首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
石墨烯(graphene,G)及其衍生物由于具有独特的理化性质,被广泛应用于能源、生物医学等领域,但尚缺乏其对生物体和环境潜在危害的研究。采用分子动力学模拟并结合光谱学方法(紫外可见吸收光谱、紫外变温实验及荧光光谱),分析了石墨烯与抑癌基因p53启动子区DNA片段(p53-DNA)间的相互作用,并探讨了相关作用机制。石墨烯的部分芳香环与p53-DNA碱基的芳香环之间存在π-π堆积作用,两者可以通过嵌插作用进行结合,同时还通过沟槽作用进一步结合。光谱实验进一步证实,在石墨烯作用下,p53-DNA的熔点(Tm)值升高,EB-DNA体系发生静态荧光淬灭,说明石墨烯能与p53-DNA结合;同时,p53-DNA与石墨烯结合后在260 nm处的吸光度升高,说明石墨烯对p53-DNA的双螺旋结构具有一定的破坏作用。上述研究结果从分子水平上分析了石墨烯与p53-DNA间的相互作用机制,有助于进一步阐明石墨烯的毒性作用机理。  相似文献   

2.
Graphene was discovered in 2004 and has attracted intensive interests because of its unique mechanical, electric, thermal, optical, and structural properties, which makes graphene a potential candidate for various applications. Graphene is being used as a composite or filler material with metals, metal oxides, and polymers for potential advanced applications in solar cells, lithium-ion batteries, photocatalysis and sensing. These applications depend upon the distinctive properties of graphene, which in turn depend on the adopted synthetic approach. This article reviews the recent developments in synthesis of graphene and related composite materials. The synthesis of graphene through exfoliation, epitaxial growth and direct growth via carbon source, and modification approaches by covalent and noncovalent methodologies are discussed. Graphene-based metal and metal oxide composites for the purification of wastewater using photolytic process are also presented.  相似文献   

3.
Biomaterial industry is a widely growing field that is closely related to advanced materials. With development in fabrication techniques new materials are being created by researchers daily. The currently used biomaterials for biomedical applications have some limitations. This review examines those limitations such as corrosion, short fatigue life, less wear resistance, and inadequate mechanical properties. These limitations may lead to adverse effects. To overcome these limitations carbon-based nanomaterials may be incorporated such that these biomaterials reach the level of ideal biomaterials. Upgrade of biomaterials with graphene and carbon nanotubes (CNTs) needs to be done only after checking the safety profile of these materials. Biocompatibility of functionalized graphene and CNT is found to be adequate for the use in many applications such as drug delivery, biosensing and imaging, cancer therapeutics, and tissue regeneration whereas pristine graphene and CNT may produce adverse effects. The potential of carbon-based nanomaterials and graphene (and its derivatives) in overcoming those limitations and enhancing biological activities of ongoing biomaterials by acting as composites and coating material is examined. In addition, nanomaterials employ new techniques in biomedical application such as cancer therapy for more efficient results.  相似文献   

4.
磺化石墨烯对小麦幼苗生长及生理生化指标的影响   总被引:1,自引:0,他引:1  
随着石墨烯生产量和使用量的不断增大,其对生态环境的风险逐渐引起了环境学家的关注。采用水培试验,探究了磺化石墨烯(SGO)对小麦幼苗的生长、抗氧化酶活性及脂质过氧化的影响。结果表明:在培养10 d后,低浓度磺化石墨烯对小麦根系的生长有显著促进作用(P0.05),200 mg·L-1浓度处理与对照处理相比提高了84.3%,随着浓度增加促进作用逐渐减弱,1 000 mg·L-1时与对照相比提高了19.9%。但对小麦地上部的生长没有影响。磺化石墨烯处理的小麦幼苗根系和叶片组织中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)及丙二醛(MDA)都呈现先下降后上升的趋势。当磺化石墨烯浓度低于200 mg·L-1时,处理组小麦抗氧化酶的活性及MDA含量相对于对照处理大都有所降低,说明低浓度时磺化石墨烯没有对小麦的生长产生氧化胁迫,这与磺化石墨烯可能具有一定的抗氧化能力有关,而高浓度时由于产生氧化胁迫使各项生理生化指标逐渐上升。本实验结果为石墨烯材料对植物的毒理学研究提供了基础数据。  相似文献   

