首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用聚乳酸作为反硝化固体碳源的研究   总被引:9,自引:6,他引:3  
范振兴  王建龙 《环境科学》2009,30(8):2315-2319
利用聚乳酸(PLA)颗粒作为反硝化的固体碳源和生物膜载体,考察了聚乳酸作为反硝化碳源的可行性和温度对聚乳酸颗粒反硝化脱氮性能的影响,并对聚乳酸颗粒表面进行了红外光谱分析和扫描电镜观察.结果表明,PLA颗粒作为反硝化固体碳源和生物膜载体进行反硝化脱氮,接种和驯化时间较长.在30℃,硝酸盐氮初始浓度为50 mg/L时,PLA的平均反硝化速率为2.6×10-3mg/(g.h),13 h内硝酸氮可以完全去除.温度对反硝化速率影响很大,在30~40℃之间反硝化速率较高,一旦偏离适宜温度,反硝化速率降低很快.对PLA颗粒表面的红外光谱分析和扫描电镜观察证实了PLA作为反硝化固体碳源的可行性.PLA颗粒表面的生物膜扫描电镜观察发现生物膜比较薄,以球菌为主.  相似文献   

2.
采用SBR反应器,考察了温度对好氧颗粒污泥处理纤维素乙醇废水脱氮性能的影响.研究结果表明,当进水为纤维素乙醇废水原水时,稳定阶段不同温度(10、20、30℃)条件下体系对COD的去除率分别为10.2%、12.7%、13.7%;总无机氮的去除率分别为42.8%、53.6%、70.5%,温度的升高明显地提高了硝化菌的活性和生长速率,进而促进了脱氮效果.当进水为纤维素乙醇废水经IC工艺处理后的厌氧出水时,3个温度条件下系统对废水中有机物的去除效果无较大差异,去除率均低于15%,主要因为纤维素乙醇废水的厌氧处理出水中的有机物很难被微生物利用;而温度对脱氮效果影响较大,30℃下NH_4~+-N去除率达到60.9%,分别是10℃和20℃时的2.0和1.3倍,并且,随着温度的升高总无机氮的去除率增强,NO_3~--N的去除量增加.由于体系COD去除率低说明反硝化可利用的碳源不足,因此,系统内可能存在内碳源反硝化作用,而且内碳源反硝化作用也随着温度的升高而增强.通过氮平衡计算可知,3个温度条件下氮损失分别为37.6%、45.0%、53.6%,说明温度的升高不仅提高了硝化菌活性,还促进了内碳源反硝化,进而提高了对氮素的去除.  相似文献   

3.
温度对反硝化过程的影响以及pH 值变化规律   总被引:27,自引:2,他引:25       下载免费PDF全文
马娟  彭永臻  王丽  王淑莹 《中国环境科学》2008,28(11):1004-1008
以乙酸钠为碳源,采用序批式反应器(SBR)考察了不同温度对全程和短程2 种类型反硝化的影响.结果表明,在温度为10~30℃时,2 种类型反硝化均可以进行完全.相同温度下,短程反硝化的平均比反硝化速率是全程的1.312 倍.降低温度,2 种电子受体的比反硝化速率均会下降,且20~10℃的温度转变较30~20℃转变的影响显著,其中以NO2--N 的还原过程受低温影响较大.低温(10~15 ) ℃ 条件对NO3--N 向NO2--N 的还原过程有一定抑制作用.在起始电子受体浓度与pH 值相同的条件下,温度越低,反硝化过程中2 种系统pH 值增量越大,反硝化结束时的pH 值越高;温度相同条件下,短程反硝化结束时pH 值曲线上峰点的值高于全程反硝化.  相似文献   

4.
单级生物脱氮的特性研究   总被引:8,自引:1,他引:7  
曹国民  赵庆祥  龚剑丽  张彤 《环境科学》2000,21(3):40-40-43
以 PVA为载体 ,采用冷冻法混合固定硝化菌和反硝化菌 ,研究硝化菌与反硝化菌的比例、有机碳源、p H值、碱度、温度和DO等因素对单级脱氮过程的影响 .试验结果表明 :当硝化菌 /反硝化菌 =1.5∶ 1~ 3.6∶1 (WW)时 ,脱氮速率最快 .在甲醇、乙醇、醋酸和葡萄糖 4种有机碳源中 ,以乙醇为碳源时脱氮速率最快 .最适的温度、pH值和 DO分别是 30℃、8.2和 2 mg/L~ 6mg/L.碱度与氨氮的比例越高 ,脱氮速率越快 ,但当碱度 /氨氮 >9.0时 ,脱氮速率趋于稳定 .  相似文献   

5.
间歇式活性污泥法硝化与反硝化的试验研究   总被引:8,自引:0,他引:8  
朱淑琴  韩梅 《环境工程》1999,17(1):11-13
介绍了间歇式活性污泥法硝化、反硝化及连续硝化、反硝化的反应规律。试验结果表明,脱氮进行的顺利与否,主要决定于硝化反应完成的程度。但在反硝化过程,不投加有机碳源的反硝化速率远远低于投加有机碳源的速率。因此,在反硝化时,投加一定的碳源是必要的,它可以加快反硝化速率,缩短反应时间并减小反应器容积。  相似文献   

