中PAHs既有来源于石油源,也有来源于化石燃料燃烧产物的,但不同功能区二者贡献存在差别,其中农业用地(林地、果园、农田)中PAHs主要来源于石油源(或部分来源于土壤母岩中的有机质),城区、交通干线附近及工矿企业附近表层土壤中PAHs污染源以化石燃料燃烧产物输入为主。 相似文献
18.
农业小流域源头区池塘底泥磷形态和吸附特征 总被引:2,自引:0,他引:2
选择开慧河小流域源头区为研究对象,分析3类池塘(近年来由农田改建的人工塘为第Ⅰ类,受人为影响大的山边塘为第Ⅱ类,受人为影响小的山边塘为第Ⅲ类)的水质、底泥理化性质和底泥磷吸附特性。结果表明,3类池塘底泥的全磷、草酸提取态磷、不同形态无机磷(NH4Cl-P除外)以及生物可利用性磷(BAP)含量从大到小依次均为Ⅰ、Ⅱ和Ⅲ类,与3类池塘水质状况相一致。无机态磷中不同形态磷含量从大到小依次为金属氧化物结合态磷(NaOH-P)、钙结合态磷(HCl-P)、可还原态磷(BD-P)和弱吸附态磷(NH4Cl-P),其中,NaOH-P是主要赋存形式(占68.51%)。BD-P含量和HCl-P含量分别与活性铁(Feox)含量呈显著正相关(P0.01),NH4Cl-P含量和NaOH-P含量分别与活性铝(Alox)含量呈显著正相关(P0.05)。采用Langmuir方程拟合吸附数据得出:Ⅰ类(塘1、6和12)、Ⅱ类(塘10和11)和Ⅲ类(塘3)池塘底泥吸附/解吸平衡磷浓度(C0EP)、磷最大吸附量(Smax)和磷吸附键能参数(Kc)分别为0.02~0.12 mg·L-1、526.32~826.45 mg·kg-1和0.31~1.11 L·mg-1。其中,塘6底泥Smax和Kc最小,C0EP最大,潜在磷释放风险大;塘10和11具有较高的Smax、Kc及较低的C0EP值;塘3底泥对磷的吸附能力介于Ⅰ和Ⅱ类塘之间。可见,研究区人类活动输入外源污染物在一定程度上影响了池塘底泥磷含量和吸附特性,在控制农业小流域源头磷污染的同时应考虑磷的流入负荷及水体底泥的磷吸附能力。 相似文献
19.
20.
A comparison of metals in sediments and water in the River Nahr-Ibrahim,Lebanon: 1996 and 1999 总被引:1,自引:0,他引:1
Rivers whose basins are underlain by carbonate rocks exhibit high pH, lower desorption of metals and possess high buffering capacity against acidic inputs to the river. The catchment of River Nahr-Ibrahim, Lebanon, is largely underlain by limestone. Compared to neighbouring countries, Lebanon is relatively fortunate since precipitation is high. However, recently a warming in temperature and a drop in precipitation has occurred, thus causing low water levels in rivers. The objective of this study is to investigate the variation of the total metal content (Fe, Mn, Zn, Cu, Pb and Cd) in bed sediments and water of River Nahr-Ibrahim between 1996 and 1999 (two years); and relate these variations to the effect of changes in human activities and/or due to the variations of precipitation rate, temperature and pH of water. Bed load sediments and stream water were collected simultaneously from five sampling sites. Water pH and temperature were determined in situ. Sediment samples were dried at room temperature and sieved; the sediment size <75 m size was retained. Water was analysed for major constituents and trace metals. Metals were extracted from sediments with aqua regia. Metal concentration in water and sediments were determined using ICP-MS technique. Data revealed a drop in metal concentrations (Zn, Cu, Pb, Cd) in sediments at quarry site after its closure. The decrease in precipitation rate, lowering the level of water and the dilution of industrial discharges and decrease in water pH led most probably to the desorption of metals from sediments into the water. 相似文献