5.
Attachment of Scenedesmus sp. LX1 was tested on certain materials. A criterion for selection of materials was used to choose seven materials. The amount of S. sp. LX1 attached on polyurethane foam was 51.74 mg/L. Materials’ surface influenced the attachment of microalgae. Hydrophilic and hydrophobic properties also affected the attachment of S. sp. LX1. Attached cultivation systems in the literature do not present a methodology to screen materials for microalgal growth. Hence, a method is needed to find suitable materials for attached cultivation that may enhance attachment of microalgae. In this paper, we have tested seven materials culturing Scenedesmus sp. LX1 (S. sp. LX1) to evaluate the attachment of microalgae on the material surface, its growth in suspension phase and the properties of the materials. Two materials showed attachment of S. sp. LX1, polyurethane foam and loofah sponge, and allowed microalgae to grow both in the surface of the material and suspended phase. Polyurethane foam proved to be a good material for attachment of S. sp. LX1 and the amount of attached microalgae obtained was 51.73 mg/L when adding 100 pieces/L. SEM images showed that the surface and the pore size of the materials affected the attachment of the microalgae, increasing its attachment in scaffold-like materials. Furthermore, the hydrophilic and hydrophobic properties of the materials also affected the attachment of microalgae. This research can be used as a methodology to search for the assessment of a material suitable for attachment of microalgae.  相似文献   

6.
不同磷效率基因型小麦对VAM真菌依赖性的影响因子及机理   总被引:5,自引:0,他引:5  
以高、中、低效3 个磷效率基因型小麦为试材,在w(P2O5) =20 mgkg 和60 mgkg 的水平下,接种或不接种两个VA菌根真菌Glomus mosseae 和Glomusversiforme,研究了影响小麦菌根依赖性的因子及机理.结果表明,在低磷水平下,小麦菌根依赖性的大小顺序为中效> 低效> 高效;对G. versiform 的依赖性大于对G. mosseae 的依赖性;而在高磷水平下,接种菌根表现出不同程度的生长抑制作用.相关分析发现,菌根依赖性与根冠比、根长、根毛长度、根毛密度、磷利用效率之间的相关性不显著;在低磷水平下,菌根依赖性与磷效率、根吸收效率之间呈极显著的负相关,与韧皮部蔗糖运输速率之间呈显著或极显著的正相关.认为影响不同磷效率基因型小麦菌根依赖性的主要因子是根的吸收效率;菌根依赖性、磷效率和韧皮部蔗糖运输速率均受根吸收效率影响  相似文献   

7.
We studied the effect of a developing Skeletonema marinoi/Phaeocystis spp. bloom on Calanus finmarchicus hatching success, early naupliar survival and metabolism. Our focus was (1) on the development of reproductive rates during a bloom initiation, peak and decline in relation to the production of potentially toxic algal metabolites and (2) on the proportional importance of female nutrition versus naupliar food environment for the production of viable nauplii. Despite polyunsaturated aldehyde (PUA) production by both S. marinoi and Phaeocystis sp., we did not observe any harmful effects on hatching success or naupliar survival and condition in any stages of the short-term (<1 week) algal bloom. Hatching success appeared to be controlled by egg lipid composition, while the beneficial effect of a high food concentration was reflected in naupliar RNA:DNA ratio, protein content and total production of viable nauplii. The egg lipids reflected seston lipids, indicating that the egg fatty acid composition was not modified by the females. Our results suggest that unselective feeding and/or retention of specific lipids can induce qualitative food limitation, although recruitment during the S. marinoi/Phaeocystis sp. bloom was high.  相似文献   

8.
Increasing production and use of carbonaceous nanomaterials (NMs) will increase their release to the sewer system and to municipal wastewater treatment plants. There is little quantitative knowledge on the removal of multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), or few-layer graphene (FLG) from wastewater into the wastewater biomass. As such, we investigated the quantification of GO and MWCNTs by UV-Vis spectrophotometry, and FLG using programmable thermal analysis (PTA), respectively. We further explored the removal of pristine and oxidized MWCNTs (O-MWCNTs), GO, and FLG in a biomass suspension. At least 96% of pristine and O-MWCNTs were removed from the water phase through aggregation and 30-min settling in presence or absence of biomass with an initial MWCNT concentration of 25 mg·L−1. Only 65% of GO was removed with biomass concentration at or above 1,000 mg·L−1 as total suspended solids (TSS) with the initial GO concentration of 25 mg·L−1. As UV-Vis spectrophotometry does not work well on quantification of FLG, we studied the removal of FLG at a lower biomass concentration (50 mg TSS·L−1) using PTA, which showed a 16% removal of FLG with an initial concentration of 1 mg·L−1. The removal data for GO and FLG were fitted using the Freundlich equation (R2 = 0.55, 0.94, respectively). The data presented in this study for carbonaceous NM removal from wastewater provides quantitative information for environmental exposure modeling and life cycle assessment.  相似文献   