6.
本试验采用室内试验装置,研究了 pH、温度、硝酸盐浓度对锯末+乙醇作为混合碳源去除地下水中硝酸盐的影响结果表明,pH值在5~10内变化时对锯末+乙醇混合碳源体系的硝酸盐去除率影响较大,pH >7时的硝酸盐去除率明显高于pH <7时的去除率;并且随着pH值的增加,亚硝酸盐的积累量越多,锯末+乙醇混合碳源体系最佳的pH值范围是7~8.锯末+乙醇混合碳源体系受温度的影响较大,温度为8.5、15℃时的反硝化速率显著低于25℃时的速率,25℃时的反硝化速率分别是8.5、15℃时的3倍和1.5倍,锯末+乙醇混合碳源体系适宜的温度范围为25 ~35℃进水硝酸盐浓度也会影响锯末+乙醇混合碳源体系的反硝化效果,硝酸盐氮浓度在67.8 ~113 mg·L-1范围内变化时,反应体系的硝酸盐去除效果较好反应初期,硝酸盐浓度越大混合碳源体系的反硝化速率就越低,可能较大的硝酸盐负荷对反硝化细菌产生毒害作用而不利于硝酸盐的去除.  相似文献   

7.
为研究厌氧释磷过程中的影响因素,以连续流A 2N双污泥中试污泥为样品,考察了碳源种类、碳源浓度、pH值以及温度对反硝化除磷污泥厌氧释磷的影响。结果表明:乙酸为碳源时释磷效果最佳,其次是葡萄糖,甲醇为碳源时释磷效果较差。MLSS为1 200 mg/L左右时,投加200 mg/L的COD即可保证充分释磷。pH值为6.3~8.8,对厌氧释磷效果影响不大,适当提高pH值有利于提高释磷速率。温度为20~30℃,释磷效果较好。另外,实验同时研究了反硝化除磷污泥分别利用不同电子受体(硝氮、氧气)的吸磷特性。以硝氮为电子受体的反硝化吸磷过程中,前15min的反硝化吸磷脱氮速率最高,吸磷速率与反硝化速率分别为11.5、10.4 mgN/gVSS·h;以氧气为电子受体的好氧吸磷过程中,前15 min的好氧吸磷速率最高,达到20.4 mgP/gVSS·h,大约为反硝化吸磷的2倍。  相似文献   

8.
以麦秆作为好氧反硝化碳源的研究   总被引:5,自引:0,他引:5  
采用室内试验装置,研究以麦秆为碳源和反应介质的生物反应器在好氧条件下去除地下水中硝酸盐的影响因素和效果。结果表明,以麦秆为碳源的反应器启动快,反硝化反应受温度及水力停留时间影响大。28℃时N的去除量约33℃的3倍。当室温为(27±1)℃,进水硝酸盐氮浓度为50mg/L、水力停留时间56.85h时,反应器对氮的去除率在94.64%以上;当水力停留时间为12h时,氮去除率<50%。同时反硝化反应受pH值和进水NO3--N浓度的影响。当pH值为6.7时,N的去除率最高,达90%以上。反硝化速率与NO3--N浓度显著呈线性关系。  相似文献   

9.
不同碳源材料用于污水厂尾水生物反硝化碳源的效果研究   总被引:6,自引:0,他引:6  
针对污水厂尾水氮素高度硝化的现状,通过正交试验研究了不同固体碳源在不同的反应时间、硝氮进水浓度、碳源比例及温度条件下的反硝化速率及对硝态氮的去除率.结果表明,以麦秆为碳源去除硝氮最优条件是温度为25℃,反应时间为10h,进水硝氮浓度为30 mg·L-1,麦秆与水的质量比为1:50;以PHAs为碳源去除硝氮的最优条件是温...  相似文献   

10.
以PHAs为固体碳源的城镇二级出水深度脱氮研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用从连续运行的缓释碳源滤料滤池中取出的聚羟基脂肪酸酯(PHAs)颗粒,研究了微生物和硝酸盐对其的总有机碳(TOC)释放速率的影响,并研究了温度、pH值、硝态氮浓度对其反硝化速率的影响.结果表明:原有的和附着有微生物的PHAs颗粒在去离子水中TOC释放速率分别为0.030,0.053mg/(g·d),远低于水中有硝酸盐时的TOC释放速率[进水NO3--N为30mg/L时,TOC释放速率为0.533mg/(g·d)].温度和pH值对反硝化速率影响较大, pH值为7.5时,在15~35℃范围内, 30℃下的反硝化速率最大,为0.067mg/(g·h);温度为30℃时,pH值在6.0~9.0范围内,pH值为7.8时的反硝化速率最大,达到0.061mg/(g·h).反硝化速率与NO3--N浓度之间的关系符合Monod方程,最大反应速率和半饱和常数分别为4.74mgNO3--N/(gSS·h)和56.6mg/L.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

16.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

17.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

18.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

19.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

20.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号