9.
石墨烯是一种新兴纳米材料,具有独特的电学和光学性质、超大的比表面积以及潜在的生物相容性,在材料和电子产业、能源、环境以及生物医学等领域得到广泛应用。与此同时,石墨烯的环境行为和生物毒性也随之引起日益广泛的关注。本文通过对石墨烯纳米材料的生物毒性、细胞毒性、毒性影响因素和毒性机制等相关研究进展进行总结。石墨烯纳米材料可通过气管滴注、吸入、静脉注射、腹腔注射以及口服等方式进入体内,通过机械屏障、血脑屏障和血液胎盘屏障等积累在肺、肝、脾等部位引起急性或者慢性损伤;目前有关石墨烯毒性机制的研究主要集中于线粒体损伤、DNA损伤、炎性反应、凋亡等终点及氧化应激参与的复杂信号通路,不同石墨烯纳米材料的浓度、尺寸、表面结构和官能团等对石墨烯的生物毒性影响不同。鉴于当前该领域研究的局限性,对石墨烯纳米材料生物毒性研究的发展方向进行了展望,进而为石墨烯材料的安全应用提供理论借鉴和实践参考。  相似文献   

10.
采用电子自旋共振光谱(EPR)技术,分析腐殖酸在光照下对4种典型碳纳米材料诱导产生单线态氧(~1O_2)和羟基自由基(·OH)的影响。基于密度泛函理论计算4种典型碳纳米材料的前线轨道能,比较了它们分别经能量转移诱导产生~1O_2的能力以及经电子传递诱导产生·OH的能力。结果显示,4种不同形状的碳纳米材料(富勒烯、单壁碳纳米管、多壁碳纳米管以及石墨烯)悬浮液在紫外光照下均无~1O_2和·OH产生。与腐殖酸共同存在下,4种碳纳米材料均显著诱导~1O_2的产生,且富勒烯和石墨烯还能光致生成·OH。协同产生~1_O2的能力大小为:单壁碳纳米管富勒烯多壁碳纳米管石墨烯,协同产生·OH的能力大小为:石墨烯富勒烯。~1O_2的产生能力与碳纳米材料的能隙大小和颗粒聚集程度有关,而诱导产生·OH的能力主要取决于化学硬度。总之,我们的研究表明腐殖酸与碳纳米颗粒可协同产生活性氧物种。  相似文献   

11.
石墨烯作为一种新兴的二维碳纳米材料,近年来受到了医学领域科学家的高度关注。由于石墨烯类纳米材料具有较大的比表面积,易于表面修饰等优点,目前在药物载体方面的研究发展迅速。随着纳米技术的发展,除了氧化石墨烯外,进一步将还原氧化石墨烯、石墨烯量子点、石墨烯纳米带等石墨烯类纳米材料作为药物载体应用到医学领域。本文综述了石墨烯类纳米材料作为药物载体在医学领域的研究进展,并从石墨烯类纳米材料的相关毒性研究角度,提醒了人们负载药物前后石墨烯类纳米材料的迁移规律对其潜在风险研究的重要性。  相似文献   

12.
沙地退化植被恢复过程中植被的空间异质性   总被引:1,自引:0,他引:1  
通过野外取样和室内分析,应用地统计学分析方法研究了科尔沁沙地退化植被恢复过程中不同封育年限(0、11和20年)的流动沙丘的植被盖度和丰富度特征及其空间异质性规律。结果表明,随着流动沙丘的固定和封育年限的增加,植被盖度和丰富度逐渐增加。在流动沙丘植被恢复过程中,植被盖度和丰富度具有明显的空间自相关性,其空间自相关范围从封育0年的流动沙丘(46.05m和33.63m)、封育11的流动沙丘(21.63m和17.25m)到封育20年的流动沙丘(26.12m和24.18m)先减小后增加,但均未超出我们的研究尺度50m,表现出不同大小的斑块形式分布的小尺度分布格局。由半方差函数及其参数和空间分布格局图分析得出,随着沙丘植被的恢复,植被特征的空间异质性在所研究的尺度上表现出先增大(封育0年到封育11年)后减小(封育11年到封育20年)的变化特点。  相似文献   

13.
• The synthesis and physicochemical properties of various CNMs are reviewed. • Sb removal using carbon-based nano-adsorbents and membranes are summarized. • Details on adsorption behavior and mechanisms of Sb uptake by CNMs are discussed. • Challenges and future prospects for rational design of advanced CNMs are provided. Recently, special attention has been deserved to environmental risks of antimony (Sb) element that is of highly physiologic toxicity to human. Conventional coagulation and ion exchange methods for Sb removal are faced with challenges of low efficiency, high cost and secondary pollution. Adsorption based on carbon nanomaterials (CNMs; e.g., carbon nanotubes, graphene, graphene oxide, reduced graphene oxide and their derivatives) may provide effective alternative because the CNMs have high surface area, rich surface chemistry and high stability. In particular, good conductivity makes it possible to create linkage between adsorption and electrochemistry, thereby the synergistic interaction will be expected for enhanced Sb removal. This review article summarizes the state of art on Sb removal using CNMs with the form of nano-adsorbents and/or filtration membranes. In details, procedures of synthesis and functionalization of different forms of CNMs were reviewed. Next, adsorption behavior and the underlying mechanisms toward Sb removal using various CNMs were presented as resulting from a retrospective analysis of literatures. Last, we prospect the needs for mass production and regeneration of CNMs adsorbents using more affordable precursors and objective assessment of environmental impacts in future studies.  相似文献   

14.
Motivated by the recent realization of graphene sensor to detect gas molecules that are harmful to the environment, the ammonia adsorption on graphene or graphene oxide (GO) was investigated using first-principles calculation. The optimal adsorption and orientation of the NH3 molecules on the graphene surfaces were determined, and the adsorption energies (E b) as well as the Mulliken charge transfers of NH3 were calculated. The E b for the graphene are small and seem to be independent of the sites and orientations. The surface epoxy or hydroxyl groups can promote the adsorption of NH3 on the GO; the enhancement of the E b for the hydroxyl groups is greater than that for the epoxy groups on the surface. The charge transfers from the molecule to the surfaces also exhibit the same trend. The Brönsted acid sites and Lewis acid sites could stably exist on the GO with surface hydroxyl groups and on the basal, respectively.  相似文献   

15.
A study of marine boring and fouling organisms in the vicinity of the thermal effluent from the Oyster Creek Nuclear Generating Station, Barnegat Bay, New Jersey, USA has been conducted since 1971. Two subtropical species of shipworms have been found in significant numbers in the effluent. These are Teredo bartschi Clapp and Teredo furcifera von Martens. The shipworm Lyrodus sp. and the flatworm Taenioplana teredini Hyman, which is predatory on teredinids, were also found, but on only one occasion. The polychaete Ficopomatus enigmaticus (Fauvel) has been found for the first time on the Atlantic Coast of North America. Three other polychaetes, Potamilla (Potamethus) spathiferus (Ehlers), Loimia medusa (Savigny), and Sphaerosyllis sp., have been newly identified from Barnegat Bay, but probably are not recent range extensions. Only T. bartschi, T. furcifera, and F. enigmaticus have established breeding populations. Their distributions and abundances are probably related to the thermal effluent; this is most clear in the case of T. bartschi and least clear in the case of F. enigmaticus. T. bartschi was confined at first to the heated effluent in Oyster Creek, but has spread to Forked River. It has become a major faunal element in Oyster Creek. The impact of the other exotic species has been negligible. The primary mechanism of the range extensions is by boat transport.  相似文献   

16.

Water pollution and the unsustainable use of fossil fuel derivatives require advanced catalytic methods to clean waters and to produce fine chemicals from modern biomass. Classical homogeneous catalysts such as sulfuric, phosphoric, and hydrochloric acid are highly corrosive and non-recyclable, whereas heterogeneous catalysts appear promising for lignocellulosic waste depolymerization, pollutant degradation, and membrane antifouling. Here, we review the use of sulfonated graphene and sulfonated graphene oxide nanomaterials for improving membranes, pollutant adsorption and degradation, depolymerization of lignocellulosic waste, liquefaction of biomass, and production of fine chemicals. We also discuss the economy of oil production from biomass. Sulfonated graphene and sulfonated graphene oxide display an unusual large theoretical specific surface area of 2630 m2/g, allowing the reactants to easily enter the internal surface of graphene nanosheets and to reach active acid sites. Sulfonated graphene oxide is hydrophobic and has hydrophilic groups, such as hydroxyl, carboxyl, and epoxy, thus creating cavities on the graphene nanosheet’s surface. The adsorption capacity approached 2.3–2.4 mmol per gram for naphthalene and 1-naphthol. Concerning membranes, we observe an improvement of hydrophilicity, salt rejection, water flux, antifouling properties, and pollutant removal. The nanomaterials can be reused several times without losing catalytic activity due to the high stability originating from the stable carbon–sulfur bond between graphene and the sulfonic group.

  相似文献   

17.
利用分子对接、分子动力学模拟(molecular dynamics simulation,MD)和光谱法研究2'-羟基-2,4,4'-三溴二苯醚(2'-OHBDE-28)与人血清白蛋白(HSA)的作用机制。MD模拟研究表明2'-OH-BDE-28诱导HSA的内部疏水性增强,结构松散膨胀,致使其二级结构发生改变;圆二色光谱实验与MD模拟结果相吻合,验证2'-OH-BDE-28可诱导HSA的构象变化。荧光光谱实验表明,2'-OH-BDE-28能通过静态猝灭和非辐射能量转移机制引起HSA荧光猝灭。分子对接推断2'-OH-BDE-28以氢键和疏水作用力键合在HSA的位点I处;热力学分析和竞争实验结果一致验证分子对接结果。本文将计算模拟和光谱实验相结合,从模拟和实验2个角度共同探讨2'-OH-BDE-28与HSA的作用机制,结果高度吻合。  相似文献   

18.
石墨烯对高等植物幼苗的毒性及机理探究   总被引:1,自引:0,他引:1  
随着石墨烯产品的广泛应用和潜在的环境释放,其对生态环境的影响已引起广泛关注。为探讨石墨烯对高等植物生长的影响,探究了其对黄瓜幼苗和玉米幼苗生长的影响及其致毒机理。结果表明,水培条件下,不同浓度的石墨烯(10、50、100、500、1 000和2 000 mg·L~(-1))处理植物幼苗15 d后,对植物幼苗的生长具有抑制作用。且随着处理时间和石墨烯浓度的增加,植物幼苗生长的所有指标,包括根/地上部鲜重和干重、根长、根尖数、株高和叶面积均相应降低。另外,黄瓜幼苗比玉米幼苗对石墨烯更加的敏感。进一步研究发现,石墨烯与黄瓜幼苗根部直接接触导致的物理损伤、氧化损伤,以及营养耗竭是其致毒机理。而石墨烯对玉米幼苗的致毒机理包括物理损伤和营养耗竭。本研究为石墨烯的环境风险评价提供了基础数据。  相似文献   

19.
不同木豆品种耐铝性的基因型差异及其机理研究   总被引:1,自引:0,他引:1  
以6个品种的木豆为材料,探讨了木豆品种间耐铝性的基因型差异及其机制。铝对根伸长的抑制大小及苏木精对根尖的染色模式的研究结果表明,不同品种木豆的耐铝性基因型差异明显。在铝胁迫条件下,去除根尖吸附的粘胶,耐铝的基因型MD2和敏感的基因型MD5根的伸长率均减少,而根尖被苏木精染色程度加深;去除粘胶对MD2的影响大于MD5,说明粘胶对根尖的保护是木豆抵御铝毒的一个重要机制。虽然铝胁迫可诱导木豆根系分泌柠檬酸和苹果酸,但根系苹果酸的分泌量在MD2和MD间无显著差异,MD2柠檬酸的分泌量甚至低于MD5。  相似文献   

20.
The effects of two carbon-based nanomaterials, nano-sized carbon black (nCB), and single-layer graphene oxide (GO) on settlement of Amphibalanus amphitrite (Cirripedia, Crustacea) cypris larvae (cyprids) were assessed after 24, 48, and 72 h of exposure. Additionally, the effects of these nanomaterials on the mortality and swimming behaviour of the nauplius larvae (nauplii) of the same organism were determined after 24 and 48 h. The data indicate that nCB is more effective as a potential antisettlement agent than single-layer GO; moreover, nCB did not show any adverse effects on the larvae. The swimming behaviour of II stage nauplii of A. amphitrite exposed to a suspension of nCB was inhibited only at very high nCB concentrations (≥0.5 mg/mL). Single-layer GO, on the contrary, showed lower antisettlement effects and was more active in altering the survival and inhibiting the swimming behaviour of the nauplii. An indication of the toxic or non-toxic mechanisms of the antisettlement properties of both of these nanomaterials is provided by the reversibility of the antisettlement activity. In conclusion, we propose nCB as an innovative antifouling nanomaterial that shows low toxicity towards the model organism (crustaceans) used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号